mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Add spacy.PlainTextCorpusReader.v1
(#12122)
* Add `spacy.PlainTextCorpusReader.v1` This is a corpus reader that reads plain text corpora with the following format: - UTF-8 encoding - One line per document. - Blank lines are ignored. It is useful for applications where we deal with very large corpora, such as distillation, and don't want to deal with the space overhead of serialized formats. Additionally, many large corpora already use such a text format, keeping the necessary preprocessing to a minimum. * Update spacy/training/corpus.py Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com> * docs: add version to `PlainTextCorpus` * Add docstring to registry function * Add plain text corpus tests * Only strip newline/carriage return * Add return type _string_to_tmp_file helper * Use a temporary directory in place of file name Different OS auto delete/sharing semantics are just wonky. * This will be new in 3.5.1 (rather than 4) * Test improvements from code review Co-authored-by: Adriane Boyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
a37117abd0
commit
8d69874afb
78
spacy/tests/training/test_corpus.py
Normal file
78
spacy/tests/training/test_corpus.py
Normal file
|
@ -0,0 +1,78 @@
|
|||
from typing import IO, Generator, Iterable, List, TextIO, Tuple
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
import pytest
|
||||
import tempfile
|
||||
|
||||
from spacy.lang.en import English
|
||||
from spacy.training import Example, PlainTextCorpus
|
||||
from spacy.util import make_tempdir
|
||||
|
||||
# Intentional newlines to check that they are skipped.
|
||||
PLAIN_TEXT_DOC = """
|
||||
|
||||
This is a doc. It contains two sentences.
|
||||
This is another doc.
|
||||
|
||||
A third doc.
|
||||
|
||||
"""
|
||||
|
||||
PLAIN_TEXT_DOC_TOKENIZED = [
|
||||
[
|
||||
"This",
|
||||
"is",
|
||||
"a",
|
||||
"doc",
|
||||
".",
|
||||
"It",
|
||||
"contains",
|
||||
"two",
|
||||
"sentences",
|
||||
".",
|
||||
],
|
||||
["This", "is", "another", "doc", "."],
|
||||
["A", "third", "doc", "."],
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("min_length", [0, 5])
|
||||
@pytest.mark.parametrize("max_length", [0, 5])
|
||||
def test_plain_text_reader(min_length, max_length):
|
||||
nlp = English()
|
||||
with _string_to_tmp_file(PLAIN_TEXT_DOC) as file_path:
|
||||
corpus = PlainTextCorpus(
|
||||
file_path, min_length=min_length, max_length=max_length
|
||||
)
|
||||
|
||||
check = [
|
||||
doc
|
||||
for doc in PLAIN_TEXT_DOC_TOKENIZED
|
||||
if len(doc) >= min_length and (max_length == 0 or len(doc) <= max_length)
|
||||
]
|
||||
reference, predicted = _examples_to_tokens(corpus(nlp))
|
||||
|
||||
assert reference == check
|
||||
assert predicted == check
|
||||
|
||||
|
||||
@contextmanager
|
||||
def _string_to_tmp_file(s: str) -> Generator[Path, None, None]:
|
||||
with make_tempdir() as d:
|
||||
file_path = Path(d) / "string.txt"
|
||||
with open(file_path, "w", encoding="utf-8") as f:
|
||||
f.write(s)
|
||||
yield file_path
|
||||
|
||||
|
||||
def _examples_to_tokens(
|
||||
examples: Iterable[Example],
|
||||
) -> Tuple[List[List[str]], List[List[str]]]:
|
||||
reference = []
|
||||
predicted = []
|
||||
|
||||
for eg in examples:
|
||||
reference.append([t.text for t in eg.reference])
|
||||
predicted.append([t.text for t in eg.predicted])
|
||||
|
||||
return reference, predicted
|
|
@ -1,4 +1,4 @@
|
|||
from .corpus import Corpus, JsonlCorpus # noqa: F401
|
||||
from .corpus import Corpus, JsonlCorpus, PlainTextCorpus # noqa: F401
|
||||
from .example import Example, validate_examples, validate_get_examples # noqa: F401
|
||||
from .alignment import Alignment # noqa: F401
|
||||
from .augment import dont_augment, orth_variants_augmenter # noqa: F401
|
||||
|
|
|
@ -58,6 +58,28 @@ def read_labels(path: Path, *, require: bool = False):
|
|||
return srsly.read_json(path)
|
||||
|
||||
|
||||
@util.registry.readers("spacy.PlainTextCorpus.v1")
|
||||
def create_plain_text_reader(
|
||||
path: Optional[Path],
|
||||
min_length: int = 0,
|
||||
max_length: int = 0,
|
||||
) -> Callable[["Language"], Iterable[Doc]]:
|
||||
"""Iterate Example objects from a file or directory of plain text
|
||||
UTF-8 files with one line per doc.
|
||||
|
||||
path (Path): The directory or filename to read from.
|
||||
min_length (int): Minimum document length (in tokens). Shorter documents
|
||||
will be skipped. Defaults to 0, which indicates no limit.
