mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Add save after --save-every
batches for spacy pretrain
(#3510)
<!--- Provide a general summary of your changes in the title. -->
When using `spacy pretrain`, the model is saved only after every epoch. But each epoch can be very big since `pretrain` is used for language modeling tasks. So I added a `--save-every` option in the CLI to save after every `--save-every` batches.
## Description
<!--- Use this section to describe your changes. If your changes required
testing, include information about the testing environment and the tests you
ran. If your test fixes a bug reported in an issue, don't forget to include the
issue number. If your PR is still a work in progress, that's totally fine – just
include a note to let us know. -->
To test...
Save this file to `sample_sents.jsonl`
```
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
{"text": "hello there."}
```
Then run `--save-every 2` when pretraining.
```bash
spacy pretrain sample_sents.jsonl en_core_web_md here -nw 1 -bs 1 -i 10 --save-every 2
```
And it should save the model to the `here/` folder after every 2 batches. The models that are saved during an epoch will have a `.temp` appended to the save name.
At the end the training, you should see these files (`ls here/`):
```bash
config.json model2.bin model5.bin model8.bin
log.jsonl model2.temp.bin model5.temp.bin model8.temp.bin
model0.bin model3.bin model6.bin model9.bin
model0.temp.bin model3.temp.bin model6.temp.bin model9.temp.bin
model1.bin model4.bin model7.bin
model1.temp.bin model4.temp.bin model7.temp.bin
```
### Types of change
<!-- What type of change does your PR cover? Is it a bug fix, an enhancement
or new feature, or a change to the documentation? -->
This is a new feature to `spacy pretrain`.
🌵 **Unfortunately, I haven't been able to test this because compiling from source is not working (cythonize error).**
```
Processing matcher.pyx
[Errno 2] No such file or directory: '/Users/mwu/github/spaCy/spacy/matcher.pyx'
Traceback (most recent call last):
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 169, in <module>
run(args.root)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 158, in run
process(base, filename, db)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 124, in process
preserve_cwd(base, process_pyx, root + ".pyx", root + ".cpp")
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 87, in preserve_cwd
func(*args)
File "/Users/mwu/github/spaCy/bin/cythonize.py", line 63, in process_pyx
raise Exception("Cython failed")
Exception: Cython failed
Traceback (most recent call last):
File "setup.py", line 276, in <module>
setup_package()
File "setup.py", line 209, in setup_package
generate_cython(root, "spacy")
File "setup.py", line 132, in generate_cython
raise RuntimeError("Running cythonize failed")
RuntimeError: Running cythonize failed
```
Edit: Fixed! after deleting all `.cpp` files: `find spacy -name "*.cpp" | xargs rm`
## Checklist
<!--- Before you submit the PR, go over this checklist and make sure you can
tick off all the boxes. [] -> [x] -->
- [x] I have submitted the spaCy Contributor Agreement.
- [x] I ran the tests, and all new and existing tests passed.
- [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
This commit is contained in:
parent
189c90743c
commit
8e2cef49f3
|
@ -34,7 +34,8 @@ from .. import util
|
||||||
max_length=("Max words per example.", "option", "xw", int),
|
max_length=("Max words per example.", "option", "xw", int),
|
||||||
min_length=("Min words per example.", "option", "nw", int),
|
min_length=("Min words per example.", "option", "nw", int),
|
||||||
seed=("Seed for random number generators", "option", "s", float),
|
seed=("Seed for random number generators", "option", "s", float),
|
||||||
nr_iter=("Number of iterations to pretrain", "option", "i", int),
|
n_iter=("Number of iterations to pretrain", "option", "i", int),
|
||||||
|
n_save_every=("Save model every X batches.", "option", "se", int),
|
||||||
)
|
)
|
||||||
def pretrain(
|
def pretrain(
|
||||||
texts_loc,
|
texts_loc,
|
||||||
|
@ -46,11 +47,12 @@ def pretrain(
|
||||||
loss_func="cosine",
|
loss_func="cosine",
|
||||||
use_vectors=False,
|
use_vectors=False,
|
||||||
dropout=0.2,
|
dropout=0.2,
|
||||||
nr_iter=1000,
|
n_iter=1000,
