Gradients look correct

This commit is contained in:
Matthew Honnibal 2017-05-06 16:47:15 +02:00
parent 7e04260d38
commit 8e48b58cd6
4 changed files with 173 additions and 88 deletions

View File

@ -1,4 +1,4 @@
from __future__ import unicode_literals
from __future__ import unicode_literals, print_function
import plac
import json
import random
@ -9,7 +9,7 @@ from spacy.syntax.nonproj import PseudoProjectivity
from spacy.language import Language
from spacy.gold import GoldParse
from spacy.tagger import Tagger
from spacy.pipeline import DependencyParser, BeamDependencyParser
from spacy.pipeline import DependencyParser, TokenVectorEncoder
from spacy.syntax.parser import get_templates
from spacy.syntax.arc_eager import ArcEager
from spacy.scorer import Scorer
@ -36,10 +36,10 @@ def read_conllx(loc, n=0):
try:
id_ = int(id_) - 1
head = (int(head) - 1) if head != '0' else id_
dep = 'ROOT' if dep == 'root' else dep
tokens.append((id_, word, tag, head, dep, 'O'))
dep = 'ROOT' if dep == 'root' else 'unlabelled'
# Hack for efficiency
tokens.append((id_, word, pos+'__'+morph, head, dep, 'O'))
except:
print(line)
raise
tuples = [list(t) for t in zip(*tokens)]
yield (None, [[tuples, []]])
@ -48,19 +48,37 @@ def read_conllx(loc, n=0):
break
def score_model(vocab, tagger, parser, gold_docs, verbose=False):
def score_model(vocab, encoder, tagger, parser, Xs, ys, verbose=False):
scorer = Scorer()
for _, gold_doc in gold_docs:
for (ids, words, tags, heads, deps, entities), _ in gold_doc:
doc = Doc(vocab, words=words)
tagger(doc)
parser(doc)
PseudoProjectivity.deprojectivize(doc)
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
scorer.score(doc, gold, verbose=verbose)
correct = 0.
total = 0.
for doc, gold in zip(Xs, ys):
doc = Doc(vocab, words=[w.text for w in doc])
encoder(doc)
tagger(doc)
parser(doc)
PseudoProjectivity.deprojectivize(doc)
scorer.score(doc, gold, verbose=verbose)
for token, tag in zip(doc, gold.tags):
univ_guess, _ = token.tag_.split('_', 1)
univ_truth, _ = tag.split('_', 1)
correct += univ_guess == univ_truth
total += 1
return scorer
def organize_data(vocab, train_sents):
Xs = []
ys = []
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
doc = Doc(vocab, words=words)
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
Xs.append(doc)
ys.append(gold)
return Xs, ys
def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
LangClass = spacy.util.get_lang_class(lang_name)
train_sents = list(read_conllx(train_loc))
@ -114,21 +132,37 @@ def main(lang_name, train_loc, dev_loc, model_dir, clusters_loc=None):
for tag in tags:
assert tag in vocab.morphology.tag_map, repr(tag)
tagger = Tagger(vocab)
encoder = TokenVectorEncoder(vocab)
parser = DependencyParser(vocab, actions=actions, features=features, L1=0.0)
for itn in range(30):
loss = 0.
for _, doc_sents in train_sents:
for (ids, words, tags, heads, deps, ner), _ in doc_sents:
doc = Doc(vocab, words=words)
gold = GoldParse(doc, tags=tags, heads=heads, deps=deps)
tagger(doc)
loss += parser.update(doc, gold, itn=itn)
doc = Doc(vocab, words=words)
Xs, ys = organize_data(vocab, train_sents)
Xs = Xs[:1]
ys = ys[:1]
with encoder.model.begin_training(Xs[:100], ys[:100]) as (trainer, optimizer):
docs = list(Xs)
for doc in docs:
encoder(doc)
parser.begin_training(docs, ys)
nn_loss = [0.]
def track_progress():
scorer = score_model(vocab, encoder, tagger, parser, Xs, ys)
itn = len(nn_loss)
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, nn_loss[-1], scorer.uas, scorer.tags_acc))
nn_loss.append(0.)
trainer.each_epoch.append(track_progress)
trainer.batch_size = 1
trainer.nb_epoch = 100
for docs, golds in trainer.iterate(Xs, ys, progress_bar=False):
docs = [Doc(vocab, words=[w.text for w in doc]) for doc in docs]
tokvecs, upd_tokvecs = encoder.begin_update(docs)
for doc, tokvec in zip(docs, tokvecs):
doc.tensor = tokvec
for doc, gold in zip(docs, golds):
tagger.update(doc, gold)
random.shuffle(train_sents)
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))
print('%d:\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.tags_acc))
d_tokvecs, loss = parser.update(docs, golds, sgd=optimizer)
upd_tokvecs(d_tokvecs, sgd=optimizer)
nn_loss[-1] += loss
nlp = LangClass(vocab=vocab, tagger=tagger, parser=parser)
nlp.end_training(model_dir)
scorer = score_model(vocab, tagger, parser, read_conllx(dev_loc))

