Work on pretraining script

This commit is contained in:
Matthew Honnibal 2018-11-03 12:53:25 +00:00
parent ad44982f01
commit 8e8ccc0f92

View File

@ -1,24 +1,36 @@
'''Not sure if this is useful -- try training the Tensorizer component.''' '''Not sure if this is useful -- try training the Tensorizer component.'''
import plac import plac
import random
import spacy import spacy
import thinc.extra.datasets import thinc.extra.datasets
from spacy.util import minibatch, use_gpu from spacy.util import minibatch, use_gpu, compounding
import tqdm import tqdm
from spacy._ml import Tok2Vec
from spacy.pipeline import TextCategorizer
import cupy.random
import numpy
def load_imdb(): def load_texts(limit=0):
nlp = spacy.blank('en')
train, dev = thinc.extra.datasets.imdb() train, dev = thinc.extra.datasets.imdb()
train_texts, _ = zip(*train) train_texts, train_labels = zip(*train)
dev_texts, _ = zip(*dev) if limit >= 1:
nlp.add_pipe(nlp.create_pipe('sentencizer')) return train_texts[:limit]
return list(train_texts), list(dev_texts) else:
return train_texts
def get_sentences(nlp, texts): def load_textcat_data(limit=0, split=0.8):
for doc in nlp.pipe(texts): """Load data from the IMDB dataset."""
for sent in doc.sents: # Partition off part of the train data for evaluation
yield sent.text train_data, _ = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def prefer_gpu(): def prefer_gpu():
@ -28,25 +40,147 @@ def prefer_gpu():
else: else:
return True return True
def main(vectors_model):
use_gpu = prefer_gpu() def build_textcat_model(tok2vec, nr_class, width):
print("Using GPU?", use_gpu) from thinc.v2v import Model, Affine, Maxout
print("Load data") from thinc.api import flatten_add_lengths, chain
train_texts, dev_texts = load_imdb() from thinc.t2v import Pooling, sum_pool, max_pool
from thinc.misc import Residual, LayerNorm
from spacy._ml import logistic, zero_init
with Model.define_operators({'>>': chain}):
model = (
block_gradients(tok2vec)
>> flatten_add_lengths
>> Pooling(sum_pool, max_pool)
>> Residual(LayerNorm(Maxout(width*2, width*2, pieces=3)))
>> zero_init(Affine(nr_class, width*2, drop_factor=0.0))
>> logistic
)
model.tok2vec = tok2vec
return model
def block_gradients(model):
from thinc.api import wrap
def forward(X, drop=0.):
Y, _ = model.begin_update(X, drop=drop)
return Y, None
return wrap(forward, model)
def create_pipeline(width, embed_size, vectors_model):
print("Load vectors") print("Load vectors")
nlp = spacy.load(vectors_model) nlp = spacy.load(vectors_model)
print("Start training") print("Start training")
nlp.add_pipe(nlp.create_pipe('tagger')) textcat = TextCategorizer(nlp.vocab,
labels=['POSITIVE'],
model=build_textcat_model(
Tok2Vec(width=width, embed_size=embed_size), 1, width))
nlp.add_pipe(textcat)
return nlp
def train_tensorizer(nlp, texts, dropout, n_iter):
tensorizer = nlp.create_pipe('tensorizer') tensorizer = nlp.create_pipe('tensorizer')
nlp.add_pipe(tensorizer) nlp.add_pipe(tensorizer)
optimizer = nlp.begin_training() optimizer = nlp.begin_training()
for i in range(n_iter):
for i in range(10):
losses = {} losses = {}
for i, batch in enumerate(minibatch(tqdm.tqdm(train_texts))): for i, batch in enumerate(minibatch(tqdm.tqdm(texts))):
docs = [nlp.make_doc(text) for text in batch] docs = [nlp.make_doc(text) for text in batch]
tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=0.5) tensorizer.update(docs, None, losses=losses, sgd=optimizer, drop=dropout)
