resolve conflict

This commit is contained in:
kadarakos 2022-10-26 13:42:16 +00:00
commit 91e72f8abe
92 changed files with 3175 additions and 952 deletions

View File

@ -10,7 +10,7 @@ about: Use this template if you came across a bug or unexpected behaviour differ
<!-- Include a code example or the steps that led to the problem. Please try to be as specific as possible. -->
## Your Environment
<!-- Include details of your environment. If you're using spaCy 1.7+, you can also type `python -m spacy info --markdown` and copy-paste the result here.-->
<!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.-->
* Operating System:
* Python Version Used:
* spaCy Version Used:

View File

@ -10,6 +10,7 @@ steps:
inputs:
versionSpec: ${{ parameters.python_version }}
architecture: ${{ parameters.architecture }}
allowUnstable: true
- bash: |
echo "##vso[task.setvariable variable=python_version]${{ parameters.python_version }}"
@ -27,7 +28,7 @@ steps:
- script: python -m mypy spacy
displayName: 'Run mypy'
condition: ne(variables['python_version'], '3.10')
condition: ne(variables['python_version'], '3.6')
- task: DeleteFiles@1
inputs:

View File

@ -12,10 +12,10 @@ jobs:
if: github.repository_owner == 'explosion'
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- uses: actions/checkout@v3
with:
ref: ${{ github.head_ref }}
- uses: actions/setup-python@v2
- uses: actions/setup-python@v3
- run: pip install black
- name: Auto-format code if needed
run: black spacy
@ -23,10 +23,11 @@ jobs:
# code and makes GitHub think the action failed
- name: Check for modified files
id: git-check
run: echo ::set-output name=modified::$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi)
run: echo modified=$(if git diff-index --quiet HEAD --; then echo "false"; else echo "true"; fi) >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.modified == 'true'
uses: peter-evans/create-pull-request@v3
uses: peter-evans/create-pull-request@v4
with:
title: Auto-format code with black
labels: meta

View File

@ -6,7 +6,7 @@ repos:
language_version: python3.7
additional_dependencies: ['click==8.0.4']
- repo: https://gitlab.com/pycqa/flake8
rev: 3.9.2
rev: 5.0.4
hooks:
- id: flake8
args:

View File

@ -8,7 +8,7 @@ be used in real products.
spaCy comes with
[pretrained pipelines](https://spacy.io/models) and
currently supports tokenization and training for **60+ languages**. It features
currently supports tokenization and training for **70+ languages**. It features
state-of-the-art speed and **neural network models** for tagging,
parsing, **named entity recognition**, **text classification** and more,
multi-task learning with pretrained **transformers** like BERT, as well as a
@ -16,7 +16,7 @@ production-ready [**training system**](https://spacy.io/usage/training) and easy
model packaging, deployment and workflow management. spaCy is commercial
open-source software, released under the MIT license.
💫 **Version 3.4.0 out now!**
💫 **Version 3.4 out now!**
[Check out the release notes here.](https://github.com/explosion/spaCy/releases)
[![Azure Pipelines](https://img.shields.io/azure-devops/build/explosion-ai/public/8/master.svg?logo=azure-pipelines&style=flat-square&label=build)](https://dev.azure.com/explosion-ai/public/_build?definitionId=8)
@ -79,7 +79,7 @@ more people can benefit from it.
## Features
- Support for **60+ languages**
- Support for **70+ languages**
- **Trained pipelines** for different languages and tasks
- Multi-task learning with pretrained **transformers** like BERT
- Support for pretrained **word vectors** and embeddings

View File

@ -31,7 +31,7 @@ jobs:
inputs:
versionSpec: "3.7"
- script: |
pip install flake8==3.9.2
pip install flake8==5.0.4
python -m flake8 spacy --count --select=E901,E999,F821,F822,F823,W605 --show-source --statistics
displayName: "flake8"
@ -76,15 +76,24 @@ jobs:
# Python39Mac:
# imageName: "macos-latest"
# python.version: "3.9"
Python310Linux:
imageName: "ubuntu-latest"
python.version: "3.10"
# Python310Linux:
# imageName: "ubuntu-latest"
# python.version: "3.10"
Python310Windows:
imageName: "windows-latest"
python.version: "3.10"
Python310Mac:
imageName: "macos-latest"
python.version: "3.10"
# Python310Mac:
# imageName: "macos-latest"
# python.version: "3.10"
Python311Linux:
imageName: 'ubuntu-latest'
python.version: '3.11.0-rc.2'
Python311Windows:
imageName: 'windows-latest'
python.version: '3.11.0-rc.2'
Python311Mac:
imageName: 'macos-latest'
python.version: '3.11.0-rc.2'
maxParallel: 4
pool:
vmImage: $(imageName)

View File

@ -15,7 +15,7 @@ pathy>=0.3.5
numpy>=1.15.0
requests>=2.13.0,<3.0.0
tqdm>=4.38.0,<5.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
jinja2
langcodes>=3.2.0,<4.0.0
# Official Python utilities
@ -28,11 +28,12 @@ cython>=0.25,<3.0
pytest>=5.2.0,!=7.1.0
pytest-timeout>=1.3.0,<2.0.0
mock>=2.0.0,<3.0.0
flake8>=3.8.0,<3.10.0
flake8>=3.8.0,<6.0.0
hypothesis>=3.27.0,<7.0.0
mypy>=0.910,<0.970; platform_machine!='aarch64'
mypy>=0.980,<0.990; platform_machine != "aarch64" and python_version >= "3.7"
types-dataclasses>=0.1.3; python_version < "3.7"
types-mock>=0.1.1
types-setuptools>=57.0.0
types-requests
types-setuptools>=57.0.0
black>=22.0,<23.0

View File

@ -56,7 +56,7 @@ install_requires =
tqdm>=4.38.0,<5.0.0
numpy>=1.15.0
requests>=2.13.0,<3.0.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.10.0
pydantic>=1.7.4,!=1.8,!=1.8.1,<1.11.0
jinja2
# Official Python utilities
setuptools

View File

@ -30,7 +30,9 @@ MOD_NAMES = [
"spacy.lexeme",
"spacy.vocab",
"spacy.attrs",
"spacy.kb",
"spacy.kb.candidate",
"spacy.kb.kb",
"spacy.kb.kb_in_memory",
"spacy.ml.parser_model",
"spacy.morphology",
"spacy.pipeline.dep_parser",

View File

@ -31,9 +31,9 @@ def load(
name: Union[str, Path],
*,
vocab: Union[Vocab, bool] = True,
disable: Union[str, Iterable[str]] = util.SimpleFrozenList(),
enable: Union[str, Iterable[str]] = util.SimpleFrozenList(),
exclude: Union[str, Iterable[str]] = util.SimpleFrozenList(),
disable: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = util._DEFAULT_EMPTY_PIPES,
config: Union[Dict[str, Any], Config] = util.SimpleFrozenDict(),
) -> Language:
"""Load a spaCy model from an installed package or a local path.

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy"
__version__ = "3.4.1"
__version__ = "3.4.2"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"

View File

@ -596,3 +596,12 @@ def walk_directory(path: Path, suffix: Optional[str] = None) -> List[Path]:
# It's good to sort these, in case the ordering messes up cache.
locs.sort()
return locs
def _format_number(number: Union[int, float], ndigits: int = 2) -> str:
"""Formats a number (float or int) rounding to `ndigits`, without truncating trailing 0s,
as happens with `round(number, ndigits)`"""
if isinstance(number, float):
return f"{number:.{ndigits}f}"
else:
return str(number)

View File

@ -9,7 +9,7 @@ import typer
import math
from ._util import app, Arg, Opt, show_validation_error, parse_config_overrides
from ._util import import_code, debug_cli
from ._util import import_code, debug_cli, _format_number
from ..training import Example, remove_bilu_prefix
from ..training.initialize import get_sourced_components
from ..schemas import ConfigSchemaTraining
@ -989,7 +989,8 @@ def _get_kl_divergence(p: Counter, q: Counter) -> float:
def _format_span_row(span_data: List[Dict], labels: List[str]) -> List[Any]:
"""Compile into one list for easier reporting"""
d = {
label: [label] + list(round(d[label], 2) for d in span_data) for label in labels
label: [label] + list(_format_number(d[label]) for d in span_data)
for label in labels
}
return list(d.values())
@ -1004,6 +1005,10 @@ def _get_span_characteristics(
label: _gmean(l)
for label, l in compiled_gold["spans_length"][spans_key].items()
}
spans_per_type = {
label: len(spans)
for label, spans in compiled_gold["spans_per_type"][spans_key].items()
}
min_lengths = [min(l) for l in compiled_gold["spans_length"][spans_key].values()]
max_lengths = [max(l) for l in compiled_gold["spans_length"][spans_key].values()]
@ -1031,6 +1036,7 @@ def _get_span_characteristics(
return {
"sd": span_distinctiveness,
"bd": sb_distinctiveness,
"spans_per_type": spans_per_type,
"lengths": span_length,
"min_length": min(min_lengths),
"max_length": max(max_lengths),
@ -1045,12 +1051,15 @@ def _get_span_characteristics(
def _print_span_characteristics(span_characteristics: Dict[str, Any]):
"""Print all span characteristics into a table"""
headers = ("Span Type", "Length", "SD", "BD")
headers = ("Span Type", "Length", "SD", "BD", "N")
# Wasabi has this at 30 by default, but we might have some long labels
max_col = max(30, max(len(label) for label in span_characteristics["labels"]))
# Prepare table data with all span characteristics
table_data = [
span_characteristics["lengths"],
span_characteristics["sd"],
span_characteristics["bd"],
span_characteristics["spans_per_type"],
]
table = _format_span_row(
span_data=table_data, labels=span_characteristics["labels"]
@ -1061,8 +1070,18 @@ def _print_span_characteristics(span_characteristics: Dict[str, Any]):
span_characteristics["avg_sd"],
span_characteristics["avg_bd"],
]
footer = ["Wgt. Average"] + [str(round(f, 2)) for f in footer_data]
msg.table(table, footer=footer, header=headers, divider=True)
footer = (
["Wgt. Average"] + ["{:.2f}".format(round(f, 2)) for f in footer_data] + ["-"]
)
msg.table(
table,
footer=footer,
header=headers,
divider=True,
aligns=["l"] + ["r"] * (len(footer_data) + 1),
max_col=max_col,
)
def _get_spans_length_freq_dist(

View File

@ -299,8 +299,8 @@ def get_meta(
}
nlp = util.load_model_from_path(Path(model_path))
meta.update(nlp.meta)
meta.update(existing_meta)
meta["spacy_version"] = util.get_minor_version_range(about.__version__)
meta.update(existing_meta)
meta["vectors"] = {
"width": nlp.vocab.vectors_length,
"vectors": len(nlp.vocab.vectors),

View File

@ -25,6 +25,7 @@ def project_update_dvc_cli(
project_dir: Path = Arg(Path.cwd(), help="Location of project directory. Defaults to current working directory.", exists=True, file_okay=False),
workflow: Optional[str] = Arg(None, help=f"Name of workflow defined in {PROJECT_FILE}. Defaults to first workflow if not set."),
verbose: bool = Opt(False, "--verbose", "-V", help="Print more info"),
quiet: bool = Opt(False, "--quiet", "-q", help="Print less info"),
force: bool = Opt(False, "--force", "-F", help="Force update DVC config"),
# fmt: on
):
@ -36,7 +37,7 @@ def project_update_dvc_cli(
DOCS: https://spacy.io/api/cli#project-dvc
"""
project_update_dvc(project_dir, workflow, verbose=verbose, force=force)
project_update_dvc(project_dir, workflow, verbose=verbose, quiet=quiet, force=force)
def project_update_dvc(
@ -44,6 +45,7 @@ def project_update_dvc(
workflow: Optional[str] = None,
*,
verbose: bool = False,
quiet: bool = False,
force: bool = False,
) -> None:
"""Update the auto-generated Data Version Control (DVC) config file. A DVC
@ -54,11 +56,12 @@ def project_update_dvc(
workflow (Optional[str]): Optional name of workflow defined in project.yml.
If not set, the first workflow will be used.
verbose (bool): Print more info.
quiet (bool): Print less info.
force (bool): Force update DVC config.
"""
config = load_project_config(project_dir)
updated = update_dvc_config(
project_dir, config, workflow, verbose=verbose, force=force
project_dir, config, workflow, verbose=verbose, quiet=quiet, force=force
)
help_msg = "To execute the workflow with DVC, run: dvc repro"
if updated:
@ -72,7 +75,7 @@ def update_dvc_config(
config: Dict[str, Any],
workflow: Optional[str] = None,
verbose: bool = False,
silent: bool = False,
quiet: bool = False,
force: bool = False,
) -> bool:
"""Re-run the DVC commands in dry mode and update dvc.yaml file in the
@ -83,7 +86,7 @@ def update_dvc_config(
path (Path): The path to the project directory.
config (Dict[str, Any]): The loaded project.yml.
verbose (bool): Whether to print additional info (via DVC).
silent (bool): Don't output anything (via DVC).
quiet (bool): Don't output anything (via DVC).
force (bool): Force update, even if hashes match.
RETURNS (bool): Whether the DVC config file was updated.
"""
@ -105,6 +108,14 @@ def update_dvc_config(
dvc_config_path.unlink()
dvc_commands = []
config_commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
# some flags that apply to every command
flags = []
if verbose:
flags.append("--verbose")
if quiet:
flags.append("--quiet")
for name in workflows[workflow]:
command = config_commands[name]
deps = command.get("deps", [])
@ -118,14 +129,26 @@ def update_dvc_config(
deps_cmd = [c for cl in [["-d", p] for p in deps] for c in cl]
outputs_cmd = [c for cl in [["-o", p] for p in outputs] for c in cl]
outputs_nc_cmd = [c for cl in [["-O", p] for p in outputs_no_cache] for c in cl]
dvc_cmd = ["run", "-n", name, "-w", str(path), "--no-exec"]
dvc_cmd = ["run", *flags, "-n", name, "-w", str(path), "--no-exec"]
if command.get("no_skip"):
dvc_cmd.append("--always-changed")
full_cmd = [*dvc_cmd, *deps_cmd, *outputs_cmd, *outputs_nc_cmd, *project_cmd]
dvc_commands.append(join_command(full_cmd))
if not dvc_commands:
# If we don't check for this, then there will be an error when reading the
# config, since DVC wouldn't create it.
msg.fail(
"No usable commands for DVC found. This can happen if none of your "
"commands have dependencies or outputs.",
exits=1,
)
with working_dir(path):
dvc_flags = {"--verbose": verbose, "--quiet": silent}
run_dvc_commands(dvc_commands, flags=dvc_flags)
for c in dvc_commands:
dvc_command = "dvc " + c
run_command(dvc_command)
with dvc_config_path.open("r+", encoding="utf8") as f:
content = f.read()
f.seek(0, 0)
@ -133,26 +156,6 @@ def update_dvc_config(
return True
def run_dvc_commands(
commands: Iterable[str] = SimpleFrozenList(), flags: Dict[str, bool] = {}
) -> None:
"""Run a sequence of DVC commands in a subprocess, in order.
commands (List[str]): The string commands without the leading "dvc".
flags (Dict[str, bool]): Conditional flags to be added to command. Makes it
easier to pass flags like --quiet that depend on a variable or
command-line setting while avoiding lots of nested conditionals.
"""
for c in commands:
command = split_command(c)
dvc_command = ["dvc", *command]
# Add the flags if they are set to True
for flag, is_active in flags.items():
if is_active:
dvc_command.append(flag)
run_command(dvc_command)
def check_workflows(workflows: List[str], workflow: Optional[str] = None) -> None:
"""Validate workflows provided in project.yml and check that a given
workflow can be used to generate a DVC config.

View File

@ -1,5 +1,8 @@
from typing import Optional, List, Dict, Sequence, Any, Iterable
from typing import Optional, List, Dict, Sequence, Any, Iterable, Tuple
import os.path
from pathlib import Path
import pkg_resources
from wasabi import msg
from wasabi.util import locale_escape
import sys
@ -71,6 +74,12 @@ def project_run(
commands = {cmd["name"]: cmd for cmd in config.get("commands", [])}
workflows = config.get("workflows", {})
validate_subcommand(list(commands.keys()), list(workflows.keys()), subcommand)
req_path = project_dir / "requirements.txt"
if config.get("check_requirements", True) and os.path.exists(req_path):
with req_path.open() as requirements_file:
_check_requirements([req.replace("\n", "") for req in requirements_file])
if subcommand in workflows:
msg.info(f"Running workflow '{subcommand}'")
for cmd in workflows[subcommand]:
@ -310,3 +319,32 @@ def get_fileinfo(project_dir: Path, paths: List[str]) -> List[Dict[str, Optional
md5 = get_checksum(file_path) if file_path.exists() else None
data.append({"path": path, "md5": md5})
return data
def _check_requirements(requirements: List[str]) -> Tuple[bool, bool]:
"""Checks whether requirements are installed and free of version conflicts.
requirements (List[str]): List of requirements.
RETURNS (Tuple[bool, bool]): Whether (1) any packages couldn't be imported, (2) any packages with version conflicts
exist.
"""
failed_pkgs_msgs: List[str] = []
conflicting_pkgs_msgs: List[str] = []
for req in requirements:
try:
pkg_resources.require(req)
except pkg_resources.DistributionNotFound as dnf:
failed_pkgs_msgs.append(dnf.report())
except pkg_resources.VersionConflict as vc:
conflicting_pkgs_msgs.append(vc.report())
if len(failed_pkgs_msgs) or len(conflicting_pkgs_msgs):
msg.warn(
title="Missing requirements or requirement conflicts detected. Make sure your Python environment is set up "
"correctly and you installed all requirements specified in your project's requirements.txt: "
)
for pgk_msg in failed_pkgs_msgs + conflicting_pkgs_msgs:
msg.text(pgk_msg)
return len(failed_pkgs_msgs) > 0, len(conflicting_pkgs_msgs) > 0

View File

@ -212,6 +212,8 @@ class Warnings(metaclass=ErrorsWithCodes):
W121 = ("Attempting to trace non-existent method '{method}' in pipe '{pipe}'")
W122 = ("Couldn't trace method '{method}' in pipe '{pipe}'. This can happen if the pipe class "
"is a Cython extension type.")
W123 = ("Argument {arg} with value {arg_value} is used instead of {config_value} as specified in the config. Be "
"aware that this might affect other components in your pipeline.")
class Errors(metaclass=ErrorsWithCodes):
@ -538,6 +540,8 @@ class Errors(metaclass=ErrorsWithCodes):
E199 = ("Unable to merge 0-length span at `doc[{start}:{end}]`.")
E200 = ("Can't set {attr} from Span.")
E202 = ("Unsupported {name} mode '{mode}'. Supported modes: {modes}.")
E203 = ("If the {name} embedding layer is not updated "
"during training, make sure to include it in 'annotating components'")
# New errors added in v3.x
E853 = ("Unsupported component factory name '{name}'. The character '.' is "
@ -709,9 +713,9 @@ class Errors(metaclass=ErrorsWithCodes):
"`nlp.enable_pipe` instead.")
E927 = ("Can't write to frozen list. Maybe you're trying to modify a computed "
"property or default function argument?")
E928 = ("A KnowledgeBase can only be serialized to/from from a directory, "
E928 = ("An InMemoryLookupKB can only be serialized to/from from a directory, "
"but the provided argument {loc} points to a file.")
E929 = ("Couldn't read KnowledgeBase from {loc}. The path does not seem to exist.")
E929 = ("Couldn't read InMemoryLookupKB from {loc}. The path does not seem to exist.")
E930 = ("Received invalid get_examples callback in `{method}`. "
"Expected function that returns an iterable of Example objects but "
"got: {obj}")
@ -937,10 +941,17 @@ class Errors(metaclass=ErrorsWithCodes):
E1040 = ("Doc.from_json requires all tokens to have the same attributes. "
"Some tokens do not contain annotation for: {partial_attrs}")
E1041 = ("Expected a string, Doc, or bytes as input, but got: {type}")
E1042 = ("Function was called with `{arg1}`={arg1_values} and "
"`{arg2}`={arg2_values} but these arguments are conflicting.")
E1042 = ("`enable={enable}` and `disable={disable}` are inconsistent with each other.\nIf you only passed "
"one of `enable` or `disable`, the other argument is specified in your pipeline's configuration.\nIn that "
"case pass an empty list for the previously not specified argument to avoid this error.")
E1043 = ("Expected None or a value in range [{range_start}, {range_end}] for entity linker threshold, but got "
"{value}.")
E1044 = ("Expected `candidates_batch_size` to be >= 1, but got: {value}")
E1045 = ("Encountered {parent} subclass without `{parent}.{method}` "
"method in '{name}'. If you want to use this method, make "
"sure it's overwritten on the subclass.")
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
"knowledge base, use `InMemoryLookupKB`.")
# Deprecated model shortcuts, only used in errors and warnings

3
spacy/kb/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from .kb import KnowledgeBase
from .kb_in_memory import InMemoryLookupKB
from .candidate import Candidate, get_candidates, get_candidates_batch

12
spacy/kb/candidate.pxd Normal file
View File

@ -0,0 +1,12 @@
from .kb cimport KnowledgeBase
from libcpp.vector cimport vector
from ..typedefs cimport hash_t
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob

74
spacy/kb/candidate.pyx Normal file
View File

@ -0,0 +1,74 @@
# cython: infer_types=True, profile=True
from typing import Iterable
from .kb cimport KnowledgeBase
from ..tokens import Span
cdef class Candidate:
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate-init
"""
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
@property
def entity(self) -> int:
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self) -> str:
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self) -> int:
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self) -> str:
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self) -> float:
return self.entity_freq
@property
def entity_vector(self) -> Iterable[float]:
return self.entity_vector
@property
def prior_prob(self) -> float:
return self.prior_prob
def get_candidates(kb: KnowledgeBase, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for a given mention and fetching appropriate entries from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Span): Entity mention for which to identify candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
return kb.get_candidates(mention)
def get_candidates_batch(kb: KnowledgeBase, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for the given mentions and fetching appropriate entries from the index.
kb (KnowledgeBase): Knowledge base to query.
mention (Iterable[Span]): Entity mentions for which to identify candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return kb.get_candidates_batch(mentions)

