Improve token pattern checking without validation (#4105)

* Fix typo in rule-based matching docs

* Improve token pattern checking without validation

Add more detailed token pattern checks without full JSON pattern validation and
provide more detailed error messages.

Addresses #4070 (also related: #4063, #4100).

* Check whether top-level attributes in patterns and attr for PhraseMatcher are
  in token pattern schema

* Check whether attribute value types are supported in general (as opposed to
  per attribute with full validation)

* Report various internal error types (OverflowError, AttributeError, KeyError)
  as ValueError with standard error messages

* Check for tagger/parser in PhraseMatcher pipeline for attributes TAG, POS,
  LEMMA, and DEP

* Add error messages with relevant details on how to use validate=True or nlp()
  instead of nlp.make_doc()

* Support attr=TEXT for PhraseMatcher

* Add NORM to schema

* Expand tests for pattern validation, Matcher, PhraseMatcher, and EntityRuler

* Remove unnecessary .keys()

* Rephrase error messages

* Add another type check to Matcher

Add another type check to Matcher for more understandable error messages
in some rare cases.

* Support phrase_matcher_attr=TEXT for EntityRuler

* Don't use spacy.errors in examples and bin scripts

* Fix error code

* Auto-format

Also try get Azure pipelines to finally start a build :(

* Update errors.py


Co-authored-by: Ines Montani <ines@ines.io>
Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
adrianeboyd 2019-08-21 14:00:37 +02:00 committed by Ines Montani
parent 3134a9b6e0
commit 8fe7bdd0fa
15 changed files with 162 additions and 58 deletions

View File

@ -8,8 +8,6 @@ from spacy.kb import KnowledgeBase
import csv
import datetime
from spacy import Errors
def create_kb(
nlp,
@ -33,7 +31,10 @@ def create_kb(
input_dim = nlp.vocab.vectors_length
print("Loaded pre-trained vectors of size %s" % input_dim)
else:
raise ValueError(Errors.E155)
raise ValueError(
"The `nlp` object should have access to pre-trained word vectors, "
" cf. https://spacy.io/usage/models#languages."
)
# disable this part of the pipeline when rerunning the KB generation from preprocessed files
if read_raw_data:

View File

@ -73,7 +73,10 @@ def main(
# check the length of the nlp vectors
if "vectors" not in nlp.meta or not nlp.vocab.vectors.size:
raise ValueError(Errors.E155)
raise ValueError(
"The `nlp` object should have access to pre-trained word vectors, "
" cf. https://spacy.io/usage/models#languages."
)
# STEP 2: create prior probabilities from WP
print()

View File

@ -19,8 +19,6 @@ from bin.wiki_entity_linking import training_set_creator
import spacy
from spacy.kb import KnowledgeBase
from spacy import Errors
from spacy.util import minibatch, compounding
@ -68,7 +66,7 @@ def main(
# check that there is a NER component in the pipeline
if "ner" not in nlp.pipe_names:
raise ValueError(Errors.E152)
raise ValueError("The `nlp` object should have a pre-trained `ner` component.")
# STEP 2 : read the KB
print()
@ -82,7 +80,10 @@ def main(
print(now(), "STEP 3: reading training dataset from", loc_training)
else:
if not wp_xml:
raise ValueError(Errors.E153)
raise ValueError(
"Either provide a path to a preprocessed training directory, "
"or to the original Wikipedia XML dump."
)
if output_dir:
loc_training = output_dir / "training_data"

View File

@ -17,12 +17,10 @@ import plac
from pathlib import Path
from spacy.vocab import Vocab
import spacy
from spacy.kb import KnowledgeBase
from bin.wiki_entity_linking.train_descriptions import EntityEncoder
from spacy import Errors
# Q2146908 (Russ Cochran): American golfer
@ -45,7 +43,7 @@ def main(vocab_path=None, model=None, output_dir=None, n_iter=50):
If an output_dir is provided, the KB will be stored there in a file 'kb'.
When providing an nlp model, the updated vocab will also be written to a directory in the output_dir."""
if model is None and vocab_path is None:
raise ValueError(Errors.E154)
raise ValueError("Either the `nlp` model or the `vocab` should be specified.")
if model is not None:
nlp = spacy.load(model) # load existing spaCy model

View File

@ -22,8 +22,6 @@ from spacy.vocab import Vocab
import spacy
from spacy.kb import KnowledgeBase
from spacy import Errors
from spacy.tokens import Span
from spacy.util import minibatch, compounding

View File

@ -128,7 +128,7 @@ class DependencyRenderer(object):
"""
if start < 0 or end < 0:
error_args = dict(start=start, end=end, label=label, dir=direction)
raise ValueError(Errors.E156.format(**error_args))
raise ValueError(Errors.E157.format(**error_args))
level = self.levels.index(end - start) + 1
x_start = self.offset_x + start * self.distance + self.arrow_spacing
if self.direction == "rtl":

View File

@ -431,13 +431,24 @@ class Errors(object):
"same, but found '{nlp}' and '{vocab}' respectively.")
E151 = ("Trying to call nlp.update without required annotation types. "
"Expected top-level keys: {exp}. Got: {unexp}.")
E152 = ("The `nlp` object should have a pre-trained `ner` component.")
E153 = ("Either provide a path to a preprocessed training directory, "
"or to the original Wikipedia XML dump.")
E154 = ("Either the `nlp` model or the `vocab` should be specified.")
E155 = ("The `nlp` object should have access to pre-trained word vectors, "
" cf. https://spacy.io/usage/models#languages.")
E156 = ("Can't render negative values for dependency arc start or end. "
E152 = ("The attribute {attr} is not supported for token patterns. "
"Please use the option validate=True with Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
E153 = ("The value type {vtype} is not supported for token patterns. "
"Please use the option validate=True with Matcher, PhraseMatcher, "
"or EntityRuler for more details.")
E154 = ("One of the attributes or values is not supported for token "
"patterns. Please use the option validate=True with Matcher, "
"PhraseMatcher, or EntityRuler for more details.")
E155 = ("The pipeline needs to include a tagger in order to use "
"PhraseMatcher with the attributes POS, TAG, or LEMMA. Try using "
"nlp() instead of nlp.make_doc() or list(nlp.pipe()) instead of "
"list(nlp.tokenizer.pipe()).")
E156 = ("The pipeline needs to include a parser in order to use "
"PhraseMatcher with the attribute DEP. Try using "
"nlp() instead of nlp.make_doc() or list(nlp.pipe()) instead of "
"list(nlp.tokenizer.pipe()).")
E157 = ("Can't render negative values for dependency arc start or end. "
"Make sure that you're passing in absolute token indices, not "
"relative token offsets.\nstart: {start}, end: {end}, label: "
"{label}, direction: {dir}")

View File

@ -102,6 +102,10 @@ TOKEN_PATTERN_SCHEMA = {
"title": "Entity label of single token",
"$ref": "#/definitions/string_value",
},
"NORM": {
"title": "Normalized form of the token text",
"$ref": "#/definitions/string_value",
},
"LENGTH": {
"title": "Token character length",
"$ref": "#/definitions/integer_value",

View File

@ -112,9 +112,12 @@ cdef class Matcher:
raise MatchPatternError(key, errors)
key = self._normalize_key(key)
for pattern in patterns:
try:
specs = _preprocess_pattern(pattern, self.vocab.strings,
self._extensions, self._extra_predicates)
self.patterns.push_back(init_pattern(self.mem, key, specs))
except OverflowError, AttributeError:
raise ValueError(Errors.E154.format())
self._patterns.setdefault(key, [])
self._callbacks[key] = on_match
self._patterns[key].extend(patterns)
@ -568,6 +571,8 @@ def _preprocess_pattern(token_specs, string_store, extensions_table, extra_predi
# Signifier for 'any token'
tokens.append((ONE, [(NULL_ATTR, 0)], [], []))
continue
if not isinstance(spec, dict):
raise ValueError(Errors.E154.format())
ops = _get_operators(spec)
attr_values = _get_attr_values(spec, string_store)
extensions = _get_extensions(spec, string_store, extensions_table)
@ -581,21 +586,29 @@ def _get_attr_values(spec, string_store):
attr_values = []
for attr, value in spec.items():
if isinstance(attr, basestring):
attr = attr.upper()
if attr == '_':
continue
elif attr.upper() == "OP":
elif attr == "OP":
continue
if attr.upper() == "TEXT":
if attr == "TEXT":
attr = "ORTH"
attr = IDS.get(attr.upper())
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
raise ValueError(Errors.E152.format(attr=attr))
attr = IDS.get(attr)
if isinstance(value, basestring):
value = string_store.add(value)
elif isinstance(value, bool):
value = int(value)
elif isinstance(value, dict):
continue
else:
raise ValueError(Errors.E153.format(vtype=type(value).__name__))
if attr is not None:
attr_values.append((attr, value))
else:
# should be caught above using TOKEN_PATTERN_SCHEMA
raise ValueError(Errors.E152.format(attr=attr))
return attr_values
@ -755,11 +768,13 @@ def _get_operators(spec):
return lookup[spec["OP"]]
else:
keys = ", ".join(lookup.keys())
raise KeyError(Errors.E011.format(op=spec["OP"], opts=keys))
raise ValueError(Errors.E011.format(op=spec["OP"], opts=keys))
def _get_extensions(spec, string_store, name2index):
attr_values = []
if not isinstance(spec.get("_", {}), dict):
raise ValueError(Errors.E154.format())
for name, value in spec.get("_", {}).items():
if isinstance(value, dict):
# Handle predicates (e.g. "IN", in the extra_predicates, not here.