View File

@ -1,5 +1,5 @@
from thinc.api import layerize, chain, clone, concatenate, with_flatten
from thinc.neural import Model, Maxout, Softmax
from thinc.neural import Model, Maxout, Softmax, Affine
from thinc.neural._classes.hash_embed import HashEmbed
from thinc.neural._classes.convolution import ExtractWindow
@ -21,11 +21,41 @@ def build_model(state2vec, width, depth, nr_class):
state2vec
>> Maxout(width, 1344)
>> Maxout(width, width)
>> Softmax(nr_class, width)
>> Affine(nr_class, width)
)
return model
def build_debug_model(state2vec, width, depth, nr_class):
with Model.define_operators({'>>': chain, '**': clone}):
model = (
state2vec
>> Maxout(width)
>> Affine(nr_class)
)
return model
def build_debug_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
ops = Model.ops
def forward(tokens_attrs_vectors, drop=0.):
tokens, attr_vals, tokvecs = tokens_attrs_vectors
orig_tokvecs_shape = tokvecs.shape
tokvecs = tokvecs.reshape((tokvecs.shape[0], tokvecs.shape[1] *
tokvecs.shape[2]))
vector = tokvecs
def backward(d_vector, sgd=None):
d_tokvecs = vector.reshape(orig_tokvecs_shape)
return (tokens, d_tokvecs)
return vector, backward
model = layerize(forward)
return model
def build_parser_state2vec(width, nr_vector=1000, nF=1, nB=0, nS=1, nL=2, nR=2):
embed_tags = _reshape(chain(get_col(0), HashEmbed(16, nr_vector)))
embed_deps = _reshape(chain(get_col(1), HashEmbed(16, nr_vector)))

View File

@ -28,6 +28,8 @@ from murmurhash.mrmr cimport hash64
from preshed.maps cimport MapStruct
from preshed.maps cimport map_get
from numpy import exp
from . import _parse_features
from ._parse_features cimport CONTEXT_SIZE
from ._parse_features cimport fill_context
@ -43,6 +45,7 @@ from ..gold cimport GoldParse
from ..attrs cimport TAG, DEP
from .._ml import build_parser_state2vec, build_model
from .._ml import build_debug_state2vec, build_debug_model
USE_FTRL = True
@ -111,8 +114,8 @@ cdef class Parser:
return (Parser, (self.vocab, self.moves, self.model), None, None)
def build_model(self, width=8, nr_vector=1000, nF=1, nB=1, nS=1, nL=1, nR=1, **_):
state2vec = build_parser_state2vec(width, nr_vector, nF, nB, nL, nR)
model = build_model(state2vec, width, 2, self.moves.n_moves)
state2vec = build_debug_state2vec(width, nr_vector, nF, nB, nL, nR)
model = build_debug_model(state2vec, width, 2, self.moves.n_moves)
return model
def __call__(self, Doc tokens):
@ -166,32 +169,22 @@ cdef class Parser:
cdef Doc doc
cdef StateClass state
cdef int guess
is_valid = self.model.ops.allocate((len(docs), nr_class), dtype='i')
tokvecs = [d.tensor for d in docs]
attr_names = self.model.ops.allocate((2,), dtype='i')
attr_names[0] = TAG
attr_names[1] = DEP
all_states = list(states)
todo = zip(states, tokvecs)
while todo:
states, tokvecs = zip(*todo)
features = self._get_features(states, tokvecs, attr_names)
scores = self.model.predict(features)
self._validate_batch(is_valid, states)
scores *= is_valid
scores, _ = self._begin_update(states, tokvecs)
for state, guess in zip(states, scores.argmax(axis=1)):
action = self.moves.c[guess]
action.do(state.c, action.label)
todo = filter(lambda sp: not sp[0].is_final(), todo)
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
for state, doc in zip(all_states, docs):
self.moves.finalize_state(state.c)
for i in range(doc.length):
doc.c[i] = state.c._sent[i]
def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
return self.update([docs], [golds], drop=drop)
def begin_training(self, docs, golds):
for gold in golds:
self.moves.preprocess_gold(gold)
states = self._init_states(docs)
@ -204,39 +197,60 @@ cdef class Parser:
attr_names = self.model.ops.allocate((2,), dtype='i')
attr_names[0] = TAG
attr_names[1] = DEP
features = self._get_features(states, tokvecs, attr_names)
self.model.begin_training(features)
def update(self, docs, golds, drop=0., sgd=None):
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
return self.update([docs], [golds], drop=drop)
for gold in golds:
self.moves.preprocess_gold(gold)
states = self._init_states(docs)
tokvecs = [d.tensor for d in docs]
d_tokens = [self.model.ops.allocate(d.tensor.shape) for d in docs]
nr_class = self.moves.n_moves
output = list(d_tokens)
todo = zip(states, tokvecs, golds, d_tokens)
assert len(states) == len(todo)
loss = 0.
while todo:
states, tokvecs, golds, d_tokens = zip(*todo)
features = self._get_features(states, tokvecs, attr_names)
scores, finish_update = self.model.begin_update(features, drop=drop)
assert scores.shape == (len(states), self.moves.n_moves), (len(states), scores.shape)
self._cost_batch(costs, is_valid, states, golds)
scores *= is_valid
self._set_gradient(gradients, scores, costs)
loss += numpy.abs(gradients).sum() / gradients.shape[0]
token_ids, batch_token_grads = finish_update(gradients, sgd=sgd)
scores, finish_update = self._begin_update(states, tokvecs)
token_ids, batch_token_grads = finish_update(golds, sgd=sgd)
for i, tok_i in enumerate(token_ids):
d_tokens[i][tok_i] += batch_token_grads[i]
self._transition_batch(states, scores)
# Get unfinished states (and their matching gold and token gradients)
todo = filter(lambda sp: not sp[0].is_final(), todo)
costs = costs[:len(todo)]
is_valid = is_valid[:len(todo)]
gradients = gradients[:len(todo)]
gradients.fill(0)
costs.fill(0)
is_valid.fill(1)
todo = filter(lambda sp: not sp[0].py_is_final(), todo)
return output, loss
def _begin_update(self, states, tokvecs, drop=0.):
nr_class = self.moves.n_moves
attr_names = self.model.ops.allocate((2,), dtype='i')
attr_names[0] = TAG
attr_names[1] = DEP
features = self._get_features(states, tokvecs, attr_names)
scores, finish_update = self.model.begin_update(features, drop=drop)
is_valid = self.model.ops.allocate((len(states), nr_class), dtype='i')
self._validate_batch(is_valid, states)
softmaxed = self.model.ops.softmax(scores)
softmaxed *= is_valid
softmaxed /= softmaxed.sum(axis=1)
print('Scores', softmaxed[0])
def backward(golds, sgd=None):
costs = self.model.ops.allocate((len(states), nr_class), dtype='f')
d_scores = self.model.ops.allocate((len(states), nr_class), dtype='f')
self._cost_batch(costs, is_valid, states, golds)
self._set_gradient(d_scores, scores, is_valid, costs)
return finish_update(d_scores, sgd=sgd)
return softmaxed, backward
def _init_states(self, docs):
states = []
cdef Doc doc
@ -281,20 +295,20 @@ cdef class Parser:
action = self.moves.c[guess]
action.do(state.c, action.label)
def _set_gradient(self, gradients, scores, costs):
def _set_gradient(self, gradients, scores, is_valid, costs):
"""Do multi-label log loss"""
cdef double Z, gZ, max_, g_max
g_scores = scores * (costs <= 0)
maxes = scores.max(axis=1).reshape((scores.shape[0], 1))
g_maxes = g_scores.max(axis=1).reshape((g_scores.shape[0], 1))
exps = numpy.exp((scores-maxes))
g_exps = numpy.exp(g_scores-g_maxes)
Zs = exps.sum(axis=1).reshape((exps.shape[0], 1))
gZs = g_exps.sum(axis=1).reshape((g_exps.shape[0], 1))
logprob = exps / Zs
g_logprob = g_exps / gZs
gradients[:] = logprob - g_logprob
scores = scores * is_valid
g_scores = scores * is_valid * (costs <= 0.)
exps = numpy.exp(scores - scores.max(axis=1))
exps *= is_valid
g_exps = numpy.exp(g_scores - g_scores.max(axis=1))
g_exps *= costs <= 0.
g_exps *= is_valid
gradients[:] = exps / exps.sum(axis=1)
gradients -= g_exps / g_exps.sum(axis=1)
print('Gradient', gradients[0])
print('Costs', costs[0])
def step_through(self, Doc doc, GoldParse gold=None):
"""

View File

@ -34,7 +34,7 @@ cdef class StateClass:
def token_vector_lenth(self):
return self.doc.tensor.shape[1]
def is_final(self):
def py_is_final(self):
return self.c.is_final()
def print_state(self, words):
@ -47,31 +47,38 @@ cdef class StateClass:
return ' '.join((third, second, top, '|', n0, n1))
def nr_context_tokens(self, int nF, int nB, int nS, int nL, int nR):
return 1+nF+nB+nS + nL + (nS * nL) + (nS * nR)
return 3
#return 1+nF+nB+nS + nL + (nS * nL) + (nS * nR)
def set_context_tokens(self, int[:] output, nF=1, nB=0, nS=2,
nL=2, nR=2):
output[0] = self.B(0)
output[1] = self.S(0)
output[2] = self.S(1)
output[3] = self.L(self.S(0), 1)
output[4] = self.L(self.S(0), 2)
output[5] = self.R(self.S(0), 1)
output[6] = self.R(self.S(0), 2)
output[7] = self.L(self.S(1), 1)
output[8] = self.L(self.S(1), 2)
output[9] = self.R(self.S(1), 1)
output[10] = self.R(self.S(1), 2)
#output[3] = self.L(self.S(0), 1)
#output[4] = self.L(self.S(0), 2)
#output[5] = self.R(self.S(0), 1)
#output[6] = self.R(self.S(0), 2)
#output[7] = self.L(self.S(1), 1)
#output[8] = self.L(self.S(1), 2)
#output[9] = self.R(self.S(1), 1)
#output[10] = self.R(self.S(1), 2)
def set_attributes(self, uint64_t[:, :] vals, int[:] tokens, int[:] names):
cdef int i, j, tok_i
for i in range(tokens.shape[0]):
tok_i = tokens[i]
token = &self.c._sent[tok_i]
for j in range(names.shape[0]):
vals[i, j] = Token.get_struct_attr(token, <attr_id_t>names[j])
if tok_i >= 0:
token = &self.c._sent[tok_i]
for j in range(names.shape[0]):
vals[i, j] = Token.get_struct_attr(token, <attr_id_t>names[j])
else:
vals[i] = 0
def set_token_vectors(self, float[:, :] tokvecs,
float[:, :] all_tokvecs, int[:] indices):
for i in range(indices.shape[0]):
tokvecs[i] = all_tokvecs[indices[i]]
if indices[i] >= 0:
tokvecs[i] = all_tokvecs[indices[i]]
else:
tokvecs[i] = 0