10
spacy/kb/kb.pxd Normal file
View File

@ -0,0 +1,10 @@
"""Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from libc.stdint cimport int64_t
from ..vocab cimport Vocab
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef readonly int64_t entity_vector_length

108
spacy/kb/kb.pyx Normal file
View File

@ -0,0 +1,108 @@
# cython: infer_types=True, profile=True
from pathlib import Path
from typing import Iterable, Tuple, Union
from cymem.cymem cimport Pool
from .candidate import Candidate
from ..tokens import Span
from ..util import SimpleFrozenList
from ..errors import Errors
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts.
This is an abstract class and requires its operations to be implemented.
DOCS: https://spacy.io/api/kb
"""
def __init__(self, vocab: Vocab, entity_vector_length: int):
"""Create a KnowledgeBase."""
# Make sure abstract KB is not instantiated.
if self.__class__ == KnowledgeBase:
raise TypeError(
Errors.E1046.format(cls_name=self.__class__.__name__)
)
self.vocab = vocab
self.entity_vector_length = entity_vector_length
self.mem = Pool()
def get_candidates_batch(self, mentions: Iterable[Span]) -> Iterable[Iterable[Candidate]]:
"""
Return candidate entities for specified texts. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If no candidate is found for a given text, an empty list is returned.
mentions (Iterable[Span]): Mentions for which to get candidates.
RETURNS (Iterable[Iterable[Candidate]]): Identified candidates.
"""
return [self.get_candidates(span) for span in mentions]
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
"""
Return candidate entities for specified text. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.
If the no candidate is found for a given text, an empty list is returned.
mention (Span): Mention for which to get candidates.
RETURNS (Iterable[Candidate]): Identified candidates.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="get_candidates", name=self.__name__)
)
def get_vectors(self, entities: Iterable[str]) -> Iterable[Iterable[float]]:
"""
Return vectors for entities.
entity (str): Entity name/ID.
RETURNS (Iterable[Iterable[float]]): Vectors for specified entities.
"""
return [self.get_vector(entity) for entity in entities]
def get_vector(self, str entity) -> Iterable[float]:
"""
Return vector for entity.
entity (str): Entity name/ID.
RETURNS (Iterable[float]): Vector for specified entity.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="get_vector", name=self.__name__)
)
def to_bytes(self, **kwargs) -> bytes:
"""Serialize the current state to a binary string.
RETURNS (bytes): Current state as binary string.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="to_bytes", name=self.__name__)
)
def from_bytes(self, bytes_data: bytes, *, exclude: Tuple[str] = tuple()):
"""Load state from a binary string.
bytes_data (bytes): KB state.
exclude (Tuple[str]): Properties to exclude when restoring KB.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="from_bytes", name=self.__name__)
)
def to_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
"""
Write KnowledgeBase content to disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="to_disk", name=self.__name__)
)
def from_disk(self, path: Union[str, Path], exclude: Iterable[str] = SimpleFrozenList()) -> None:
"""
Load KnowledgeBase content from disk.
path (Union[str, Path]): Target file path.
exclude (Iterable[str]): List of components to exclude.
"""
raise NotImplementedError(
Errors.E1045.format(parent="KnowledgeBase", method="from_disk", name=self.__name__)
)

View File

@ -1,14 +1,12 @@
"""Knowledge-base for entity or concept linking."""
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from libcpp.vector cimport vector
from libc.stdint cimport int32_t, int64_t
from libc.stdio cimport FILE
from .vocab cimport Vocab
from .typedefs cimport hash_t
from .structs cimport KBEntryC, AliasC
from ..typedefs cimport hash_t
from ..structs cimport KBEntryC, AliasC
from .kb cimport KnowledgeBase
ctypedef vector[KBEntryC] entry_vec
ctypedef vector[AliasC] alias_vec
@ -16,21 +14,7 @@ ctypedef vector[float] float_vec
ctypedef vector[float_vec] float_matrix
# Object used by the Entity Linker that summarizes one entity-alias candidate combination.
cdef class Candidate:
cdef readonly KnowledgeBase kb
cdef hash_t entity_hash
cdef float entity_freq
cdef vector[float] entity_vector
cdef hash_t alias_hash
cdef float prior_prob
cdef class KnowledgeBase:
cdef Pool mem
cdef readonly Vocab vocab
cdef int64_t entity_vector_length
cdef class InMemoryLookupKB(KnowledgeBase):
# This maps 64bit keys (hash of unique entity string)
# to 64bit values (position of the _KBEntryC struct in the _entries vector).
# The PreshMap is pretty space efficient, as it uses open addressing. So

View File

@ -1,8 +1,7 @@
# cython: infer_types=True, profile=True
from typing import Iterator, Iterable, Callable, Dict, Any
from typing import Iterable, Callable, Dict, Any, Union
import srsly
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from cpython.exc cimport PyErr_SetFromErrno
from libc.stdio cimport fopen, fclose, fread, fwrite, feof, fseek
@ -12,85 +11,28 @@ from libcpp.vector cimport vector
from pathlib import Path
import warnings
from .typedefs cimport hash_t
from .errors import Errors, Warnings
from . import util
from .util import SimpleFrozenList, ensure_path
cdef class Candidate:
"""A `Candidate` object refers to a textual mention (`alias`) that may or may not be resolved
to a specific `entity` from a Knowledge Base. This will be used as input for the entity linking
algorithm which will disambiguate the various candidates to the correct one.
Each candidate (alias, entity) pair is assigned to a certain prior probability.
DOCS: https://spacy.io/api/kb/#candidate_init
"""
def __init__(self, KnowledgeBase kb, entity_hash, entity_freq, entity_vector, alias_hash, prior_prob):
self.kb = kb
self.entity_hash = entity_hash
self.entity_freq = entity_freq
self.entity_vector = entity_vector
self.alias_hash = alias_hash
self.prior_prob = prior_prob
@property
def entity(self):
"""RETURNS (uint64): hash of the entity's KB ID/name"""
return self.entity_hash
@property
def entity_(self):
"""RETURNS (str): ID/name of this entity in the KB"""
return self.kb.vocab.strings[self.entity_hash]
@property
def alias(self):
"""RETURNS (uint64): hash of the alias"""
return self.alias_hash
@property
def alias_(self):
"""RETURNS (str): ID of the original alias"""
return self.kb.vocab.strings[self.alias_hash]
@property
def entity_freq(self):
return self.entity_freq
@property
def entity_vector(self):
return self.entity_vector
@property
def prior_prob(self):
return self.prior_prob
from ..tokens import Span
from ..typedefs cimport hash_t
from ..errors import Errors, Warnings
from .. import util
from ..util import SimpleFrozenList, ensure_path
from ..vocab cimport Vocab
from .kb cimport KnowledgeBase
from .candidate import Candidate as Candidate
def get_candidates(KnowledgeBase kb, span) -> Iterator[Candidate]:
"""
Return candidate entities for a given span by using the text of the span as the alias
and fetching appropriate entries from the index.
This particular function is optimized to work with the built-in KB functionality,
but any other custom candidate generation method can be used in combination with the KB as well.
"""
return kb.get_alias_candidates(span.text)
cdef class KnowledgeBase:
"""A `KnowledgeBase` instance stores unique identifiers for entities and their textual aliases,
cdef class InMemoryLookupKB(KnowledgeBase):
"""An `InMemoryLookupKB` instance stores unique identifiers for entities and their textual aliases,
to support entity linking of named entities to real-world concepts.
DOCS: https://spacy.io/api/kb
DOCS: https://spacy.io/api/kb_in_memory
"""
def __init__(self, Vocab vocab, entity_vector_length):
"""Create a KnowledgeBase."""
self.mem = Pool()
self.entity_vector_length = entity_vector_length
"""Create an InMemoryLookupKB."""
super().__init__(vocab, entity_vector_length)
self._entry_index = PreshMap()
self._alias_index = PreshMap()
self.vocab = vocab
self._create_empty_vectors(dummy_hash=self.vocab.strings[""])
def _initialize_entities(self, int64_t nr_entities):
@ -104,11 +46,6 @@ cdef class KnowledgeBase:
self._alias_index = PreshMap(nr_aliases + 1)
self._aliases_table = alias_vec(nr_aliases + 1)
@property
def entity_vector_length(self):
"""RETURNS (uint64): length of the entity vectors"""
return self.entity_vector_length
def __len__(self):
return self.get_size_entities()
@ -286,7 +223,10 @@ cdef class KnowledgeBase:
alias_entry.probs = probs
self._aliases_table[alias_index] = alias_entry
def get_alias_candidates(self, str alias) -> Iterator[Candidate]:
def get_candidates(self, mention: Span) -> Iterable[Candidate]:
return self.get_alias_candidates(mention.text) # type: ignore
def get_alias_candidates(self, str alias) -> Iterable[Candidate]:
"""
Return candidate entities for an alias. Each candidate defines the entity, the original alias,
and the prior probability of that alias resolving to that entity.

View File

@ -72,10 +72,10 @@ class CatalanLemmatizer(Lemmatizer):
oov_forms.append(form)
if not forms:
forms.extend(oov_forms)
if not forms and string in lookup_table.keys():
forms.append(self.lookup_lemmatize(token)[0])
# use lookups, and fall back to the token itself
if not forms:
forms.append(string)
forms.append(lookup_table.get(string, [string])[0])
forms = list(dict.fromkeys(forms))
self.cache[cache_key] = forms
return forms

View File

@ -280,7 +280,7 @@ _currency = (
_punct = (
r"… …… , : ; \! \? ¿ ؟ ¡ \( \) \[ \] \{ \} < > _ # \* & 。 · । ، ۔ ؛ ٪"
)
_quotes = r'\' " ” “ ` ´ , „ » « 「 」 『 』 【 】 《 》 〈 〉'
_quotes = r'\' " ” “ ` ´ , „ » « 「 」 『 』 【 】 《 》 〈 〉 〈 〉 ⟦ ⟧'
_hyphens = "- — -- --- —— ~"
# Various symbols like dingbats, but also emoji

View File

@ -53,11 +53,16 @@ class FrenchLemmatizer(Lemmatizer):
rules = rules_table.get(univ_pos, [])
string = string.lower()
forms = []
# first try lookup in table based on upos
if string in index:
forms.append(string)
self.cache[cache_key] = forms
return forms
# then add anything in the exceptions table
forms.extend(exceptions.get(string, []))
# if nothing found yet, use the rules
oov_forms = []
if not forms:
for old, new in rules:
@ -69,12 +74,14 @@ class FrenchLemmatizer(Lemmatizer):
forms.append(form)
else:
oov_forms.append(form)
# if still nothing, add the oov forms from rules
if not forms:
forms.extend(oov_forms)
if not forms and string in lookup_table.keys():
forms.append(self.lookup_lemmatize(token)[0])
# use lookups, which fall back to the token itself
if not forms:
forms.append(string)
forms.append(lookup_table.get(string, [string])[0])
forms = list(dict.fromkeys(forms))
self.cache[cache_key] = forms
return forms