print(losses) print(losses)
return optimizer
def train_textcat(nlp, optimizer, n_texts, n_iter=10):
textcat = nlp.get_pipe('textcat')
(train_texts, train_cats), (dev_texts, dev_cats) = load_textcat_data(limit=n_texts)
print("Using {} examples ({} training, {} evaluation)"
.format(n_texts, len(train_texts), len(dev_texts)))
train_data = list(zip(train_texts,
[{'cats': cats} for cats in train_cats]))
# get names of other pipes to disable them during training
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'textcat']
with nlp.disable_pipes(*other_pipes): # only train textcat
print("Training the model...")
print('{:^5}\t{:^5}\t{:^5}\t{:^5}'.format('LOSS', 'P', 'R', 'F'))
for i in range(n_iter):
losses = {'textcat': 0.0}
# batch up the examples using spaCy's minibatch
batches = minibatch(tqdm.tqdm(train_data), size=2)
for batch in batches:
texts, annotations = zip(*batch)
nlp.update(texts, annotations, sgd=optimizer, drop=0.2,
losses=losses)
with textcat.model.use_params(optimizer.averages):
# evaluate on the dev data split off in load_data()
scores = evaluate_textcat(nlp.tokenizer, textcat, dev_texts, dev_cats)
print('{0:.3f}\t{1:.3f}\t{2:.3f}\t{3:.3f}' # print a simple table
.format(losses['textcat'], scores['textcat_p'],
scores['textcat_r'], scores['textcat_f']))
def load_textcat_data(limit=0, split=0.8):
"""Load data from the IMDB dataset."""
# Partition off part of the train data for evaluation
train_data, _ = thinc.extra.datasets.imdb()
random.shuffle(train_data)
train_data = train_data[-limit:]
texts, labels = zip(*train_data)
cats = [{'POSITIVE': bool(y)} for y in labels]
split = int(len(train_data) * split)
return (texts[:split], cats[:split]), (texts[split:], cats[split:])
def evaluate_textcat(tokenizer, textcat, texts, cats):
docs = (tokenizer(text) for text in texts)
tp = 1e-8 # True positives
fp = 1e-8 # False positives
fn = 1e-8 # False negatives
tn = 1e-8 # True negatives
for i, doc in enumerate(textcat.pipe(docs)):
gold = cats[i]
for label, score in doc.cats.items():
if label not in gold:
continue
if score >= 0.5 and gold[label] >= 0.5:
tp += 1.
elif score >= 0.5 and gold[label] < 0.5:
fp += 1.
elif score < 0.5 and gold[label] < 0.5:
tn += 1
elif score < 0.5 and gold[label] >= 0.5:
fn += 1
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f_score = 2 * (precision * recall) / (precision + recall)
return {'textcat_p': precision, 'textcat_r': recall, 'textcat_f': f_score}
@plac.annotations(
width=("Width of CNN layers", "positional", None, int),
embed_size=("Embedding rows", "positional", None, int),
pretrain_iters=("Number of iterations to pretrain", "option", "pn", int),
train_iters=("Number of iterations to pretrain", "option", "tn", int),
train_examples=("Number of labelled examples", "option", "eg", int),
vectors_model=("Name or path to vectors model to learn from")
)
def main(width: int, embed_size: int, vectors_model,
pretrain_iters=30, train_iters=30, train_examples=100):
random.seed(0)
cupy.random.seed(0)
numpy.random.seed(0)
use_gpu = prefer_gpu()
print("Using GPU?", use_gpu)
nlp = create_pipeline(width, embed_size, vectors_model)
print("Load data")
texts = load_texts(limit=0)
print("Train tensorizer")
optimizer = train_tensorizer(nlp, texts, dropout=0.5, n_iter=pretrain_iters)
print("Train textcat")
train_textcat(nlp, optimizer, train_examples, n_iter=train_iters)
if __name__ == '__main__': if __name__ == '__main__':
plac.call(main) plac.call(main)