mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
💫 Add experimental ULMFit/BERT/Elmo-like pretraining (#2931)
* Add 'spacy pretrain' command * Fix pretrain command for Python 2 * Fix pretrain command * Fix pretrain command
This commit is contained in:
parent
e89708c3eb
commit
8fdb9bc278
|
@ -6,7 +6,7 @@ from __future__ import print_function
|
|||
if __name__ == '__main__':
|
||||
import plac
|
||||
import sys
|
||||
from spacy.cli import download, link, info, package, train, convert
|
||||
from spacy.cli import download, link, info, package, train, pretrain, convert
|
||||
from spacy.cli import vocab, init_model, profile, evaluate, validate
|
||||
from spacy.cli import ud_train, ud_evaluate
|
||||
from spacy.util import prints
|
||||
|
@ -16,6 +16,7 @@ if __name__ == '__main__':
|
|||
'link': link,
|
||||
'info': info,
|
||||
'train': train,
|
||||
'pretrain': pretrain,
|
||||
'ud-train': ud_train,
|
||||
'evaluate': evaluate,
|
||||
'ud-evaluate': ud_evaluate,
|
||||
|
|
|
@ -4,6 +4,7 @@ from .link import link
|
|||
from .package import package
|
||||
from .profile import profile
|
||||
from .train import train
|
||||
from .pretrain import pretrain
|
||||
from .evaluate import evaluate
|
||||
from .convert import convert
|
||||
from .vocab import make_vocab as vocab
|
||||
|
|
188
spacy/cli/pretrain.py
Normal file
188
spacy/cli/pretrain.py
Normal file
|
@ -0,0 +1,188 @@
|
|||
'''This script is experimental.
|
||||
|
||||
Try pre-training the CNN component of the text categorizer using a cheap
|
||||
language modelling-like objective. Specifically, we load pre-trained vectors
|
||||
(from something like word2vec, GloVe, FastText etc), and use the CNN to
|
||||
predict the tokens' pre-trained vectors. This isn't as easy as it sounds:
|
||||
we're not merely doing compression here, because heavy dropout is applied,
|
||||
including over the input words. This means the model must often (50% of the time)
|
||||
use the context in order to predict the word.
|
||||
|
||||
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
|
||||
corpus, and then training with only 100 labels. Note that it's a bit dirty to
|
||||
pre-train with the development data, but also not *so* terrible: we're not using
|
||||
the development labels, after all --- only the unlabelled text.
|
||||
'''
|
||||
from __future__ import print_function, unicode_literals
|
||||
import plac
|
||||
import random
|
||||
import numpy
|
||||
import time
|
||||
import ujson as json
|
||||
from pathlib import Path
|
||||
|
||||
import spacy
|
||||
from spacy.attrs import ID
|
||||
from spacy.util import minibatch, use_gpu, compounding, ensure_path
|
||||
from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
|
||||
from thinc.v2v import Affine
|
||||
|
||||
|
||||
def prefer_gpu():
|
||||
used = spacy.util.use_gpu(0)
|
||||
if used is None:
|
||||
return False
|
||||
else:
|
||||
import cupy.random
|
||||
cupy.random.seed(0)
|
||||
return True
|
||||
|
||||
|
||||
def load_texts(path):
|
||||
'''Load inputs from a jsonl file.
|
||||
|
||||
Each line should be a dict like {"text": "..."}
|
||||
'''
|
||||
path = ensure_path(path)
|
||||
with path.open('r', encoding='utf8') as file_:
|
||||
for line in file_:
|
||||
data = json.loads(line)
|
||||
yield data['text']
|
||||
|
||||
|
||||
def make_update(model, docs, optimizer, drop=0.):
|
||||
"""Perform an update over a single batch of documents.
|
||||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
drop (float): The droput rate.
|
||||
optimizer (callable): An optimizer.
|
||||
RETURNS loss: A float for the loss.
|
||||
"""
|
||||
predictions, backprop = model.begin_update(docs, drop=drop)
|
||||
loss, gradients = get_vectors_loss(model.ops, docs, predictions)
|
||||
backprop(gradients, sgd=optimizer)
|
||||
return loss
|
||||
|
||||
|
||||
def get_vectors_loss(ops, docs, prediction):
|
||||
"""Compute a mean-squared error loss between the documents' vectors and
|
||||
the prediction.
|
||||
|
||||
Note that this is ripe for customization! We could compute the vectors
|
||||
in some other word, e.g. with an LSTM language model, or use some other
|
||||
type of objective.
|
||||
"""
|
||||
# The simplest way to implement this would be to vstack the
|
||||
# token.vector values, but that's a bit inefficient, especially on GPU.
|
||||
# Instead we fetch the index into the vectors table for each of our tokens,
|
||||
# and look them up all at once. This prevents data copying.
|
||||
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
|
||||
target = docs[0].vocab.vectors.data[ids]
|
||||
d_scores = (prediction - target) / prediction.shape[0]
|
||||
loss = (d_scores**2).sum()
|
||||
return loss, d_scores
|
||||
|
||||
|
||||
def create_pretraining_model(nlp, tok2vec):
|
||||
'''Define a network for the pretraining. We simply add an output layer onto
|
||||
the tok2vec input model. The tok2vec input model needs to be a model that
|
||||
takes a batch of Doc objects (as a list), and returns a list of arrays.
|
||||
Each array in the output needs to have one row per token in the doc.
|
||||
'''
|
||||
output_size = nlp.vocab.vectors.data.shape[1]
|
||||
output_layer = zero_init(Affine(output_size, drop_factor=0.0))
|
||||
model = chain(
|
||||
tok2vec,
|
||||
flatten,
|
||||
output_layer
|
||||
)
|
||||
model.output_layer = output_layer
|
||||
model.begin_training([nlp.make_doc('Give it a doc to infer shapes')])
|
||||
return model
|
||||
|
||||
|
||||
class ProgressTracker(object):
|
||||
def __init__(self, frequency=10000):
|
||||
self.loss = 0.
|
||||
self.nr_word = 0
|
||||
self.frequency = frequency
|
||||
self.last_time = time.time()
|
||||
self.last_update = 0
|
||||
|
||||
def update(self, epoch, loss, docs):
|
||||
self.loss += loss
|
||||
self.nr_word += sum(len(doc) for doc in docs)
|
||||
words_since_update = self.nr_word - self.last_update
|
||||
if words_since_update >= self.frequency:
|
||||
wps = words_since_update / (time.time() - self.last_time)
|
||||
self.last_update = self.nr_word
|
||||
self.last_time = time.time()
|
||||
status = (epoch, self.nr_word, '%.5f' % self.loss, int(wps))
|
||||
return status
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
@plac.annotations(
|
||||
texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str),
|
||||
vectors_model=("Name or path to vectors model to learn from"),
|
||||
output_dir=("Directory to write models each epoch", "positional", None, str),
|
||||
width=("Width of CNN layers", "option", "cw", int),
|
||||
depth=("Depth of CNN layers", "option", "cd", int),
|
||||
embed_rows=("Embedding rows", "option", "er", int),
|
||||
dropout=("Dropout", "option", "d", float),
|
||||
seed=("Seed for random number generators", "option", "s", float),
|
||||
nr_iter=("Number of iterations to pretrain", "option", "i", int),
|
||||
)
|
||||
def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
|
||||
embed_rows=1000, dropout=0.2, nr_iter=1, seed=0):
|
||||
"""
|
||||
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
|
||||
using an approximate language-modelling objective. Specifically, we load
|
||||
pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
|
||||
vectors which match the pre-trained ones. The weights are saved to a directory
|
||||
after each epoch. You can then pass a path to one of these pre-trained weights
|
||||
files to the 'spacy train' command.
|
||||
|
||||
This technique may be especially helpful if you have little labelled data.
|
||||
However, it's still quite experimental, so your mileage may vary.
|
||||
|
||||
To load the weights back in during 'spacy train', you need to ensure
|
||||
all settings are the same between pretraining and training. The API and
|
||||
errors around this need some improvement.
