mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Auto-format code with black (#10209)
* Auto-format code with black * add black requirement to dev dependencies and pin to 22.x * ignore black dependency for comparison with setup.cfg Co-authored-by: explosion-bot <explosion-bot@users.noreply.github.com> Co-authored-by: svlandeg <svlandeg@github.com>
This commit is contained in:
parent
0668a449ba
commit
91ccacea12
|
@ -35,3 +35,4 @@ mypy==0.910
|
|||
types-dataclasses>=0.1.3; python_version < "3.7"
|
||||
types-mock>=0.1.1
|
||||
types-requests
|
||||
black>=22.0,<23.0
|
||||
|
|
|
@ -131,7 +131,7 @@ class Language:
|
|||
self,
|
||||
vocab: Union[Vocab, bool] = True,
|
||||
*,
|
||||
max_length: int = 10 ** 6,
|
||||
max_length: int = 10**6,
|
||||
meta: Dict[str, Any] = {},
|
||||
create_tokenizer: Optional[Callable[["Language"], Callable[[str], Doc]]] = None,
|
||||
batch_size: int = 1000,
|
||||
|
|
|
@ -85,7 +85,7 @@ def get_characters_loss(ops, docs, prediction, nr_char):
|
|||
target = ops.asarray(to_categorical(target_ids, n_classes=256), dtype="f")
|
||||
target = target.reshape((-1, 256 * nr_char))
|
||||
diff = prediction - target
|
||||
loss = (diff ** 2).sum()
|
||||
loss = (diff**2).sum()
|
||||
d_target = diff / float(prediction.shape[0])
|
||||
return loss, d_target
|
||||
|
||||
|
|
|
@ -377,7 +377,7 @@ class SpanCategorizer(TrainablePipe):
|
|||
# If the prediction is 0.9 and it's false, the gradient will be
|
||||
# 0.9 (0.9 - 0.0)
|
||||
d_scores = scores - target
|
||||
loss = float((d_scores ** 2).sum())
|
||||
loss = float((d_scores**2).sum())
|
||||
return loss, d_scores
|
||||
|
||||
def initialize(
|
||||
|
|
|
@ -281,7 +281,7 @@ class TextCategorizer(TrainablePipe):
|
|||
bp_scores(gradient)
|
||||
if sgd is not None:
|
||||
self.finish_update(sgd)
|
||||
losses[self.name] += (gradient ** 2).sum()
|
||||
losses[self.name] += (gradient**2).sum()
|
||||
return losses
|
||||
|
||||
def _examples_to_truth(
|
||||
|
@ -315,7 +315,7 @@ class TextCategorizer(TrainablePipe):
|
|||
not_missing = self.model.ops.asarray(not_missing) # type: ignore
|
||||
d_scores = (scores - truths) / scores.shape[0]
|
||||
d_scores *= not_missing
|
||||
mean_square_error = (d_scores ** 2).sum(axis=1).mean()
|
||||
mean_square_error = (d_scores**2).sum(axis=1).mean()
|
||||
return float(mean_square_error), d_scores
|
||||
|
||||
def add_label(self, label: str) -> int:
|
||||
|
|
|
@ -12,6 +12,7 @@ def test_build_dependencies():
|
|||
"flake8",
|
||||
"hypothesis",
|
||||
"pre-commit",
|
||||
"black",
|
||||
"mypy",
|
||||
"types-dataclasses",
|
||||
"types-mock",
|
||||
|
|
Loading…
Reference in New Issue
Block a user