💫 Add experimental ULMFit/BERT/Elmo-like pretraining (#2931)

* Add 'spacy pretrain' command

* Fix pretrain command for Python 2

* Fix pretrain command

* Fix pretrain command
This commit is contained in:
Matthew Honnibal 2018-11-15 22:17:16 +01:00 committed by GitHub
parent e89708c3eb
commit 8fdb9bc278
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 211 additions and 2 deletions

View File

@ -6,7 +6,7 @@ from __future__ import print_function
if __name__ == '__main__': if __name__ == '__main__':
import plac import plac
import sys import sys
from spacy.cli import download, link, info, package, train, convert from spacy.cli import download, link, info, package, train, pretrain, convert
from spacy.cli import vocab, init_model, profile, evaluate, validate from spacy.cli import vocab, init_model, profile, evaluate, validate
from spacy.cli import ud_train, ud_evaluate from spacy.cli import ud_train, ud_evaluate
from spacy.util import prints from spacy.util import prints
@ -16,6 +16,7 @@ if __name__ == '__main__':
'link': link, 'link': link,
'info': info, 'info': info,
'train': train, 'train': train,
'pretrain': pretrain,
'ud-train': ud_train, 'ud-train': ud_train,
'evaluate': evaluate, 'evaluate': evaluate,
'ud-evaluate': ud_evaluate, 'ud-evaluate': ud_evaluate,

View File

@ -4,6 +4,7 @@ from .link import link
from .package import package from .package import package
from .profile import profile from .profile import profile
from .train import train from .train import train
from .pretrain import pretrain
from .evaluate import evaluate from .evaluate import evaluate
from .convert import convert from .convert import convert
from .vocab import make_vocab as vocab from .vocab import make_vocab as vocab

188
spacy/cli/pretrain.py Normal file
View File

@ -0,0 +1,188 @@
'''This script is experimental.
Try pre-training the CNN component of the text categorizer using a cheap
language modelling-like objective. Specifically, we load pre-trained vectors
(from something like word2vec, GloVe, FastText etc), and use the CNN to
predict the tokens' pre-trained vectors. This isn't as easy as it sounds:
we're not merely doing compression here, because heavy dropout is applied,
including over the input words. This means the model must often (50% of the time)
use the context in order to predict the word.
To evaluate the technique, we're pre-training with the 50k texts from the IMDB
corpus, and then training with only 100 labels. Note that it's a bit dirty to
pre-train with the development data, but also not *so* terrible: we're not using
the development labels, after all --- only the unlabelled text.
'''
from __future__ import print_function, unicode_literals
import plac
import random
import numpy
import time
import ujson as json
from pathlib import Path
import spacy
from spacy.attrs import ID
from spacy.util import minibatch, use_gpu, compounding, ensure_path
from spacy._ml import Tok2Vec, flatten, chain, zero_init, create_default_optimizer
from thinc.v2v import Affine
def prefer_gpu():
used = spacy.util.use_gpu(0)
if used is None:
return False
else:
import cupy.random
cupy.random.seed(0)
return True
def load_texts(path):
'''Load inputs from a jsonl file.
Each line should be a dict like {"text": "..."}
'''
path = ensure_path(path)
with path.open('r', encoding='utf8') as file_:
for line in file_:
data = json.loads(line)
yield data['text']
def make_update(model, docs, optimizer, drop=0.):
"""Perform an update over a single batch of documents.
docs (iterable): A batch of `Doc` objects.
drop (float): The droput rate.
optimizer (callable): An optimizer.
RETURNS loss: A float for the loss.
"""
predictions, backprop = model.begin_update(docs, drop=drop)
loss, gradients = get_vectors_loss(model.ops, docs, predictions)
backprop(gradients, sgd=optimizer)
return loss
def get_vectors_loss(ops, docs, prediction):
"""Compute a mean-squared error loss between the documents' vectors and
the prediction.
Note that this is ripe for customization! We could compute the vectors
in some other word, e.g. with an LSTM language model, or use some other
type of objective.
"""
# The simplest way to implement this would be to vstack the
# token.vector values, but that's a bit inefficient, especially on GPU.
# Instead we fetch the index into the vectors table for each of our tokens,
# and look them up all at once. This prevents data copying.
ids = ops.flatten([doc.to_array(ID).ravel() for doc in docs])
target = docs[0].vocab.vectors.data[ids]
d_scores = (prediction - target) / prediction.shape[0]
loss = (d_scores**2).sum()
return loss, d_scores
def create_pretraining_model(nlp, tok2vec):
'''Define a network for the pretraining. We simply add an output layer onto
the tok2vec input model. The tok2vec input model needs to be a model that
takes a batch of Doc objects (as a list), and returns a list of arrays.
Each array in the output needs to have one row per token in the doc.
'''
output_size = nlp.vocab.vectors.data.shape[1]
output_layer = zero_init(Affine(output_size, drop_factor=0.0))
model = chain(
tok2vec,
flatten,
output_layer
)
model.output_layer = output_layer
model.begin_training([nlp.make_doc('Give it a doc to infer shapes')])
return model
class ProgressTracker(object):
def __init__(self, frequency=10000):
self.loss = 0.
self.nr_word = 0
self.frequency = frequency
self.last_time = time.time()
self.last_update = 0
def update(self, epoch, loss, docs):
self.loss += loss
self.nr_word += sum(len(doc) for doc in docs)
words_since_update = self.nr_word - self.last_update
if words_since_update >= self.frequency:
wps = words_since_update / (time.time() - self.last_time)
self.last_update = self.nr_word
self.last_time = time.time()
status = (epoch, self.nr_word, '%.5f' % self.loss, int(wps))
return status
else:
return None
@plac.annotations(
texts_loc=("Path to jsonl file with texts to learn from", "positional", None, str),
vectors_model=("Name or path to vectors model to learn from"),
output_dir=("Directory to write models each epoch", "positional", None, str),
width=("Width of CNN layers", "option", "cw", int),
depth=("Depth of CNN layers", "option", "cd", int),
embed_rows=("Embedding rows", "option", "er", int),
dropout=("Dropout", "option", "d", float),
seed=("Seed for random number generators", "option", "s", float),
nr_iter=("Number of iterations to pretrain", "option", "i", int),
)
def pretrain(texts_loc, vectors_model, output_dir, width=128, depth=4,
embed_rows=1000, dropout=0.2, nr_iter=1, seed=0):
"""
Pre-train the 'token-to-vector' (tok2vec) layer of pipeline components,
using an approximate language-modelling objective. Specifically, we load
pre-trained vectors, and train a component like a CNN, BiLSTM, etc to predict
vectors which match the pre-trained ones. The weights are saved to a directory
after each epoch. You can then pass a path to one of these pre-trained weights
files to the 'spacy train' command.
This technique may be especially helpful if you have little labelled data.
However, it's still quite experimental, so your mileage may vary.
To load the weights back in during 'spacy train', you need to ensure
all settings are the same between pretraining and training. The API and
errors around this need some improvement.
"""
config = dict(locals())
output_dir = ensure_path(output_dir)
random.seed(seed)
numpy.random.seed(seed)
if not output_dir.exists():
output_dir.mkdir()
with (output_dir / 'config.json').open('w') as file_:
file_.write(json.dumps(config))
has_gpu = prefer_gpu()
nlp = spacy.load(vectors_model)
tok2vec = Tok2Vec(width, embed_rows,
conv_depth=depth,
pretrained_vectors=nlp.vocab.vectors.name,
bilstm_depth=0, # Requires PyTorch. Experimental.
cnn_maxout_pieces=2, # You can try setting this higher
subword_features=True) # Set to False for character models, e.g. Chinese
model = create_pretraining_model(nlp, tok2vec)
optimizer = create_default_optimizer(model.ops)
tracker = ProgressTracker()
texts = list(load_texts(texts_loc))
print('Epoch', '#Words', 'Loss', 'w/s')
for epoch in range(nr_iter):
random.shuffle(texts)
for batch in minibatch(texts):
docs = [nlp.make_doc(text) for text in batch]
loss = make_update(model, docs, optimizer, drop=dropout)
progress = tracker.update(epoch, loss, docs)
if progress:
print(*progress)
with model.use_params(optimizer.averages):
with (output_dir / ('model%d.bin' % epoch)).open('wb') as file_:
file_.write(tok2vec.to_bytes())
with (output_dir / 'log.jsonl').open('a') as file_:
file_.write(json.dumps({'nr_word': tracker.nr_word,
'loss': tracker.loss, 'epoch': epoch}))