|
||||
"""
|
||||
config = dict(locals())
|
||||
output_dir = ensure_path(output_dir)
|
||||
random.seed(seed)
|
||||
numpy.random.seed(seed)
|
||||
if not output_dir.exists():
|
||||
output_dir.mkdir()
|
||||
with (output_dir / 'config.json').open('w') as file_:
|
||||
file_.write(json.dumps(config))
|
||||
has_gpu = prefer_gpu()
|
||||
nlp = spacy.load(vectors_model)
|
||||
tok2vec = Tok2Vec(width, embed_rows,
|
||||
conv_depth=depth,
|
||||
pretrained_vectors=nlp.vocab.vectors.name,
|
||||
bilstm_depth=0, # Requires PyTorch. Experimental.
|
||||
cnn_maxout_pieces=2, # You can try setting this higher
|
||||
subword_features=True) # Set to False for character models, e.g. Chinese
|
||||
model = create_pretraining_model(nlp, tok2vec)
|
||||
optimizer = create_default_optimizer(model.ops)
|
||||
tracker = ProgressTracker()
|
||||
texts = list(load_texts(texts_loc))
|
||||
print('Epoch', '#Words', 'Loss', 'w/s')
|
||||
for epoch in range(nr_iter):
|
||||
random.shuffle(texts)
|
||||
for batch in minibatch(texts):
|
||||
docs = [nlp.make_doc(text) for text in batch]
|
||||
loss = make_update(model, docs, optimizer, drop=dropout)
|
||||
progress = tracker.update(epoch, loss, docs)
|
||||
if progress:
|
||||
print(*progress)
|
||||
with model.use_params(optimizer.averages):
|
||||
with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_:
|
||||
file_.write(tok2vec.to_bytes())
|
||||
with (output_dir / 'log.jsonl').open('a') as file_:
|
||||
file_.write(json.dumps({'nr_word': tracker.nr_word,
|
||||
'loss': tracker.loss, 'epoch': epoch}))
|
|
@ -40,9 +40,11 @@ from ..compat import json_dumps
|
|||
version=("Model version", "option", "V", str),
|
||||
meta_path=("Optional path to meta.json. All relevant properties will be "
|
||||
"overwritten.", "option", "m", Path),
|
||||
init_tok2vec=("Path to pretrained weights for the token-to-vector parts "
|
||||
"of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path),
|
||||
verbose=("Display more information for debug", "option", None, bool))
|
||||
def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
||||
parser_multitasks='', entity_multitasks='',
|
||||
parser_multitasks='', entity_multitasks='', init_tok2vec=None,
|
||||
use_gpu=-1, vectors=None, no_tagger=False, noise_level=0.0,
|
||||
no_parser=False, no_entities=False, gold_preproc=False,
|
||||
version="0.0.0", meta_path=None, verbose=False):
|
||||
|
@ -120,6 +122,9 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
|||
for objective in entity_multitasks.split(','):
|
||||
nlp.entity.add_multitask_objective(objective)
|
||||
optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
|
||||
if init_tok2vec is not None:
|
||||
loaded = _load_pretrained_tok2vec(nlp, init_tok2vec)
|
||||
print("Loaded pretrained tok2vec for:", loaded)
|
||||
nlp._optimizer = None
|
||||
|
||||
print("Itn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS")
|
||||
|
@ -199,6 +204,20 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
|
|||
_collate_best_model(meta, output_path, components)
|
||||
|
||||
|
||||
def _load_pretrained_tok2vec(nlp, loc):
|
||||
"""Load pre-trained weights for the 'token-to-vector' part of the component
|
||||
models, which is typically a CNN. See 'spacy pretrain'. Experimental.
|
||||
"""
|
||||
with loc.open('rb') as file_:
|
||||
weights_data = file_.read()
|
||||
loaded = []
|
||||
for name, component in nlp.pipeline:
|
||||
if hasattr(component, 'model') and hasattr(component.model, 'tok2vec'):
|
||||
component.model.tok2vec.from_bytes(weights_data)
|
||||
loaded.append(name)
|
||||
return loaded
|
||||
|
||||
|
||||
def _collate_best_model(meta, output_path, components):
|
||||
bests = {}
|
||||
for component in components:
|
||||
|
|
Loading…
Reference in New Issue
Block a user