mirror of
https://github.com/explosion/spaCy.git
synced 2025-07-19 04:32:32 +03:00
Run black
This commit is contained in:
parent
bc081c24fa
commit
8bd0474730
|
@ -20,11 +20,11 @@ def build_coref(
|
|||
hidden: int = 1000,
|
||||
dropout: float = 0.3,
|
||||
mention_limit: int = 3900,
|
||||
#TODO this needs a better name. It limits the max mentions as a ratio of
|
||||
# TODO this needs a better name. It limits the max mentions as a ratio of
|
||||
# the token count.
|
||||
mention_limit_ratio: float = 0.4,
|
||||
max_span_width: int = 20,
|
||||
antecedent_limit: int = 50
|
||||
antecedent_limit: int = 50,
|
||||
):
|
||||
dim = tok2vec.get_dim("nO") * 3
|
||||
|
||||
|
@ -40,7 +40,7 @@ def build_coref(
|
|||
)
|
||||
mention_scorer.initialize()
|
||||
|
||||
#TODO make feature_embed_size a param
|
||||
# TODO make feature_embed_size a param
|
||||
feature_embed_size = 20
|
||||
width_scorer = build_width_scorer(max_span_width, hidden, feature_embed_size)
|
||||
|
||||
|
@ -90,19 +90,18 @@ def build_width_scorer(max_span_width, hidden_size, feature_embed_size=20):
|
|||
>> Linear(nI=hidden_size, nO=1)
|
||||
)
|
||||
span_width_prior.initialize()
|
||||
model = Model(
|
||||
"WidthScorer",
|
||||
forward=width_score_forward,
|
||||
layers=[span_width_prior])
|
||||
model = Model("WidthScorer", forward=width_score_forward, layers=[span_width_prior])
|
||||
model.set_ref("width_prior", span_width_prior)
|
||||
return model
|
||||
|
||||
|
||||
def width_score_forward(model, embeds: SpanEmbeddings, is_train) -> Tuple[Floats1d, Callable]:
|
||||
def width_score_forward(
|
||||
model, embeds: SpanEmbeddings, is_train
|
||||
) -> Tuple[Floats1d, Callable]:
|
||||
# calculate widths, subtracting 1 so it's 0-index
|
||||
w_ffnn = model.get_ref("width_prior")
|
||||
idxs = embeds.indices
|
||||
widths = idxs[:,1] - idxs[:,0] - 1
|
||||
widths = idxs[:, 1] - idxs[:, 0] - 1
|
||||
wscores, width_b = w_ffnn(widths, is_train)
|
||||
|
||||
lens = embeds.vectors.lengths
|
||||
|
@ -115,6 +114,7 @@ def width_score_forward(model, embeds: SpanEmbeddings, is_train) -> Tuple[Floats
|
|||
|
||||
return wscores, width_score_backward
|
||||
|
||||
|
||||
# model converting a Doc/Mention to span embeddings
|
||||
# get_mentions: Callable[Doc, Pairs[int]]
|
||||
def build_span_embedder(
|
||||
|
@ -123,8 +123,9 @@ def build_span_embedder(
|
|||
) -> Model[Tuple[List[Floats2d], List[Doc]], SpanEmbeddings]:
|
||||
|
||||
with Model.define_operators({">>": chain, "|": concatenate}):
|
||||
span_reduce = (extract_spans() >>
|
||||
(reduce_first() | reduce_last() | reduce_mean()))
|
||||
span_reduce = extract_spans() >> (
|
||||
reduce_first() | reduce_last() | reduce_mean()
|
||||
)
|
||||
model = Model(
|
||||
"SpanEmbedding",
|
||||
forward=span_embeddings_forward,
|
||||
|
@ -161,7 +162,7 @@ def span_embeddings_forward(
|
|||
docmenlens.append(len(starts))
|
||||
cments = ops.asarray2i([starts, ends]).transpose()
|
||||
|
||||
mentions = xp.concatenate( (mentions, cments) )
|
||||
mentions = xp.concatenate((mentions, cments))
|
||||
|
||||
# TODO support attention here
|
||||
tokvecs = xp.concatenate(tokvecs)
|
||||
|
@ -170,7 +171,7 @@ def span_embeddings_forward(
|
|||
mentions_r = Ragged(mentions, docmenlens)
|
||||
|
||||
span_reduce = model.get_ref("span_reducer")
|
||||
spanvecs, span_reduce_back = span_reduce( (tokvecs_r, mentions_r), is_train)
|
||||
spanvecs, span_reduce_back = span_reduce((tokvecs_r, mentions_r), is_train)
|
||||
|
||||
embeds = Ragged(spanvecs, docmenlens)
|
||||
|
||||
|
@ -236,7 +237,7 @@ def coarse_prune(
|
|||
# calculate the doc length
|
||||
doclen = ends[-1] - starts[0]