|
||||||
batch_size=3000,
|
batch_size=3000,
|
||||||
max_length=500,
|
max_length=500,
|
||||||
min_length=5,
|
min_length=5,
|
||||||
seed=0,
|
seed=0,
|
||||||
|
n_save_every=None,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
||||||
|
@ -115,9 +117,26 @@ def pretrain(
|
||||||
msg.divider("Pre-training tok2vec layer")
|
msg.divider("Pre-training tok2vec layer")
|
||||||
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
row_settings = {"widths": (3, 10, 10, 6, 4), "aligns": ("r", "r", "r", "r", "r")}
|
||||||
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
msg.row(("#", "# Words", "Total Loss", "Loss", "w/s"), **row_settings)
|
||||||
for epoch in range(nr_iter):
|
|
||||||
for batch in util.minibatch_by_words(
|
def _save_model(epoch, is_temp=False):
|
||||||
((text, None) for text in texts), size=batch_size
|
is_temp_str = ".temp" if is_temp else ""
|
||||||
|
with model.use_params(optimizer.averages):
|
||||||
|
with (output_dir / ("model%d%s.bin" % (epoch, is_temp_str))).open(
|
||||||
|
"wb"
|
||||||
|
) as file_:
|
||||||
|
file_.write(model.tok2vec.to_bytes())
|
||||||
|
log = {
|
||||||
|
"nr_word": tracker.nr_word,
|
||||||
|
"loss": tracker.loss,
|
||||||
|
"epoch_loss": tracker.epoch_loss,
|
||||||
|
"epoch": epoch,
|
||||||
|
}
|
||||||
|
with (output_dir / "log.jsonl").open("a") as file_:
|
||||||
|
file_.write(srsly.json_dumps(log) + "\n")
|
||||||
|
|
||||||
|
for epoch in range(n_iter):
|
||||||
|
for batch_id, batch in enumerate(
|
||||||
|
util.minibatch_by_words(((text, None) for text in texts), size=batch_size)
|
||||||
):
|
):
|
||||||
docs = make_docs(
|
docs = make_docs(
|
||||||
nlp,
|
nlp,
|
||||||
|
@ -133,17 +152,9 @@ def pretrain(
|
||||||
msg.row(progress, **row_settings)
|
msg.row(progress, **row_settings)
|
||||||
if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7:
|
if texts_loc == "-" and tracker.words_per_epoch[epoch] >= 10 ** 7:
|
||||||
break
|
break
|
||||||
with model.use_params(optimizer.averages):
|
if n_save_every and (batch_id % n_save_every == 0):
|
||||||
with (output_dir / ("model%d.bin" % epoch)).open("wb") as file_:
|
_save_model(epoch, is_temp=True)
|
||||||
file_.write(model.tok2vec.to_bytes())
|
_save_model(epoch)
|
||||||
log = {
|
|
||||||
"nr_word": tracker.nr_word,
|
|
||||||
"loss": tracker.loss,
|
|
||||||
"epoch_loss": tracker.epoch_loss,
|
|
||||||
"epoch": epoch,
|
|
||||||
}
|
|
||||||
with (output_dir / "log.jsonl").open("a") as file_:
|
|
||||||
file_.write(srsly.json_dumps(log) + "\n")
|
|
||||||
tracker.epoch_loss = 0.0
|
tracker.epoch_loss = 0.0
|
||||||
if texts_loc != "-":
|
if texts_loc != "-":
|
||||||
# Reshuffle the texts if texts were loaded from a file
|
# Reshuffle the texts if texts were loaded from a file
|
||||||
|
|
|
@ -285,6 +285,7 @@ improvement.
|
||||||
```bash
|
```bash
|
||||||
$ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir] [--width]
|
$ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir] [--width]
|
||||||
[--depth] [--embed-rows] [--dropout] [--seed] [--n-iter] [--use-vectors]
|
[--depth] [--embed-rows] [--dropout] [--seed] [--n-iter] [--use-vectors]
|
||||||
|
[--n-save_every]
|
||||||
```
|
```
|
||||||
|
|
||||||
| Argument | Type | Description |
|
| Argument | Type | Description |
|
||||||
|
@ -302,6 +303,7 @@ $ python -m spacy pretrain [texts_loc] [vectors_model] [output_dir] [--width]
|
||||||
| `--seed`, `-s` | option | Seed for random number generators. |
|
| `--seed`, `-s` | option | Seed for random number generators. |
|
||||||
| `--n-iter`, `-i` | option | Number of iterations to pretrain. |
|
| `--n-iter`, `-i` | option | Number of iterations to pretrain. |
|
||||||
| `--use-vectors`, `-uv` | flag | Whether to use the static vectors as input features. |
|
| `--use-vectors`, `-uv` | flag | Whether to use the static vectors as input features. |
|
||||||
|
| `--n-save_every`, `-se` | option | Save model every X batches. |
|
||||||
| **CREATES** | weights | The pre-trained weights that can be used to initialize `spacy train`. |
|
| **CREATES** | weights | The pre-trained weights that can be used to initialize `spacy train`. |
|
||||||
|
|
||||||
### JSONL format for raw text {#pretrain-jsonl}
|
### JSONL format for raw text {#pretrain-jsonl}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user