View File

@ -1,11 +1,15 @@
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from .stop_words import STOP_WORDS
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_PREFIXES, TOKENIZER_SUFFIXES, TOKENIZER_INFIXES
from ...language import Language, BaseDefaults
class AncientGreekDefaults(BaseDefaults):
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
suffixes = TOKENIZER_SUFFIXES
infixes = TOKENIZER_INFIXES
lex_attr_getters = LEX_ATTRS
stop_words = STOP_WORDS

View File

@ -0,0 +1,46 @@
from ..char_classes import LIST_PUNCT, LIST_ELLIPSES, LIST_QUOTES, LIST_CURRENCY
from ..char_classes import LIST_ICONS, ALPHA_LOWER, ALPHA_UPPER, ALPHA, HYPHENS
from ..char_classes import CONCAT_QUOTES
_prefixes = (
[
"",
"",
]
+ LIST_PUNCT
+ LIST_ELLIPSES
+ LIST_QUOTES
+ LIST_CURRENCY
+ LIST_ICONS
)
_suffixes = (
LIST_PUNCT
+ LIST_ELLIPSES
+ LIST_QUOTES
+ LIST_ICONS
+ [
"",
"",
r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])[\-\.⸏]",
]
)
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}0-9])(?:{h})(?=[{a}])".format(a=ALPHA, h=HYPHENS),
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
r"(?<=[\u1F00-\u1FFF\u0370-\u03FF])—",
]
)
TOKENIZER_PREFIXES = _prefixes
TOKENIZER_SUFFIXES = _suffixes
TOKENIZER_INFIXES = _infixes

View File

@ -28,7 +28,7 @@ class Russian(Language):
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "pymorphy2",
"mode": "pymorphy3",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},

View File

@ -19,11 +19,11 @@ class RussianLemmatizer(Lemmatizer):
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "pymorphy2",
mode: str = "pymorphy3",
overwrite: bool = False,
scorer: Optional[Callable] = lemmatizer_score,
) -> None:
if mode == "pymorphy2":
if mode in {"pymorphy2", "pymorphy2_lookup"}:
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
@ -33,6 +33,16 @@ class RussianLemmatizer(Lemmatizer):
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer()
elif mode == "pymorphy3":
try:
from pymorphy3 import MorphAnalyzer
except ImportError:
raise ImportError(
"The Russian lemmatizer mode 'pymorphy3' requires the "
"pymorphy3 library. Install it with: pip install pymorphy3"
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer()
super().__init__(
vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)
@ -104,6 +114,9 @@ class RussianLemmatizer(Lemmatizer):
return [analyses[0].normal_form]
return [string]
def pymorphy3_lemmatize(self, token: Token) -> List[str]:
return self.pymorphy2_lemmatize(token)
def oc2ud(oc_tag: str) -> Tuple[str, Dict[str, str]]:
gram_map = {

View File

@ -1,9 +1,17 @@
from .lex_attrs import LEX_ATTRS
from .punctuation import TOKENIZER_INFIXES, TOKENIZER_SUFFIXES, TOKENIZER_PREFIXES
from .stop_words import STOP_WORDS
from .tokenizer_exceptions import TOKENIZER_EXCEPTIONS
from ...language import Language, BaseDefaults
class SlovenianDefaults(BaseDefaults):
stop_words = STOP_WORDS
tokenizer_exceptions = TOKENIZER_EXCEPTIONS
prefixes = TOKENIZER_PREFIXES
infixes = TOKENIZER_INFIXES
suffixes = TOKENIZER_SUFFIXES
lex_attr_getters = LEX_ATTRS
class Slovenian(Language):