|
||||
# XXX seems to make more sense to use menlen than doclen here?
|
||||
#mlimit = min(mention_limit, int(mention_limit_ratio * doclen))
|
||||
# mlimit = min(mention_limit, int(mention_limit_ratio * doclen))
|
||||
mlimit = min(mention_limit, int(mention_limit_ratio * menlen))
|
||||
# csel is a 1d integer list
|
||||
csel = select_non_crossing_spans(tops, starts, ends, mlimit)
|
||||
|
@ -290,6 +291,7 @@ def build_take_vecs() -> Model[SpanEmbeddings, Floats2d]:
|
|||
def take_vecs_forward(model, inputs: SpanEmbeddings, is_train) -> Floats2d:
|
||||
idxs = inputs.indices
|
||||
lens = inputs.vectors.lengths
|
||||
|
||||
def backprop(dY: Floats2d) -> SpanEmbeddings:
|
||||
vecs = Ragged(dY, lens)
|
||||
return SpanEmbeddings(idxs, vecs)
|
||||
|
@ -350,10 +352,10 @@ def ant_scorer_forward(
|
|||
# This will take the log of 0, which causes a warning, but we're doing
|
||||
# it on purpose so we can just ignore the warning.
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||
mask = xp.log(
|
||||
(xp.expand_dims(ant_range, 1) - xp.expand_dims(ant_range, 0)) >= 1
|
||||
).astype('f')
|
||||
).astype("f")
|
||||
|
||||
scores = pw_prod + pw_sum + mask
|
||||
|
||||
|
@ -361,7 +363,7 @@ def ant_scorer_forward(
|
|||
top_scores, top_scores_idx = topk(xp, scores, top_limit)
|
||||
# now add the placeholder
|
||||
placeholder = ops.alloc2f(scores.shape[0], 1)
|
||||
top_scores = xp.concatenate( (placeholder, top_scores), 1)
|
||||
top_scores = xp.concatenate((placeholder, top_scores), 1)
|
||||
|
||||
out.append((top_scores, top_scores_idx))
|
||||
|
||||
|
@ -398,8 +400,8 @@ def ant_scorer_forward(
|
|||
for ii, (ridx, rscores) in enumerate(zip(dyidx, dyscore)):
|
||||
fullscore[ii][ridx] = rscores
|
||||
|
||||
dXembeds.data[offset : hi] = prod_back(fullscore)
|
||||
dXscores[offset : hi] = pw_sum_back(fullscore)
|
||||
dXembeds.data[offset:hi] = prod_back(fullscore)
|
||||
dXscores[offset:hi] = pw_sum_back(fullscore)
|
||||
|
||||
offset = hi
|
||||
# make it fit back into the linear
|
||||
|
|
|
@ -129,7 +129,7 @@ def get_candidate_mentions(
|
|||
for ii in range(1, max_span_width):
|
||||
ei = tok.i + ii # end index
|
||||
# Note: this matches slice syntax, so the token index is one less
|
||||
if ei > len(doc) or sentence_map[ei-1] != si:
|
||||
if ei > len(doc) or sentence_map[ei - 1] != si:
|
||||
continue
|
||||
|
||||
begins.append(tok.i)
|
||||
|
|
|
@ -79,7 +79,9 @@ def make_coref(
|
|||
) -> "CoreferenceResolver":
|
||||
"""Create a CoreferenceResolver component."""
|
||||
|
||||
return CoreferenceResolver(nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix)
|
||||
return CoreferenceResolver(
|
||||
nlp.vocab, model, name, span_cluster_prefix=span_cluster_prefix
|
||||
)
|
||||
|
||||
|
||||
class CoreferenceResolver(TrainablePipe):
|
||||
|
@ -308,7 +310,7 @@ class CoreferenceResolver(TrainablePipe):
|
|||
top_gscores = ops.asarray2f(top_gscores)
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
||||
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
||||
log_marg = ops.softmax(cscores + ops.xp.log(top_gscores), axis=1)
|
||||
log_norm = ops.softmax(cscores, axis=1)
|
||||
grad = log_norm - log_marg
|
||||
|
@ -351,7 +353,7 @@ class CoreferenceResolver(TrainablePipe):
|
|||
def score(self, examples, **kwargs):
|
||||
"""Score a batch of examples."""
|
||||
|
||||
#NOTE traditionally coref uses the average of b_cubed, muc, and ceaf.
|
||||
# NOTE traditionally coref uses the average of b_cubed, muc, and ceaf.
|
||||
# we need to handle the average ourselves.
|
||||
scores = []
|
||||
for metric in (b_cubed, muc, ceafe):
|
||||
|
@ -365,7 +367,7 @@ class CoreferenceResolver(TrainablePipe):
|
|||
|
||||
evaluator.update(cluster_info)
|
||||
|
||||
score ={
|
||||
score = {
|
||||
"coref_f": evaluator.get_f1(),
|
||||
"coref_p": evaluator.get_precision(),
|
||||
"coref_r": evaluator.get_recall(),
|
||||
|
|
Loading…
Reference in New Issue
Block a user