diff --git a/examples/matcher_example.py b/examples/matcher_example.py index d12fc8319..2e3efadf2 100644 --- a/examples/matcher_example.py +++ b/examples/matcher_example.py @@ -14,6 +14,10 @@ def main(): print("Before") for ent in before.ents: print(ent.text, ent.label_, [w.tag_ for w in ent]) + # Output: + # Google ORG [u'NNP'] + # google ORG [u'VB'] + # google ORG [u'NNP'] nlp.matcher.add( "GoogleNow", # Entity ID: Not really used at the moment. "PRODUCT", # Entity type: should be one of the types in the NER data @@ -46,6 +50,11 @@ def main(): print("After") for ent in after.ents: print(ent.text, ent.label_, [w.tag_ for w in ent]) + # Output + # Google Now PRODUCT [u'NNP', u'RB'] + # google ORG [u'VB'] + # google now PRODUCT [u'NNP', u'RB'] + # # You can customize attribute values in the lexicon, and then refer to the # new attributes in your Token Specifiers. # This is particularly good for word-set membership. @@ -81,6 +90,13 @@ def main(): print('Sydney', nlp.vocab[u'Sydney'].check_flag(is_australian_capital)) print('sydney', nlp.vocab[u'sydney'].check_flag(is_australian_capital)) print('SYDNEY', nlp.vocab[u'SYDNEY'].check_flag(is_australian_capital)) + # Output + # Sydney True + # sydney False + # Sydney True + # sydney True + # SYDNEY True + # # Now, let's use this in a pattern nlp.matcher.add("AuCitySportsTeam", "ORG", {}, [ @@ -110,6 +126,10 @@ def main(): doc = nlp(u'The pattern should match the Brisbane Broncos and the South Darwin Spiders, but not the Colorado Boulders') for ent in doc.ents: print(ent.text, ent.label_) + # Output + # the Brisbane Broncos ORG + # the South Darwin Spiders ORG + # Output # Before