|
||||
max_length (int): Maximum document length (in tokens). Longer documents will
|
||||
be skipped. Defaults to 0, which indicates no limit.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
||||
"""
|
||||
if path is None:
|
||||
raise ValueError(Errors.E913)
|
||||
return PlainTextCorpus(path, min_length=min_length, max_length=max_length)
|
||||
|
||||
|
||||
def walk_corpus(path: Union[str, Path], file_type) -> List[Path]:
|
||||
path = util.ensure_path(path)
|
||||
if not path.is_dir() and path.parts[-1].endswith(file_type):
|
||||
|
@ -257,3 +279,52 @@ class JsonlCorpus:
|
|||
# We don't *need* an example here, but it seems nice to
|
||||
# make it match the Corpus signature.
|
||||
yield Example(doc, Doc(nlp.vocab, words=words, spaces=spaces))
|
||||
|
||||
|
||||
class PlainTextCorpus:
|
||||
"""Iterate Example objects from a file or directory of plain text
|
||||
UTF-8 files with one line per doc.
|
||||
|
||||
path (Path): The directory or filename to read from.
|
||||
min_length (int): Minimum document length (in tokens). Shorter documents
|
||||
will be skipped. Defaults to 0, which indicates no limit.
|
||||
max_length (int): Maximum document length (in tokens). Longer documents will
|
||||
be skipped. Defaults to 0, which indicates no limit.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus
|
||||
"""
|
||||
|
||||
file_type = "txt"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
path: Optional[Union[str, Path]],
|
||||
*,
|
||||
min_length: int = 0,
|
||||
max_length: int = 0,
|
||||
) -> None:
|
||||
self.path = util.ensure_path(path)
|
||||
self.min_length = min_length
|
||||
self.max_length = max_length
|
||||
|
||||
def __call__(self, nlp: "Language") -> Iterator[Example]:
|
||||
"""Yield examples from the data.
|
||||
|
||||
nlp (Language): The current nlp object.
|
||||
YIELDS (Example): The example objects.
|
||||
|
||||
DOCS: https://spacy.io/api/corpus#plaintextcorpus-call
|
||||
"""
|
||||
for loc in walk_corpus(self.path, ".txt"):
|
||||
with open(loc, encoding="utf-8") as f:
|
||||
for text in f:
|
||||
text = text.rstrip("\r\n")
|
||||
if len(text):
|
||||
doc = nlp.make_doc(text)
|
||||
if self.min_length >= 1 and len(doc) < self.min_length:
|
||||
continue
|
||||
elif self.max_length >= 1 and len(doc) > self.max_length:
|
||||
continue
|
||||
# We don't *need* an example here, but it seems nice to
|
||||
# make it match the Corpus signature.
|
||||
yield Example(doc, doc.copy())
|
||||
|
|
|
@ -175,3 +175,68 @@ Yield examples from the data.
|
|||
| ---------- | -------------------------------------- |
|
||||
| `nlp` | The current `nlp` object. ~~Language~~ |
|
||||
| **YIELDS** | The examples. ~~Example~~ |
|
||||
|
||||
## PlainTextCorpus {id="plaintextcorpus",tag="class",version="3.5.1"}
|
||||
|
||||
Iterate over documents from a plain text file. Can be used to read the raw text
|
||||
corpus for language model
|
||||
[pretraining](/usage/embeddings-transformers#pretraining). The expected file
|
||||
format is:
|
||||
|
||||
- UTF-8 encoding
|
||||
- One document per line
|
||||
- Blank lines are ignored.
|
||||
|
||||
```text {title="Example"}
|
||||
Can I ask where you work now and what you do, and if you enjoy it?
|
||||
They may just pull out of the Seattle market completely, at least until they have autonomous vehicles.
|
||||
My cynical view on this is that it will never be free to the public. Reason: what would be the draw of joining the military? Right now their selling point is free Healthcare and Education. Ironically both are run horribly and most, that I've talked to, come out wishing they never went in.
|
||||
```
|
||||
|
||||
### PlainTextCorpus.\_\_init\_\_ {id="plaintextcorpus-init",tag="method"}
|
||||
|
||||
Initialize the reader.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.training import PlainTextCorpus
|
||||
>
|
||||
> corpus = PlainTextCorpus("./data/docs.txt")
|
||||
> ```
|
||||
>
|
||||
> ```ini
|
||||
> ### Example config
|
||||
> [corpora.pretrain]
|
||||
> @readers = "spacy.PlainTextCorpus.v1"
|
||||
> path = "corpus/raw_text.txt"
|
||||
> min_length = 0
|
||||
> max_length = 0
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `path` | The directory or filename to read from. Expects newline-delimited documents in UTF8 format. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `min_length` | Minimum document length (in tokens). Shorter documents will be skipped. Defaults to `0`, which indicates no limit. ~~int~~ |
|
||||
| `max_length` | Maximum document length (in tokens). Longer documents will be skipped. Defaults to `0`, which indicates no limit. ~~int~~ |
|
||||
|
||||
### PlainTextCorpus.\_\_call\_\_ {id="plaintextcorpus-call",tag="method"}
|
||||
|
||||
Yield examples from the data.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.training import PlainTextCorpus
|
||||
> import spacy
|
||||
>
|
||||
> corpus = PlainTextCorpus("./docs.txt")
|
||||
> nlp = spacy.blank("en")
|
||||
> data = corpus(nlp)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------- | -------------------------------------- |
|
||||
| `nlp` | The current `nlp` object. ~~Language~~ |
|
||||
| **YIELDS** | The examples. ~~Example~~ |
|
||||
|
|
Loading…
Reference in New Issue
Block a user