Better approach for handling zero suggestions

This commit is contained in:
Lj Miranda 2022-12-21 20:01:02 +08:00
parent a3fad0b983
commit 8c4eee28bc

View File

@ -266,9 +266,12 @@ class Exclusive_SpanCategorizer(SpanCategorizer):
) -> SpanGroup: ) -> SpanGroup:
scores = self.model.ops.to_numpy(scores) scores = self.model.ops.to_numpy(scores)
indices = self.model.ops.to_numpy(indices) indices = self.model.ops.to_numpy(indices)
if scores.size != 0:
predicted = scores.argmax(axis=1)
# Handle cases when there are zero suggestions
if scores.size == 0:
return SpanGroup(doc, name=self.key)
predicted = scores.argmax(axis=1)
# Remove samples where the negative label is the argmax # Remove samples where the negative label is the argmax
positive = numpy.where(predicted != self._negative_label)[0] positive = numpy.where(predicted != self._negative_label)[0]
predicted = predicted[positive] predicted = predicted[positive]
@ -284,8 +287,6 @@ class Exclusive_SpanCategorizer(SpanCategorizer):
sort_idx = (argmax_probs * -1).argsort() sort_idx = (argmax_probs * -1).argsort()
predicted = predicted[sort_idx] predicted = predicted[sort_idx]
indices = indices[sort_idx] indices = indices[sort_idx]
else:
predicted = []
seen = Ranges() seen = Ranges()
spans = SpanGroup(doc, name=self.key) spans = SpanGroup(doc, name=self.key)