View File

@ -40,9 +40,11 @@ from ..compat import json_dumps
version=("Model version", "option", "V", str), version=("Model version", "option", "V", str),
meta_path=("Optional path to meta.json. All relevant properties will be " meta_path=("Optional path to meta.json. All relevant properties will be "
"overwritten.", "option", "m", Path), "overwritten.", "option", "m", Path),
init_tok2vec=("Path to pretrained weights for the token-to-vector parts "
"of the models. See 'spacy pretrain'. Experimental.", "option", "t2v", Path),
verbose=("Display more information for debug", "option", None, bool)) verbose=("Display more information for debug", "option", None, bool))
def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0, def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
parser_multitasks='', entity_multitasks='', parser_multitasks='', entity_multitasks='', init_tok2vec=None,
use_gpu=-1, vectors=None, no_tagger=False, noise_level=0.0, use_gpu=-1, vectors=None, no_tagger=False, noise_level=0.0,
no_parser=False, no_entities=False, gold_preproc=False, no_parser=False, no_entities=False, gold_preproc=False,
version="0.0.0", meta_path=None, verbose=False): version="0.0.0", meta_path=None, verbose=False):
@ -120,6 +122,9 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
for objective in entity_multitasks.split(','): for objective in entity_multitasks.split(','):
nlp.entity.add_multitask_objective(objective) nlp.entity.add_multitask_objective(objective)
optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu) optimizer = nlp.begin_training(lambda: corpus.train_tuples, device=use_gpu)
if init_tok2vec is not None:
loaded = _load_pretrained_tok2vec(nlp, init_tok2vec)
print("Loaded pretrained tok2vec for:", loaded)
nlp._optimizer = None nlp._optimizer = None
print("Itn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS") print("Itn. Dep Loss NER Loss UAS NER P. NER R. NER F. Tag % Token % CPU WPS GPU WPS")
@ -199,6 +204,20 @@ def train(lang, output_dir, train_data, dev_data, n_iter=30, n_sents=0,
_collate_best_model(meta, output_path, components) _collate_best_model(meta, output_path, components)
def _load_pretrained_tok2vec(nlp, loc):
"""Load pre-trained weights for the 'token-to-vector' part of the component
models, which is typically a CNN. See 'spacy pretrain'. Experimental.
"""
with loc.open('rb') as file_:
weights_data = file_.read()
loaded = []
for name, component in nlp.pipeline:
if hasattr(component, 'model') and hasattr(component.model, 'tok2vec'):
component.model.tok2vec.from_bytes(weights_data)
loaded.append(name)
return loaded
def _collate_best_model(meta, output_path, components): def _collate_best_model(meta, output_path, components):
bests = {} bests = {}
for component in components: for component in components: