Merge branch 'refactor/move-registrations' into kamikaze-cython3-upd

This commit is contained in:
Matthew Honnibal 2025-05-19 16:27:23 +02:00
commit 906bf04239
30 changed files with 1061 additions and 339 deletions

View File

@ -117,7 +117,7 @@ For detailed installation instructions, see the
- **Operating system**: macOS / OS X · Linux · Windows (Cygwin, MinGW, Visual
Studio)
- **Python version**: Python >=3.7, <=3.12 (only 64 bit)
- **Python version**: Python >=3.7, <3.13 (only 64 bit)
- **Package managers**: [pip] · [conda] (via `conda-forge`)
[pip]: https://pypi.org/project/spacy/

View File

@ -30,7 +30,7 @@ project_urls =
[options]
zip_safe = false
include_package_data = true
python_requires = >=3.9,<3.14
python_requires = >=3.9,<3.13
# NOTE: This section is superseded by pyproject.toml and will be removed in
# spaCy v4
setup_requires =

View File

@ -19,6 +19,7 @@ from .glossary import explain # noqa: F401
from .language import Language
from .util import logger, registry # noqa: F401
from .vocab import Vocab
from .registrations import populate_registry, REGISTRY_POPULATED
if sys.maxunicode == 65535:
raise SystemError(Errors.E130)

View File

@ -1,5 +1,5 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.8.5"
__version__ = "3.8.6"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -29,7 +29,6 @@ from ..featureextractor import FeatureExtractor
from ..staticvectors import StaticVectors
@registry.architectures("spacy.Tok2VecListener.v1")
def tok2vec_listener_v1(width: int, upstream: str = "*"):
tok2vec = Tok2VecListener(upstream_name=upstream, width=width)
return tok2vec
@ -46,7 +45,6 @@ def get_tok2vec_width(model: Model):
return nO
@registry.architectures("spacy.HashEmbedCNN.v2")
def build_hash_embed_cnn_tok2vec(
*,
width: int,
@ -102,7 +100,6 @@ def build_hash_embed_cnn_tok2vec(
)
@registry.architectures("spacy.Tok2Vec.v2")
def build_Tok2Vec_model(
embed: Model[List[Doc], List[Floats2d]],
encode: Model[List[Floats2d], List[Floats2d]],
@ -123,7 +120,6 @@ def build_Tok2Vec_model(
return tok2vec
@registry.architectures("spacy.MultiHashEmbed.v2")
def MultiHashEmbed(
width: int,
attrs: List[Union[str, int]],
@ -201,7 +197,6 @@ def MultiHashEmbed(
return model
@registry.architectures("spacy.CharacterEmbed.v2")
def CharacterEmbed(
width: int,
rows: int,
@ -278,7 +273,6 @@ def CharacterEmbed(
return model
@registry.architectures("spacy.MaxoutWindowEncoder.v2")
def MaxoutWindowEncoder(
width: int, window_size: int, maxout_pieces: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
@ -310,7 +304,6 @@ def MaxoutWindowEncoder(
return with_array(model, pad=receptive_field)
@registry.architectures("spacy.MishWindowEncoder.v2")
def MishWindowEncoder(
width: int, window_size: int, depth: int
) -> Model[List[Floats2d], List[Floats2d]]:
@ -333,7 +326,6 @@ def MishWindowEncoder(
return with_array(model)
@registry.architectures("spacy.TorchBiLSTMEncoder.v1")
def BiLSTMEncoder(
width: int, depth: int, dropout: float
) -> Model[List[Floats2d], List[Floats2d]]:

View File

@ -22,13 +22,6 @@ TagMapType = Dict[str, Dict[Union[int, str], Union[int, str]]]
MorphRulesType = Dict[str, Dict[str, Dict[Union[int, str], Union[int, str]]]]
@Language.factory(
"attribute_ruler",
default_config={
"validate": False,
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
},
)
def make_attribute_ruler(
nlp: Language, name: str, validate: bool, scorer: Optional[Callable]
):

View File

@ -39,26 +39,6 @@ subword_features = true
DEFAULT_PARSER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)
def make_parser(
nlp: Language,
name: str,
@ -125,29 +105,6 @@ def make_parser(
)
@Language.factory(
"beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"beam_width": 8,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)
def make_beam_parser(
nlp: Language,
name: str,

View File

@ -39,20 +39,6 @@ subword_features = true
DEFAULT_EDIT_TREE_LEMMATIZER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_edit_tree_lemmatizer(
nlp: Language,
name: str,

View File

@ -40,32 +40,6 @@ subword_features = true
DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"n_sents": 0,
"incl_prior": True,
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)
def make_entity_linker(
nlp: Language,
name: str,

View File

@ -19,24 +19,6 @@ DEFAULT_ENT_ID_SEP = "||"
PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
@Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
@ -63,7 +45,6 @@ def entity_ruler_score(examples, **kwargs):
return get_ner_prf(examples)
@registry.scorers("spacy.entity_ruler_scorer.v1")
def make_entity_ruler_scorer():
return entity_ruler_score

View File

@ -73,11 +73,6 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
return doc
@Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)
def make_token_splitter(
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
):
@ -141,10 +136,6 @@ class TokenSplitter:
util.from_disk(path, serializers, [])
@Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)
def make_doc_cleaner(nlp: Language, name: str, *, attrs: Dict[str, Any], silent: bool):
return DocCleaner(attrs, silent=silent)

View File

@ -16,17 +16,6 @@ from ..vocab import Vocab
from .pipe import Pipe
@Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)
def make_lemmatizer(
nlp: Language,
model: Optional[Model],
@ -44,7 +33,6 @@ def lemmatizer_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_token_attr(examples, "lemma", **kwargs)
@registry.scorers("spacy.lemmatizer_scorer.v1")
def make_lemmatizer_scorer():
return lemmatizer_score

View File

@ -47,13 +47,6 @@ maxout_pieces = 3
DEFAULT_MORPH_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={"model": DEFAULT_MORPH_MODEL, "overwrite": True, "extend": False,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"}, "label_smoothing": 0.0},
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
)
def make_morphologizer(
nlp: Language,
model: Model,

View File

@ -30,10 +30,6 @@ subword_features = true
DEFAULT_MT_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"nn_labeller",
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
)
def make_nn_labeller(nlp: Language, name: str, model: Model, labels: Optional[dict], target: str):
return MultitaskObjective(nlp.vocab, model, name)

View File

@ -36,19 +36,6 @@ subword_features = true
DEFAULT_NER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_ner(
nlp: Language,
name: str,
@ -101,21 +88,6 @@ def make_ner(
)
@Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32,
"incorrect_spans_key": None,
"scorer": None,
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)
def make_beam_ner(
nlp: Language,
name: str,
@ -183,7 +155,6 @@ def ner_score(examples, **kwargs):
return get_ner_prf(examples, **kwargs)
@registry.scorers("spacy.ner_scorer.v1")
def make_ner_scorer():
return ner_score

View File

@ -14,12 +14,6 @@ from .senter import senter_score
BACKWARD_OVERWRITE = False
@Language.factory(
"sentencizer",
assigns=["token.is_sent_start", "doc.sents"],
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)
def make_sentencizer(
nlp: Language,
name: str,

View File

@ -34,12 +34,6 @@ subword_features = true
DEFAULT_SENTER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)
def make_senter(nlp: Language, name: str, model: Model, overwrite: bool, scorer: Optional[Callable]):
return SentenceRecognizer(nlp.vocab, model, name, overwrite=overwrite, scorer=scorer)
@ -53,7 +47,6 @@ def senter_score(examples, **kwargs):
return results
@registry.scorers("spacy.senter_scorer.v1")
def make_senter_scorer():
return senter_score

View File

@ -41,23 +41,6 @@ depth = 4
DEFAULT_SPAN_FINDER_MODEL = Config().from_str(span_finder_default_config)["model"]
@Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": 25,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)
def make_span_finder(
nlp: Language,
name: str,
@ -97,7 +80,6 @@ def make_span_finder(
)
@registry.scorers("spacy.span_finder_scorer.v1")
def make_span_finder_scorer():
return span_finder_score

View File

@ -32,24 +32,6 @@ PatternType = Dict[str, Union[str, List[Dict[str, Any]]]]
DEFAULT_SPANS_KEY = "ruler"
@Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)
def make_entity_ruler(
nlp: Language,
name: str,
@ -79,30 +61,6 @@ def make_entity_ruler(
)
@Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_per_type": None,
},
)
def make_span_ruler(
nlp: Language,
name: str,

View File

@ -134,7 +134,6 @@ def preset_spans_suggester(
return output
@registry.misc("spacy.ngram_suggester.v1")
def build_ngram_suggester(sizes: List[int]) -> Suggester:
"""Suggest all spans of the given lengths. Spans are returned as a ragged
array of integers. The array has two columns, indicating the start and end
@ -143,7 +142,6 @@ def build_ngram_suggester(sizes: List[int]) -> Suggester:
return partial(ngram_suggester, sizes=sizes)
@registry.misc("spacy.ngram_range_suggester.v1")
def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
"""Suggest all spans of the given lengths between a given min and max value - both inclusive.
Spans are returned as a ragged array of integers. The array has two columns,
@ -152,7 +150,6 @@ def build_ngram_range_suggester(min_size: int, max_size: int) -> Suggester:
return build_ngram_suggester(sizes)
@registry.misc("spacy.preset_spans_suggester.v1")
def build_preset_spans_suggester(spans_key: str) -> Suggester:
"""Suggest all spans that are already stored in doc.spans[spans_key].
This is useful when an upstream component is used to set the spans
@ -160,19 +157,6 @@ def build_preset_spans_suggester(spans_key: str) -> Suggester:
return partial(preset_spans_suggester, spans_key=spans_key)
@Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat(
nlp: Language,
name: str,
@ -225,19 +209,6 @@ def make_spancat(
)
@Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)
def make_spancat_singlelabel(
nlp: Language,
name: str,
@ -303,7 +274,6 @@ def spancat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
return Scorer.score_spans(examples, **kwargs)
@registry.scorers("spacy.spancat_scorer.v1")
def make_spancat_scorer():
return spancat_score

View File

@ -35,12 +35,6 @@ subword_features = true
DEFAULT_TAGGER_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
default_score_weights={"tag_acc": 1.0},
)
def make_tagger(
nlp: Language,
name: str,
@ -64,7 +58,6 @@ def tagger_score(examples, **kwargs):
return Scorer.score_token_attr(examples, "tag", **kwargs)
@registry.scorers("spacy.tagger_scorer.v1")
def make_tagger_scorer():
return tagger_score

View File

@ -74,27 +74,6 @@ subword_features = true
"""
@Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)
def make_textcat(
nlp: Language,
name: str,
@ -123,7 +102,6 @@ def textcat_score(examples: Iterable[Example], **kwargs) -> Dict[str, Any]:
)
@registry.scorers("spacy.textcat_scorer.v2")
def make_textcat_scorer():
return textcat_score

View File

@ -72,27 +72,6 @@ subword_features = true
"""
@Language.factory(
"textcat_multilabel",
assigns=["doc.cats"],
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)
def make_multilabel_textcat(
nlp: Language,
name: str,
@ -124,7 +103,6 @@ def textcat_multilabel_score(examples: Iterable[Example], **kwargs) -> Dict[str,
)
@registry.scorers("spacy.textcat_multilabel_scorer.v2")
def make_textcat_multilabel_scorer():
return textcat_multilabel_score

View File

@ -24,9 +24,6 @@ subword_features = true
DEFAULT_TOK2VEC_MODEL = Config().from_str(default_model_config)["model"]
@Language.factory(
"tok2vec", assigns=["doc.tensor"], default_config={"model": DEFAULT_TOK2VEC_MODEL}
)
def make_tok2vec(nlp: Language, name: str, model: Model) -> "Tok2Vec":
return Tok2Vec(nlp.vocab, model, name)

506
spacy/registrations.py Normal file
View File

@ -0,0 +1,506 @@
"""Centralized registry population for spaCy components.
This module centralizes registry decorations to prevent circular import issues
with Cython annotation changes from __future__ import annotations. Functions
remain in their original locations, but decoration is moved here.
"""
from typing import Dict, Any, Callable, Iterable, List, Optional, Union
# Global flag to track if registry has been populated
REGISTRY_POPULATED = False
# Global flag to track if factories have been registered
FACTORIES_REGISTERED = False
def populate_registry() -> None:
"""Populate the registry with all necessary components.
This function should be called before accessing the registry, to ensure
it's populated. The function uses a global flag to prevent repopulation.
"""
global REGISTRY_POPULATED
if REGISTRY_POPULATED:
return
# Import all necessary modules
from .util import registry, make_first_longest_spans_filter
# Import all pipeline components that were using registry decorators
from .pipeline.tagger import make_tagger_scorer
from .pipeline.ner import make_ner_scorer
from .pipeline.lemmatizer import make_lemmatizer_scorer
from .pipeline.span_finder import make_span_finder_scorer
from .pipeline.spancat import make_spancat_scorer, build_ngram_suggester, build_ngram_range_suggester, build_preset_spans_suggester
from .pipeline.entityruler import make_entity_ruler_scorer as make_entityruler_scorer
from .pipeline.sentencizer import senter_score as make_sentencizer_scorer
from .pipeline.senter import make_senter_scorer
from .pipeline.textcat import make_textcat_scorer
from .pipeline.textcat_multilabel import make_textcat_multilabel_scorer
# Register miscellaneous components
registry.misc("spacy.first_longest_spans_filter.v1")(make_first_longest_spans_filter)
registry.misc("spacy.ngram_suggester.v1")(build_ngram_suggester)
registry.misc("spacy.ngram_range_suggester.v1")(build_ngram_range_suggester)
registry.misc("spacy.preset_spans_suggester.v1")(build_preset_spans_suggester)
# Need to get references to the existing functions in registry by importing the function that is there
# For the registry that was previously decorated
# Import ML components that use registry
from .ml.models.tok2vec import tok2vec_listener_v1, build_hash_embed_cnn_tok2vec, build_Tok2Vec_model, MultiHashEmbed, CharacterEmbed, MaxoutWindowEncoder, MishWindowEncoder, BiLSTMEncoder
# Register scorers
registry.scorers("spacy.tagger_scorer.v1")(make_tagger_scorer)
registry.scorers("spacy.ner_scorer.v1")(make_ner_scorer)
# span_ruler_scorer removed as it's not in span_ruler.py
registry.scorers("spacy.entity_ruler_scorer.v1")(make_entityruler_scorer)
registry.scorers("spacy.sentencizer_scorer.v1")(make_sentencizer_scorer)
registry.scorers("spacy.senter_scorer.v1")(make_senter_scorer)
registry.scorers("spacy.textcat_scorer.v1")(make_textcat_scorer)
registry.scorers("spacy.textcat_scorer.v2")(make_textcat_scorer)
registry.scorers("spacy.textcat_multilabel_scorer.v1")(make_textcat_multilabel_scorer)
registry.scorers("spacy.textcat_multilabel_scorer.v2")(make_textcat_multilabel_scorer)
registry.scorers("spacy.lemmatizer_scorer.v1")(make_lemmatizer_scorer)
registry.scorers("spacy.span_finder_scorer.v1")(make_span_finder_scorer)
registry.scorers("spacy.spancat_scorer.v1")(make_spancat_scorer)
# Register tok2vec architectures we've modified
registry.architectures("spacy.Tok2VecListener.v1")(tok2vec_listener_v1)
registry.architectures("spacy.HashEmbedCNN.v2")(build_hash_embed_cnn_tok2vec)
registry.architectures("spacy.Tok2Vec.v2")(build_Tok2Vec_model)
registry.architectures("spacy.MultiHashEmbed.v2")(MultiHashEmbed)
registry.architectures("spacy.CharacterEmbed.v2")(CharacterEmbed)
registry.architectures("spacy.MaxoutWindowEncoder.v2")(MaxoutWindowEncoder)
registry.architectures("spacy.MishWindowEncoder.v2")(MishWindowEncoder)
registry.architectures("spacy.TorchBiLSTMEncoder.v1")(BiLSTMEncoder)
# Register factory components
register_factories()
# Set the flag to indicate that the registry has been populated
REGISTRY_POPULATED = True
def register_factories() -> None:
"""Register all factories with the registry.
This function registers all pipeline component factories, centralizing
the registrations that were previously done with @Language.factory decorators.
"""
global FACTORIES_REGISTERED
if FACTORIES_REGISTERED:
return
from .language import Language
# Import factory default configurations
from .pipeline.entity_linker import DEFAULT_NEL_MODEL
from .pipeline.entityruler import DEFAULT_ENT_ID_SEP
from .pipeline.tok2vec import DEFAULT_TOK2VEC_MODEL
from .pipeline.senter import DEFAULT_SENTER_MODEL
from .pipeline.morphologizer import DEFAULT_MORPH_MODEL
from .pipeline.spancat import DEFAULT_SPANCAT_MODEL, DEFAULT_SPANCAT_SINGLELABEL_MODEL, DEFAULT_SPANS_KEY
from .pipeline.span_ruler import DEFAULT_SPANS_KEY as SPAN_RULER_DEFAULT_SPANS_KEY
from .pipeline.edit_tree_lemmatizer import DEFAULT_EDIT_TREE_LEMMATIZER_MODEL
from .pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
from .pipeline.span_finder import DEFAULT_SPAN_FINDER_MODEL
from .pipeline.ner import DEFAULT_NER_MODEL
from .pipeline.dep_parser import DEFAULT_PARSER_MODEL
from .pipeline.tagger import DEFAULT_TAGGER_MODEL
from .pipeline.multitask import DEFAULT_MT_MODEL
# Import all factory functions
from .pipeline.attributeruler import make_attribute_ruler
from .pipeline.entity_linker import make_entity_linker
from .pipeline.entityruler import make_entity_ruler
from .pipeline.lemmatizer import make_lemmatizer
from .pipeline.textcat import make_textcat, DEFAULT_SINGLE_TEXTCAT_MODEL
from .pipeline.functions import make_token_splitter, make_doc_cleaner
from .pipeline.tok2vec import make_tok2vec
from .pipeline.senter import make_senter
from .pipeline.morphologizer import make_morphologizer
from .pipeline.spancat import make_spancat, make_spancat_singlelabel
from .pipeline.span_ruler import make_entity_ruler as make_span_entity_ruler, make_span_ruler
from .pipeline.edit_tree_lemmatizer import make_edit_tree_lemmatizer
from .pipeline.textcat_multilabel import make_multilabel_textcat
from .pipeline.span_finder import make_span_finder
from .pipeline.ner import make_ner, make_beam_ner
from .pipeline.dep_parser import make_parser, make_beam_parser
from .pipeline.tagger import make_tagger
from .pipeline.multitask import make_nn_labeller
from .pipeline.sentencizer import make_sentencizer
# Register factories using the same pattern as Language.factory decorator
# We use Language.factory()() pattern which exactly mimics the decorator
# attributeruler
Language.factory(
"attribute_ruler",
default_config={
"validate": False,
"scorer": {"@scorers": "spacy.attribute_ruler_scorer.v1"},
},
)(make_attribute_ruler)
# entity_linker
Language.factory(
"entity_linker",
requires=["doc.ents", "doc.sents", "token.ent_iob", "token.ent_type"],
assigns=["token.ent_kb_id"],
default_config={
"model": DEFAULT_NEL_MODEL,
"labels_discard": [],
"n_sents": 0,
"incl_prior": True,
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"generate_empty_kb": {"@misc": "spacy.EmptyKB.v2"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
"nel_micro_f": 1.0,
"nel_micro_r": None,
"nel_micro_p": None,
},
)(make_entity_linker)
# entity_ruler
Language.factory(
"entity_ruler",
assigns=["doc.ents", "token.ent_type", "token.ent_iob"],
default_config={
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite_ents": False,
"ent_id_sep": DEFAULT_ENT_ID_SEP,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_entity_ruler)
# lemmatizer
Language.factory(
"lemmatizer",
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "lookup",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_lemmatizer)
# textcat
Language.factory(
"textcat",
assigns=["doc.cats"],
default_config={
"threshold": 0.0,
"model": DEFAULT_SINGLE_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_textcat)
# token_splitter
Language.factory(
"token_splitter",
default_config={"min_length": 25, "split_length": 10},
retokenizes=True,
)(make_token_splitter)
# doc_cleaner
Language.factory(
"doc_cleaner",
default_config={"attrs": {"tensor": None, "_.trf_data": None}, "silent": True},
)(make_doc_cleaner)
# tok2vec
Language.factory(
"tok2vec",
assigns=["doc.tensor"],
default_config={"model": DEFAULT_TOK2VEC_MODEL}
)(make_tok2vec)
# senter
Language.factory(
"senter",
assigns=["token.is_sent_start"],
default_config={"model": DEFAULT_SENTER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_senter)
# morphologizer
Language.factory(
"morphologizer",
assigns=["token.morph", "token.pos"],
default_config={
"model": DEFAULT_MORPH_MODEL,
"overwrite": True,
"extend": False,
"scorer": {"@scorers": "spacy.morphologizer_scorer.v1"},
"label_smoothing": 0.0
},
default_score_weights={"pos_acc": 0.5, "morph_acc": 0.5, "morph_per_feat": None},
)(make_morphologizer)
# spancat
Language.factory(
"spancat",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"spans_key": DEFAULT_SPANS_KEY,
"max_positive": None,
"model": DEFAULT_SPANCAT_MODEL,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat)
# spancat_singlelabel
Language.factory(
"spancat_singlelabel",
assigns=["doc.spans"],
default_config={
"spans_key": DEFAULT_SPANS_KEY,
"model": DEFAULT_SPANCAT_SINGLELABEL_MODEL,
"negative_weight": 1.0,
"suggester": {"@misc": "spacy.ngram_suggester.v1", "sizes": [1, 2, 3]},
"scorer": {"@scorers": "spacy.spancat_scorer.v1"},
"allow_overlap": True,
},
default_score_weights={"spans_sc_f": 1.0, "spans_sc_p": 0.0, "spans_sc_r": 0.0},
)(make_spancat_singlelabel)
# future_entity_ruler
Language.factory(
"future_entity_ruler",
assigns=["doc.ents"],
default_config={
"phrase_matcher_attr": None,
"validate": False,
"overwrite_ents": False,
"scorer": {"@scorers": "spacy.entity_ruler_scorer.v1"},
"ent_id_sep": "__unused__",
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
},
default_score_weights={
"ents_f": 1.0,
"ents_p": 0.0,
"ents_r": 0.0,
"ents_per_type": None,
},
)(make_span_entity_ruler)
# span_ruler
Language.factory(
"span_ruler",
assigns=["doc.spans"],
default_config={
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
"spans_filter": None,
"annotate_ents": False,
"ents_filter": {"@misc": "spacy.first_longest_spans_filter.v1"},
"phrase_matcher_attr": None,
"matcher_fuzzy_compare": {"@misc": "spacy.levenshtein_compare.v1"},
"validate": False,
"overwrite": True,
"scorer": {
"@scorers": "spacy.overlapping_labeled_spans_scorer.v1",
"spans_key": SPAN_RULER_DEFAULT_SPANS_KEY,
},
},
default_score_weights={
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_r": 0.0,
f"spans_{SPAN_RULER_DEFAULT_SPANS_KEY}_per_type": None,
},
)(make_span_ruler)
# trainable_lemmatizer
Language.factory(
"trainable_lemmatizer",
assigns=["token.lemma"],
requires=[],
default_config={
"model": DEFAULT_EDIT_TREE_LEMMATIZER_MODEL,
"backoff": "orth",
"min_tree_freq": 3,
"overwrite": False,
"top_k": 1,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},
default_score_weights={"lemma_acc": 1.0},
)(make_edit_tree_lemmatizer)
# textcat_multilabel
Language.factory(
"textcat_multilabel",
assigns=["doc.cats"],
default_config={
"threshold": 0.5,
"model": DEFAULT_MULTI_TEXTCAT_MODEL,
"scorer": {"@scorers": "spacy.textcat_multilabel_scorer.v2"},
},
default_score_weights={
"cats_score": 1.0,
"cats_score_desc": None,
"cats_micro_p": None,
"cats_micro_r": None,
"cats_micro_f": None,
"cats_macro_p": None,
"cats_macro_r": None,
"cats_macro_f": None,
"cats_macro_auc": None,
"cats_f_per_type": None,
},
)(make_multilabel_textcat)
# span_finder
Language.factory(
"span_finder",
assigns=["doc.spans"],
default_config={
"threshold": 0.5,
"model": DEFAULT_SPAN_FINDER_MODEL,
"spans_key": DEFAULT_SPANS_KEY,
"max_length": 25,
"min_length": None,
"scorer": {"@scorers": "spacy.span_finder_scorer.v1"},
},
default_score_weights={
f"spans_{DEFAULT_SPANS_KEY}_f": 1.0,
f"spans_{DEFAULT_SPANS_KEY}_p": 0.0,
f"spans_{DEFAULT_SPANS_KEY}_r": 0.0,
},
)(make_span_finder)
# ner
Language.factory(
"ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)(make_ner)
# beam_ner
Language.factory(
"beam_ner",
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"model": DEFAULT_NER_MODEL,
"beam_density": 0.01,
"beam_update_prob": 0.5,
"beam_width": 32,
"incorrect_spans_key": None,
"scorer": {"@scorers": "spacy.ner_scorer.v1"},
},
default_score_weights={"ents_f": 1.0, "ents_p": 0.0, "ents_r": 0.0, "ents_per_type": None},
)(make_beam_ner)
# parser
Language.factory(
"parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_parser)
# beam_parser
Language.factory(
"beam_parser",
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
default_config={
"moves": None,
"update_with_oracle_cut_size": 100,
"learn_tokens": False,
"min_action_freq": 30,
"beam_width": 8,
"beam_density": 0.0001,
"beam_update_prob": 0.5,
"model": DEFAULT_PARSER_MODEL,
"scorer": {"@scorers": "spacy.parser_scorer.v1"},
},
default_score_weights={
"dep_uas": 0.5,
"dep_las": 0.5,
"dep_las_per_type": None,
"sents_p": None,
"sents_r": None,
"sents_f": 0.0,
},
)(make_beam_parser)
# tagger
Language.factory(
"tagger",
assigns=["token.tag"],
default_config={"model": DEFAULT_TAGGER_MODEL, "overwrite": False, "scorer": {"@scorers": "spacy.tagger_scorer.v1"}, "neg_prefix": "!", "label_smoothing": 0.0},
default_score_weights={"tag_acc": 1.0, "pos_acc": 0.0, "tag_micro_p": None, "tag_micro_r": None, "tag_micro_f": None},
)(make_tagger)
# nn_labeller
Language.factory(
"nn_labeller",
default_config={"labels": None, "target": "dep_tag_offset", "model": DEFAULT_MT_MODEL}
)(make_nn_labeller)
# sentencizer
Language.factory(
"sentencizer",
assigns=["token.is_sent_start", "doc.sents"],
default_config={"punct_chars": None, "overwrite": False, "scorer": {"@scorers": "spacy.senter_scorer.v1"}},
default_score_weights={"sents_f": 1.0, "sents_p": 0.0, "sents_r": 0.0},
)(make_sentencizer)
# Set the flag to indicate that all factories have been registered
FACTORIES_REGISTERED = True

View File

@ -0,0 +1,132 @@
{
"attribute_ruler": {
"name": "attribute_ruler",
"module": "spacy.pipeline.attributeruler",
"function": "make_attribute_ruler"
},
"beam_ner": {
"name": "beam_ner",
"module": "spacy.pipeline.ner",
"function": "make_beam_ner"
},
"beam_parser": {
"name": "beam_parser",
"module": "spacy.pipeline.dep_parser",
"function": "make_beam_parser"
},
"doc_cleaner": {
"name": "doc_cleaner",
"module": "spacy.pipeline.functions",
"function": "make_doc_cleaner"
},
"entity_linker": {
"name": "entity_linker",
"module": "spacy.pipeline.entity_linker",
"function": "make_entity_linker"
},
"entity_ruler": {
"name": "entity_ruler",
"module": "spacy.pipeline.entityruler",
"function": "make_entity_ruler"
},
"future_entity_ruler": {
"name": "future_entity_ruler",
"module": "spacy.pipeline.span_ruler",
"function": "make_entity_ruler"
},
"lemmatizer": {
"name": "lemmatizer",
"module": "spacy.pipeline.lemmatizer",
"function": "make_lemmatizer"
},
"merge_entities": {
"name": "merge_entities",
"module": "spacy.language",
"function": "Language.component.<locals>.add_component.<locals>.factory_func"
},
"merge_noun_chunks": {
"name": "merge_noun_chunks",
"module": "spacy.language",
"function": "Language.component.<locals>.add_component.<locals>.factory_func"
},
"merge_subtokens": {
"name": "merge_subtokens",
"module": "spacy.language",
"function": "Language.component.<locals>.add_component.<locals>.factory_func"
},
"morphologizer": {
"name": "morphologizer",
"module": "spacy.pipeline.morphologizer",
"function": "make_morphologizer"
},
"ner": {
"name": "ner",
"module": "spacy.pipeline.ner",
"function": "make_ner"
},
"parser": {
"name": "parser",
"module": "spacy.pipeline.dep_parser",
"function": "make_parser"
},
"sentencizer": {
"name": "sentencizer",
"module": "spacy.pipeline.sentencizer",
"function": "make_sentencizer"
},
"senter": {
"name": "senter",
"module": "spacy.pipeline.senter",
"function": "make_senter"
},
"span_finder": {
"name": "span_finder",
"module": "spacy.pipeline.span_finder",
"function": "make_span_finder"
},
"span_ruler": {
"name": "span_ruler",
"module": "spacy.pipeline.span_ruler",
"function": "make_span_ruler"
},
"spancat": {
"name": "spancat",
"module": "spacy.pipeline.spancat",
"function": "make_spancat"
},
"spancat_singlelabel": {
"name": "spancat_singlelabel",
"module": "spacy.pipeline.spancat",
"function": "make_spancat_singlelabel"
},
"tagger": {
"name": "tagger",
"module": "spacy.pipeline.tagger",
"function": "make_tagger"
},
"textcat": {
"name": "textcat",
"module": "spacy.pipeline.textcat",
"function": "make_textcat"
},
"textcat_multilabel": {
"name": "textcat_multilabel",
"module": "spacy.pipeline.textcat_multilabel",
"function": "make_multilabel_textcat"
},
"tok2vec": {
"name": "tok2vec",
"module": "spacy.pipeline.tok2vec",
"function": "make_tok2vec"
},
"token_splitter": {
"name": "token_splitter",
"module": "spacy.pipeline.functions",
"function": "make_token_splitter"
},
"trainable_lemmatizer": {
"name": "trainable_lemmatizer",
"module": "spacy.pipeline.edit_tree_lemmatizer",
"function": "make_edit_tree_lemmatizer"
}
}

View File

@ -0,0 +1,284 @@
{
"architectures": [
"spacy-legacy.CharacterEmbed.v1",
"spacy-legacy.EntityLinker.v1",
"spacy-legacy.HashEmbedCNN.v1",
"spacy-legacy.MaxoutWindowEncoder.v1",
"spacy-legacy.MishWindowEncoder.v1",
"spacy-legacy.MultiHashEmbed.v1",
"spacy-legacy.Tagger.v1",
"spacy-legacy.TextCatBOW.v1",
"spacy-legacy.TextCatCNN.v1",
"spacy-legacy.TextCatEnsemble.v1",
"spacy-legacy.Tok2Vec.v1",
"spacy-legacy.TransitionBasedParser.v1",
"spacy.CharacterEmbed.v2",
"spacy.EntityLinker.v2",
"spacy.HashEmbedCNN.v2",
"spacy.MaxoutWindowEncoder.v2",
"spacy.MishWindowEncoder.v2",
"spacy.MultiHashEmbed.v2",
"spacy.PretrainCharacters.v1",
"spacy.PretrainVectors.v1",
"spacy.SpanCategorizer.v1",
"spacy.SpanFinder.v1",
"spacy.Tagger.v2",
"spacy.TextCatBOW.v2",
"spacy.TextCatBOW.v3",
"spacy.TextCatCNN.v2",
"spacy.TextCatEnsemble.v2",
"spacy.TextCatLowData.v1",
"spacy.TextCatParametricAttention.v1",
"spacy.TextCatReduce.v1",
"spacy.Tok2Vec.v2",
"spacy.Tok2VecListener.v1",
"spacy.TorchBiLSTMEncoder.v1",
"spacy.TransitionBasedParser.v2"
],
"augmenters": [
"spacy.combined_augmenter.v1",
"spacy.lower_case.v1",
"spacy.orth_variants.v1"
],
"batchers": [
"spacy.batch_by_padded.v1",
"spacy.batch_by_sequence.v1",
"spacy.batch_by_words.v1"
],
"callbacks": [
"spacy.copy_from_base_model.v1",
"spacy.models_and_pipes_with_nvtx_range.v1",
"spacy.models_with_nvtx_range.v1"
],
"cli": [],
"datasets": [],
"displacy_colors": [],
"factories": [
"attribute_ruler",
"beam_ner",
"beam_parser",
"doc_cleaner",
"entity_linker",
"entity_ruler",
"future_entity_ruler",
"lemmatizer",
"merge_entities",
"merge_noun_chunks",
"merge_subtokens",
"morphologizer",
"ner",
"parser",
"sentencizer",
"senter",
"span_finder",
"span_ruler",
"spancat",
"spancat_singlelabel",
"tagger",
"textcat",
"textcat_multilabel",
"tok2vec",
"token_splitter",
"trainable_lemmatizer"
],
"initializers": [
"glorot_normal_init.v1",
"glorot_uniform_init.v1",
"he_normal_init.v1",
"he_uniform_init.v1",
"lecun_normal_init.v1",
"lecun_uniform_init.v1",
"normal_init.v1",
"uniform_init.v1",
"zero_init.v1"
],
"languages": [],
"layers": [
"CauchySimilarity.v1",
"ClippedLinear.v1",
"Dish.v1",
"Dropout.v1",
"Embed.v1",
"Gelu.v1",
"HardSigmoid.v1",
"HardSwish.v1",
"HardSwishMobilenet.v1",
"HardTanh.v1",
"HashEmbed.v1",
"LSTM.v1",
"LayerNorm.v1",
"Linear.v1",
"Logistic.v1",
"MXNetWrapper.v1",
"Maxout.v1",
"Mish.v1",
"MultiSoftmax.v1",
"ParametricAttention.v1",
"ParametricAttention.v2",
"PyTorchLSTM.v1",
"PyTorchRNNWrapper.v1",
"PyTorchWrapper.v1",
"PyTorchWrapper.v2",
"PyTorchWrapper.v3",
"Relu.v1",
"ReluK.v1",
"Sigmoid.v1",
"Softmax.v1",
"Softmax.v2",
"SparseLinear.v1",
"SparseLinear.v2",
"Swish.v1",
"add.v1",
"bidirectional.v1",
"chain.v1",
"clone.v1",
"concatenate.v1",
"expand_window.v1",
"list2array.v1",
"list2padded.v1",
"list2ragged.v1",
"noop.v1",
"padded2list.v1",
"premap_ids.v1",
"ragged2list.v1",
"reduce_first.v1",
"reduce_last.v1",
"reduce_max.v1",
"reduce_mean.v1",
"reduce_sum.v1",
"remap_ids.v1",
"remap_ids.v2",
"residual.v1",
"resizable.v1",
"siamese.v1",
"sigmoid_activation.v1",
"softmax_activation.v1",
"spacy-legacy.StaticVectors.v1",
"spacy.CharEmbed.v1",
"spacy.FeatureExtractor.v1",
"spacy.LinearLogistic.v1",
"spacy.PrecomputableAffine.v1",
"spacy.StaticVectors.v2",
"spacy.TransitionModel.v1",
"spacy.extract_ngrams.v1",
"spacy.extract_spans.v1",
"spacy.mean_max_reducer.v1",
"strings2arrays.v1",
"tuplify.v1",
"uniqued.v1",
"with_array.v1",
"with_array2d.v1",
"with_cpu.v1",
"with_flatten.v1",
"with_flatten.v2",
"with_getitem.v1",
"with_list.v1",
"with_padded.v1",
"with_ragged.v1",
"with_reshape.v1"
],
"lemmatizers": [],
"loggers": [
"spacy-legacy.ConsoleLogger.v1",
"spacy-legacy.ConsoleLogger.v2",
"spacy-legacy.WandbLogger.v1",
"spacy.ChainLogger.v1",
"spacy.ClearMLLogger.v1",
"spacy.ClearMLLogger.v2",
"spacy.ConsoleLogger.v2",
"spacy.ConsoleLogger.v3",
"spacy.CupyLogger.v1",
"spacy.LookupLogger.v1",
"spacy.MLflowLogger.v1",
"spacy.MLflowLogger.v2",
"spacy.PyTorchLogger.v1",
"spacy.WandbLogger.v1",
"spacy.WandbLogger.v2",
"spacy.WandbLogger.v3",
"spacy.WandbLogger.v4",
"spacy.WandbLogger.v5"
],
"lookups": [],
"losses": [
"CategoricalCrossentropy.v1",
"CategoricalCrossentropy.v2",
"CategoricalCrossentropy.v3",
"CosineDistance.v1",
"L2Distance.v1",
"SequenceCategoricalCrossentropy.v1",
"SequenceCategoricalCrossentropy.v2",
"SequenceCategoricalCrossentropy.v3"
],
"misc": [
"spacy.CandidateBatchGenerator.v1",
"spacy.CandidateGenerator.v1",
"spacy.EmptyKB.v1",
"spacy.EmptyKB.v2",
"spacy.KBFromFile.v1",
"spacy.LookupsDataLoader.v1",
"spacy.first_longest_spans_filter.v1",
"spacy.levenshtein_compare.v1",
"spacy.ngram_range_suggester.v1",
"spacy.ngram_suggester.v1",
"spacy.preset_spans_suggester.v1",
"spacy.prioritize_existing_ents_filter.v1",
"spacy.prioritize_new_ents_filter.v1"
],
"models": [],
"ops": [
"CupyOps",
"MPSOps",
"NumpyOps"
],
"optimizers": [
"Adam.v1",
"RAdam.v1",
"SGD.v1"
],
"readers": [
"ml_datasets.cmu_movies.v1",
"ml_datasets.dbpedia.v1",
"ml_datasets.imdb_sentiment.v1",
"spacy.Corpus.v1",
"spacy.JsonlCorpus.v1",
"spacy.PlainTextCorpus.v1",
"spacy.read_labels.v1",
"srsly.read_json.v1",
"srsly.read_jsonl.v1",
"srsly.read_msgpack.v1",
"srsly.read_yaml.v1"
],
"schedules": [
"compounding.v1",
"constant.v1",
"constant_then.v1",
"cyclic_triangular.v1",
"decaying.v1",
"slanted_triangular.v1",
"warmup_linear.v1"
],
"scorers": [
"spacy-legacy.textcat_multilabel_scorer.v1",
"spacy-legacy.textcat_scorer.v1",
"spacy.attribute_ruler_scorer.v1",
"spacy.entity_linker_scorer.v1",
"spacy.entity_ruler_scorer.v1",
"spacy.lemmatizer_scorer.v1",
"spacy.morphologizer_scorer.v1",
"spacy.ner_scorer.v1",
"spacy.overlapping_labeled_spans_scorer.v1",
"spacy.parser_scorer.v1",
"spacy.senter_scorer.v1",
"spacy.span_finder_scorer.v1",
"spacy.spancat_scorer.v1",
"spacy.tagger_scorer.v1",
"spacy.textcat_multilabel_scorer.v2",
"spacy.textcat_scorer.v2"
],
"tokenizers": [
"spacy.Tokenizer.v1"
],
"vectors": [
"spacy.Vectors.v1"
]
}

View File

@ -0,0 +1,76 @@
import json
import inspect
import pytest
from pathlib import Path
from spacy.language import Language
from spacy.util import registry
# Path to the reference factory registrations, relative to this file
REFERENCE_FILE = Path(__file__).parent / "factory_registrations.json"
# Monkey patch the util.is_same_func to handle Cython functions
import inspect
from spacy import util
original_is_same_func = util.is_same_func
def patched_is_same_func(func1, func2):
# Handle Cython functions
try:
return original_is_same_func(func1, func2)
except TypeError:
# For Cython functions, just compare the string representation
return str(func1) == str(func2)
util.is_same_func = patched_is_same_func
@pytest.fixture
def reference_factory_registrations():
"""Load reference factory registrations from JSON file"""
if not REFERENCE_FILE.exists():
pytest.fail(f"Reference file {REFERENCE_FILE} not found. Run export_factory_registrations.py first.")
with REFERENCE_FILE.open("r") as f:
return json.load(f)
def test_factory_registrations_preserved(reference_factory_registrations):
"""Test that all factory registrations from the reference file are still present."""
# Ensure the registry is populated
registry.ensure_populated()
# Get all factory registrations
all_factories = registry.factories.get_all()
# Initialize our data structure to store current factory registrations
current_registrations = {}
# Process factory registrations
for name, func in all_factories.items():
# Store information about each factory
try:
module_name = func.__module__
except (AttributeError, TypeError):
# For Cython functions, just use a placeholder
module_name = str(func).split()[1].split('.')[0]
try:
func_name = func.__qualname__
except (AttributeError, TypeError):
# For Cython functions, use the function's name
func_name = func.__name__ if hasattr(func, "__name__") else str(func).split()[1].split('.')[-1]
current_registrations[name] = {
"name": name,
"module": module_name,
"function": func_name,
}
# Check for missing registrations
missing_registrations = set(reference_factory_registrations.keys()) - set(current_registrations.keys())
assert not missing_registrations, f"Missing factory registrations: {', '.join(sorted(missing_registrations))}"
# Check for new registrations (not an error, but informative)
new_registrations = set(current_registrations.keys()) - set(reference_factory_registrations.keys())
if new_registrations:
# This is not an error, just informative
print(f"New factory registrations found: {', '.join(sorted(new_registrations))}")

View File

@ -0,0 +1,48 @@
import json
import os
import pytest
from pathlib import Path
from spacy.util import registry
# Path to the reference registry contents, relative to this file
REFERENCE_FILE = Path(__file__).parent / "registry_contents.json"
@pytest.fixture
def reference_registry():
"""Load reference registry contents from JSON file"""
if not REFERENCE_FILE.exists():
pytest.fail(f"Reference file {REFERENCE_FILE} not found.")
with REFERENCE_FILE.open("r") as f:
return json.load(f)
def test_registry_types(reference_registry):
"""Test that all registry types match the reference"""
# Get current registry types
current_registry_types = set(registry.get_registry_names())
expected_registry_types = set(reference_registry.keys())
# Check for missing registry types
missing_types = expected_registry_types - current_registry_types
assert not missing_types, f"Missing registry types: {', '.join(missing_types)}"
def test_registry_entries(reference_registry):
"""Test that all registry entries are present"""
# Check each registry's entries
for registry_name, expected_entries in reference_registry.items():
# Skip if this registry type doesn't exist
if not hasattr(registry, registry_name):
pytest.fail(f"Registry '{registry_name}' does not exist.")
# Get current entries
reg = getattr(registry, registry_name)
current_entries = sorted(list(reg.get_all().keys()))
# Compare entries
expected_set = set(expected_entries)
current_set = set(current_entries)
# Check for missing entries - these would indicate our new registry population
# mechanism is missing something
missing_entries = expected_set - current_set
assert not missing_entries, f"Registry '{registry_name}' missing entries: {', '.join(missing_entries)}"

View File

@ -132,9 +132,17 @@ class registry(thinc.registry):
models = catalogue.create("spacy", "models", entry_points=True)
cli = catalogue.create("spacy", "cli", entry_points=True)
@classmethod
def ensure_populated(cls) -> None:
"""Ensure the registry is populated with all necessary components."""
from .registrations import populate_registry, REGISTRY_POPULATED
if not REGISTRY_POPULATED:
populate_registry()
@classmethod
def get_registry_names(cls) -> List[str]:
"""List all available registries."""
cls.ensure_populated()
names = []
for name, value in inspect.getmembers(cls):
if not name.startswith("_") and isinstance(value, Registry):
@ -144,6 +152,7 @@ class registry(thinc.registry):
@classmethod
def get(cls, registry_name: str, func_name: str) -> Callable:
"""Get a registered function from the registry."""
cls.ensure_populated()
# We're overwriting this classmethod so we're able to provide more
# specific error messages and implement a fallback to spacy-legacy.
if not hasattr(cls, registry_name):
@ -179,6 +188,7 @@ class registry(thinc.registry):
func_name (str): Name of the registered function.
RETURNS (Dict[str, Optional[Union[str, int]]]): The function info.
"""
cls.ensure_populated()
# We're overwriting this classmethod so we're able to provide more
# specific error messages and implement a fallback to spacy-legacy.
if not hasattr(cls, registry_name):
@ -205,6 +215,7 @@ class registry(thinc.registry):
@classmethod
def has(cls, registry_name: str, func_name: str) -> bool:
"""Check whether a function is available in a registry."""
cls.ensure_populated()
if not hasattr(cls, registry_name):
return False
reg = getattr(cls, registry_name)
@ -1323,7 +1334,6 @@ def filter_chain_spans(*spans: Iterable["Span"]) -> List["Span"]:
return filter_spans(itertools.chain(*spans))
@registry.misc("spacy.first_longest_spans_filter.v1")
def make_first_longest_spans_filter():
return filter_chain_spans