diff --git a/bin/parser/train.py b/bin/parser/train.py index d2f5696af..70042a8a4 100755 --- a/bin/parser/train.py +++ b/bin/parser/train.py @@ -213,10 +213,6 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0, if n_sents > 0: gold_tuples = gold_tuples[:n_sents] nlp = Language() - ent_strings = [None] * (max(nlp.entity.moves.label_ids.values()) + 1) - for label, i in nlp.entity.moves.label_ids.items(): - if i >= 0: - ent_strings[i] = label print "Itn.\tUAS\tNER F.\tTag %" for itn in range(n_iter): @@ -229,12 +225,11 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0, for tokens in sents: gold = GoldParse(tokens, annot_tuples) nlp.tagger(tokens) - nlp.entity.train(tokens, gold, force_gold=force_gold) - #nlp.parser.train(tokens, gold, force_gold=force_gold) + nlp.parser.train(tokens, gold, force_gold=force_gold) + #nlp.entity.train(tokens, gold, force_gold=force_gold) nlp.tagger.train(tokens, gold.tags) - nlp.entity(tokens) - tokens._ent_strings = tuple(ent_strings) + #nlp.entity(tokens) nlp.parser(tokens) scorer.score(tokens, gold, verbose=False) print '%d:\t%.3f\t%.3f\t%.3f' % (itn, scorer.uas, scorer.ents_f, scorer.tags_acc) @@ -244,7 +239,7 @@ def train(Language, train_loc, model_dir, n_iter=15, feat_set=u'basic', seed=0, nlp.tagger.model.end_training() -def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=False): +def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=True): assert not gold_preproc nlp = Language() gold_tuples = read_docparse_file(dev_loc) @@ -260,12 +255,13 @@ def evaluate(Language, dev_loc, model_dir, gold_preproc=False, verbose=False): train_loc=("Training file location",), dev_loc=("Dev. file location",), model_dir=("Location of output model directory",), - n_sents=("Number of training sentences", "option", "n", int) + n_sents=("Number of training sentences", "option", "n", int), + verbose=("Verbose error reporting", "flag", "v", bool), ) -def main(train_loc, dev_loc, model_dir, n_sents=0): +def main(train_loc, dev_loc, model_dir, n_sents=0, verbose=False): train(English, train_loc, model_dir, gold_preproc=False, force_gold=False, n_sents=n_sents) - scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=False) + scorer = evaluate(English, dev_loc, model_dir, gold_preproc=False, verbose=verbose) print 'POS', scorer.tags_acc print 'UAS', scorer.uas print 'LAS', scorer.las