View File

@ -12,6 +12,7 @@ from ..vocab cimport Vocab
from ..tokens.doc cimport Doc, get_token_attr
from ..typedefs cimport attr_t, hash_t
from ._schemas import TOKEN_PATTERN_SCHEMA
from ..errors import Errors, Warnings, deprecation_warning, user_warning
from ..attrs import FLAG61 as U_ENT
from ..attrs import FLAG60 as B2_ENT
@ -62,6 +63,11 @@ cdef class PhraseMatcher:
if isinstance(attr, long):
self.attr = attr
else:
attr = attr.upper()
if attr == "TEXT":
attr = "ORTH"
if attr not in TOKEN_PATTERN_SCHEMA["items"]["properties"]:
raise ValueError(Errors.E152.format(attr=attr))
self.attr = self.vocab.strings[attr]
self.phrase_ids = PreshMap()
abstract_patterns = [
@ -123,6 +129,10 @@ cdef class PhraseMatcher:
length = doc.length
if length == 0:
continue
if self.attr in (POS, TAG, LEMMA) and not doc.is_tagged:
raise ValueError(Errors.E155.format())
if self.attr == DEP and not doc.is_parsed:
raise ValueError(Errors.E156.format())
if self._validate and (doc.is_tagged or doc.is_parsed) \
and self.attr not in (DEP, POS, TAG, LEMMA):
string_attr = self.vocab.strings[self.attr]

View File

@ -54,6 +54,8 @@ class EntityRuler(object):
self.phrase_patterns = defaultdict(list)
self.matcher = Matcher(nlp.vocab, validate=validate)
if phrase_matcher_attr is not None:
if phrase_matcher_attr.upper() == "TEXT":
phrase_matcher_attr = "ORTH"
self.phrase_matcher_attr = phrase_matcher_attr
self.phrase_matcher = PhraseMatcher(
nlp.vocab, attr=self.phrase_matcher_attr, validate=validate

View File

@ -7,6 +7,36 @@ from spacy.matcher._schemas import TOKEN_PATTERN_SCHEMA
from spacy.errors import MatchPatternError
from spacy.util import get_json_validator, validate_json
# (pattern, num errors with validation, num errors identified with minimal
# checks)
TEST_PATTERNS = [
# Bad patterns flagged in all cases
([{"XX": "foo"}], 1, 1),
([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2, 1),
([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2, 1),
([{"IS_PUNCT": True, "OP": "$"}], 1, 1),
([{"IS_DIGIT": -1}], 1, 1),
([{"ORTH": -1}], 1, 1),
([{"_": "foo"}], 1, 1),
('[{"TEXT": "foo"}, {"LOWER": "bar"}]', 1, 1),
([1, 2, 3], 3, 1),
# Bad patterns flagged outside of Matcher
([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 1, 0),
# Bad patterns not flagged with minimal checks
([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 2, 0),
([{"LENGTH": {"VALUE": 5}}], 1, 0),
([{"TEXT": {"VALUE": "foo"}}], 1, 0),
# Good patterns
([{"TEXT": "foo"}, {"LOWER": "bar"}], 0, 0),
([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0, 0),
([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0, 0),
([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0, 0),
([{"NORM": "a"}, {"POS": {"IN": ["NOUN"]}}], 0, 0),
([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0, 0),
]
XFAIL_TEST_PATTERNS = [([{"orth": "foo"}], 0, 0)]
@pytest.fixture
def validator():
@ -22,27 +52,24 @@ def test_matcher_pattern_validation(en_vocab, pattern):
matcher.add("TEST", None, pattern)
@pytest.mark.parametrize(
"pattern,n_errors",
[
# Bad patterns
([{"XX": "foo"}], 1),
([{"LENGTH": "2", "TEXT": 2}, {"LOWER": "test"}], 2),
([{"LENGTH": {"IN": [1, 2, "3"]}}, {"POS": {"IN": "VERB"}}], 2),
([{"IS_ALPHA": {"==": True}}, {"LIKE_NUM": None}], 2),
([{"TEXT": {"VALUE": "foo"}}], 1),
([{"LENGTH": {"VALUE": 5}}], 1),
([{"_": "foo"}], 1),
([{"_": {"foo": "bar", "baz": {"IN": "foo"}}}], 1),
([{"IS_PUNCT": True, "OP": "$"}], 1),
# Good patterns
([{"TEXT": "foo"}, {"LOWER": "bar"}], 0),
([{"LEMMA": {"IN": ["love", "like"]}}, {"POS": "DET", "OP": "?"}], 0),
([{"LIKE_NUM": True, "LENGTH": {">=": 5}}], 0),
([{"LOWER": {"REGEX": "^X", "NOT_IN": ["XXX", "XY"]}}], 0),
([{"_": {"foo": {"NOT_IN": ["bar", "baz"]}, "a": 5, "b": {">": 10}}}], 0),
],
)
def test_pattern_validation(validator, pattern, n_errors):
@pytest.mark.parametrize("pattern,n_errors,_", TEST_PATTERNS)
def test_pattern_validation(validator, pattern, n_errors, _):
errors = validate_json(pattern, validator)
assert len(errors) == n_errors
@pytest.mark.xfail
@pytest.mark.parametrize("pattern,n_errors,_", XFAIL_TEST_PATTERNS)
def test_xfail_pattern_validation(validator, pattern, n_errors, _):
errors = validate_json(pattern, validator)
assert len(errors) == n_errors
@pytest.mark.parametrize("pattern,n_errors,n_min_errors", TEST_PATTERNS)
def test_minimal_pattern_validation(en_vocab, pattern, n_errors, n_min_errors):
matcher = Matcher(en_vocab)
if n_min_errors > 0:
with pytest.raises(ValueError):
matcher.add("TEST", None, pattern)
elif n_errors == 0:
matcher.add("TEST", None, pattern)

