mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-15 03:56:23 +03:00
Document use-case of freezing tok2vec (#8992)
* update error msg * add sentence to docs * expand note on frozen components
This commit is contained in:
parent
31c0a75e6d
commit
8c1d86ea92
|
@ -116,13 +116,11 @@ class Warnings:
|
||||||
|
|
||||||
# New warnings added in v3.x
|
# New warnings added in v3.x
|
||||||
W086 = ("Component '{listener}' will be (re)trained, but it needs the component "
|
W086 = ("Component '{listener}' will be (re)trained, but it needs the component "
|
||||||
"'{name}' which is frozen. You can either freeze both, or neither "
|
"'{name}' which is frozen. If you want to prevent retraining '{name}' "
|
||||||
"of the two. If you're sourcing the component from "
|
"but want to train '{listener}' on top of it, you should add '{name}' to the "
|
||||||
"an existing pipeline, you can use the `replace_listeners` setting in "
|
"list of 'annotating_components' in the 'training' block in the config. "
|
||||||
"the config block to replace its token-to-vector listener with a copy "
|
"See the documentation for details: "
|
||||||
"and make it independent. For example, `replace_listeners = "
|
"https://spacy.io/usage/training#annotating-components")
|
||||||
"[\"model.tok2vec\"]` See the documentation for details: "
|
|
||||||
"https://spacy.io/usage/training#config-components-listeners")
|
|
||||||
W087 = ("Component '{name}' will be (re)trained, but the component '{listener}' "
|
W087 = ("Component '{name}' will be (re)trained, but the component '{listener}' "
|
||||||
"depends on it via a listener and is frozen. This means that the "
|
"depends on it via a listener and is frozen. This means that the "
|
||||||
"performance of '{listener}' will be degraded. You can either freeze "
|
"performance of '{listener}' will be degraded. You can either freeze "
|
||||||
|
|
|
@ -95,6 +95,7 @@ def init_nlp(config: Config, *, use_gpu: int = -1) -> "Language":
|
||||||
logger.warning(Warnings.W087.format(name=name, listener=listener))
|
logger.warning(Warnings.W087.format(name=name, listener=listener))
|
||||||
# We always check this regardless, in case user freezes tok2vec
|
# We always check this regardless, in case user freezes tok2vec
|
||||||
if listener not in frozen_components and name in frozen_components:
|
if listener not in frozen_components and name in frozen_components:
|
||||||
|
if name not in T["annotating_components"]:
|
||||||
logger.warning(Warnings.W086.format(name=name, listener=listener))
|
logger.warning(Warnings.W086.format(name=name, listener=listener))
|
||||||
return nlp
|
return nlp
|
||||||
|
|
||||||
|
|
|
@ -480,7 +480,10 @@ as-is. They are also excluded when calling
|
||||||
> still impact your model's performance – for instance, a sentence boundary
|
> still impact your model's performance – for instance, a sentence boundary
|
||||||
> detector can impact what the parser or entity recognizer considers a valid
|
> detector can impact what the parser or entity recognizer considers a valid
|
||||||
> parse. So the evaluation results should always reflect what your pipeline will
|
> parse. So the evaluation results should always reflect what your pipeline will
|
||||||
> produce at runtime.
|
> produce at runtime. If you want a frozen component to run (without updating)
|
||||||
|
> during training as well, so that downstream components can use its
|
||||||
|
> **predictions**, you can add it to the list of
|
||||||
|
> [`annotating_components`](/usage/training#annotating-components).
|
||||||
|
|
||||||
```ini
|
```ini
|
||||||
[nlp]
|
[nlp]
|
||||||
|
@ -567,6 +570,10 @@ frozen_components = ["ner"]
|
||||||
annotating_components = ["sentencizer", "ner"]
|
annotating_components = ["sentencizer", "ner"]
|
||||||
```
|
```
|
||||||
|
|
||||||
|
Similarly, a pretrained `tok2vec` layer can be frozen and specified in the list
|
||||||
|
of `annotating_components` to ensure that a downstream component can use the
|
||||||
|
embedding layer without updating it.
|
||||||
|
|
||||||
<Infobox variant="warning" title="Training speed with annotating components" id="annotating-components-speed">
|
<Infobox variant="warning" title="Training speed with annotating components" id="annotating-components-speed">
|
||||||
|
|
||||||
Be aware that non-frozen annotating components with statistical models will
|
Be aware that non-frozen annotating components with statistical models will
|
||||||
|
@ -700,7 +707,7 @@ excluded from the logs and the score won't be weighted.
|
||||||
<Accordion title="Understanding the training output and score types" spaced id="score-types">
|
<Accordion title="Understanding the training output and score types" spaced id="score-types">
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| -------------------------- | ----------------------------------------------------------------------------------------------------------------------- |
|
| ----------------- | ----------------------------------------------------------------------------------------------------------------------- |
|
||||||
| **Loss** | The training loss representing the amount of work left for the optimizer. Should decrease, but usually not to `0`. |
|
| **Loss** | The training loss representing the amount of work left for the optimizer. Should decrease, but usually not to `0`. |
|
||||||
| **Precision** (P) | Percentage of predicted annotations that were correct. Should increase. |
|
| **Precision** (P) | Percentage of predicted annotations that were correct. Should increase. |
|
||||||
| **Recall** (R) | Percentage of reference annotations recovered. Should increase. |
|
| **Recall** (R) | Percentage of reference annotations recovered. Should increase. |
|
||||||
|
|
Loading…
Reference in New Issue
Block a user