View File

@ -99,3 +99,36 @@ def test_phrase_matcher_validation(en_vocab):
with pytest.warns(None) as record:
matcher.add("TEST4", None, doc2)
assert not record.list
def test_attr_validation(en_vocab):
with pytest.raises(ValueError):
PhraseMatcher(en_vocab, attr="UNSUPPORTED")
def test_attr_pipeline_checks(en_vocab):
doc1 = Doc(en_vocab, words=["Test"])
doc1.is_parsed = True
doc2 = Doc(en_vocab, words=["Test"])
doc2.is_tagged = True
doc3 = Doc(en_vocab, words=["Test"])
# DEP requires is_parsed
matcher = PhraseMatcher(en_vocab, attr="DEP")
matcher.add("TEST1", None, doc1)
with pytest.raises(ValueError):
matcher.add("TEST2", None, doc2)
with pytest.raises(ValueError):
matcher.add("TEST3", None, doc3)
# TAG, POS, LEMMA require is_tagged
for attr in ("TAG", "POS", "LEMMA"):
matcher = PhraseMatcher(en_vocab, attr=attr)
matcher.add("TEST2", None, doc2)
with pytest.raises(ValueError):
matcher.add("TEST1", None, doc1)
with pytest.raises(ValueError):
matcher.add("TEST3", None, doc3)
# TEXT/ORTH only require tokens
matcher = PhraseMatcher(en_vocab, attr="ORTH")
matcher.add("TEST3", None, doc3)
matcher = PhraseMatcher(en_vocab, attr="TEXT")
matcher.add("TEST3", None, doc3)

View File

@ -137,7 +137,8 @@ def test_entity_ruler_validate(nlp):
valid_pattern = {"label": "HELLO", "pattern": [{"LOWER": "HELLO"}]}
invalid_pattern = {"label": "HELLO", "pattern": [{"ASDF": "HELLO"}]}
# invalid pattern is added without errors without validate
# invalid pattern raises error without validate
with pytest.raises(ValueError):
ruler.add_patterns([invalid_pattern])
# valid pattern is added without errors with validate

View File

@ -859,12 +859,12 @@ token pattern covering the exact tokenization of the term.
<Infobox title="Important note on creating patterns" variant="warning">
To create the patterns, each phrase has to be processed with the `nlp` object.
If you have a mode loaded, doing this in a loop or list comprehension can easily
become inefficient and slow. If you **only need the tokenization and lexical
attributes**, you can run [`nlp.make_doc`](/api/language#make_doc) instead,
which will only run the tokenizer. For an additional speed boost, you can also
use the [`nlp.tokenizer.pipe`](/api/tokenizer#pipe) method, which will process
the texts as a stream.
If you have a model loaded, doing this in a loop or list comprehension can
easily become inefficient and slow. If you **only need the tokenization and
lexical attributes**, you can run [`nlp.make_doc`](/api/language#make_doc)
instead, which will only run the tokenizer. For an additional speed boost, you
can also use the [`nlp.tokenizer.pipe`](/api/tokenizer#pipe) method, which will
process the texts as a stream.
```diff
- patterns = [nlp(term) for term in LOTS_OF_TERMS]