145
spacy/lang/sl/lex_attrs.py Normal file
View File

@ -0,0 +1,145 @@
from ...attrs import LIKE_NUM
from ...attrs import IS_CURRENCY
import unicodedata
_num_words = set(
"""
nula ničla nič ena dva tri štiri pet šest sedem osem
devet deset enajst dvanajst trinajst štirinajst petnajst
šestnajst sedemnajst osemnajst devetnajst dvajset trideset štirideset
petdeset šestdest sedemdeset osemdeset devedeset sto tisoč
milijon bilijon trilijon kvadrilijon nešteto
en eden enega enemu ennem enim enih enima enimi ene eni eno
dveh dvema dvem dvoje trije treh trem tremi troje štirje štirih štirim štirimi
petih petim petimi šestih šestim šestimi sedmih sedmim sedmimi osmih osmim osmimi
devetih devetim devetimi desetih desetim desetimi enajstih enajstim enajstimi
dvanajstih dvanajstim dvanajstimi trinajstih trinajstim trinajstimi
šestnajstih šestnajstim šestnajstimi petnajstih petnajstim petnajstimi
sedemnajstih sedemnajstim sedemnajstimi osemnajstih osemnajstim osemnajstimi
devetnajstih devetnajstim devetnajstimi dvajsetih dvajsetim dvajsetimi
""".split()
)
_ordinal_words = set(
"""
prvi drugi tretji četrti peti šesti sedmi osmi
deveti deseti enajsti dvanajsti trinajsti štirinajsti
petnajsti šestnajsti sedemnajsti osemnajsti devetnajsti
dvajseti trideseti štirideseti petdeseti šestdeseti sedemdeseti
osemdeseti devetdeseti stoti tisoči milijonti bilijonti
trilijonti kvadrilijonti nešteti
prva druga tretja četrta peta šesta sedma osma
deveta deseta enajsta dvanajsta trinajsta štirnajsta
petnajsta šestnajsta sedemnajsta osemnajsta devetnajsta
dvajseta trideseta štirideseta petdeseta šestdeseta sedemdeseta
osemdeseta devetdeseta stota tisoča milijonta bilijonta
trilijonta kvadrilijonta nešteta
prvo drugo tretje četrto peto šestro sedmo osmo
deveto deseto enajsto dvanajsto trinajsto štirnajsto
petnajsto šestnajsto sedemnajsto osemnajsto devetnajsto
dvajseto trideseto štirideseto petdeseto šestdeseto sedemdeseto
osemdeseto devetdeseto stoto tisočo milijonto bilijonto
trilijonto kvadrilijonto nešteto
prvega drugega tretjega četrtega petega šestega sedmega osmega
devega desetega enajstega dvanajstega trinajstega štirnajstega
petnajstega šestnajstega sedemnajstega osemnajstega devetnajstega
dvajsetega tridesetega štiridesetega petdesetega šestdesetega sedemdesetega
osemdesetega devetdesetega stotega tisočega milijontega bilijontega
trilijontega kvadrilijontega neštetega
prvemu drugemu tretjemu četrtemu petemu šestemu sedmemu osmemu devetemu desetemu
enajstemu dvanajstemu trinajstemu štirnajstemu petnajstemu šestnajstemu sedemnajstemu
osemnajstemu devetnajstemu dvajsetemu tridesetemu štiridesetemu petdesetemu šestdesetemu
sedemdesetemu osemdesetemu devetdesetemu stotemu tisočemu milijontemu bilijontemu
trilijontemu kvadrilijontemu neštetemu
prvem drugem tretjem četrtem petem šestem sedmem osmem devetem desetem
enajstem dvanajstem trinajstem štirnajstem petnajstem šestnajstem sedemnajstem
osemnajstem devetnajstem dvajsetem tridesetem štiridesetem petdesetem šestdesetem
sedemdesetem osemdesetem devetdesetem stotem tisočem milijontem bilijontem
trilijontem kvadrilijontem neštetem
prvim drugim tretjim četrtim petim šestim sedtim osmim devetim desetim
enajstim dvanajstim trinajstim štirnajstim petnajstim šestnajstim sedemnajstim
osemnajstim devetnajstim dvajsetim tridesetim štiridesetim petdesetim šestdesetim
sedemdesetim osemdesetim devetdesetim stotim tisočim milijontim bilijontim
trilijontim kvadrilijontim neštetim
prvih drugih tretjih četrthih petih šestih sedmih osmih deveth desetih
enajstih dvanajstih trinajstih štirnajstih petnajstih šestnajstih sedemnajstih
osemnajstih devetnajstih dvajsetih tridesetih štiridesetih petdesetih šestdesetih
sedemdesetih osemdesetih devetdesetih stotih tisočih milijontih bilijontih
trilijontih kvadrilijontih nešteth
prvima drugima tretjima četrtima petima šestima sedmima osmima devetima desetima
enajstima dvanajstima trinajstima štirnajstima petnajstima šestnajstima sedemnajstima
osemnajstima devetnajstima dvajsetima tridesetima štiridesetima petdesetima šestdesetima
sedemdesetima osemdesetima devetdesetima stotima tisočima milijontima bilijontima
trilijontima kvadrilijontima neštetima
prve druge četrte pete šeste sedme osme devete desete
enajste dvanajste trinajste štirnajste petnajste šestnajste sedemnajste
osemnajste devetnajste dvajsete tridesete štiridesete petdesete šestdesete
sedemdesete osemdesete devetdesete stote tisoče milijonte bilijonte
trilijonte kvadrilijonte neštete
prvimi drugimi tretjimi četrtimi petimi šestimi sedtimi osmimi devetimi desetimi
enajstimi dvanajstimi trinajstimi štirnajstimi petnajstimi šestnajstimi sedemnajstimi
osemnajstimi devetnajstimi dvajsetimi tridesetimi štiridesetimi petdesetimi šestdesetimi
sedemdesetimi osemdesetimi devetdesetimi stotimi tisočimi milijontimi bilijontimi
trilijontimi kvadrilijontimi neštetimi
""".split()
)
_currency_words = set(
"""
evro evra evru evrom evrov evroma evrih evrom evre evri evr eur
cent centa centu cenom centov centoma centih centom cente centi
dolar dolarja dolarji dolarju dolarjem dolarjev dolarjema dolarjih dolarje usd
tolar tolarja tolarji tolarju tolarjem tolarjev tolarjema tolarjih tolarje tol
dinar dinarja dinarji dinarju dinarjem dinarjev dinarjema dinarjih dinarje din
funt funta funti funtu funtom funtov funtoma funtih funte gpb
forint forinta forinti forintu forintom forintov forintoma forintih forinte
zlot zlota zloti zlotu zlotom zlotov zlotoma zlotih zlote
rupij rupija rupiji rupiju rupijem rupijev rupijema rupijih rupije
jen jena jeni jenu jenom jenov jenoma jenih jene
kuna kuni kune kuno kun kunama kunah kunam kunami
marka marki marke markama markah markami
""".split()
)
def like_num(text):
if text.startswith(("+", "-", "±", "~")):
text = text[1:]
text = text.replace(",", "").replace(".", "")
if text.isdigit():
return True
if text.count("/") == 1:
num, denom = text.split("/")
if num.isdigit() and denom.isdigit():
return True
text_lower = text.lower()
if text_lower in _num_words:
return True
if text_lower in _ordinal_words:
return True
return False
def is_currency(text):
text_lower = text.lower()
if text in _currency_words:
return True
for char in text:
if unicodedata.category(char) != "Sc":
return False
return True
LEX_ATTRS = {LIKE_NUM: like_num, IS_CURRENCY: is_currency}

View File

@ -0,0 +1,84 @@
from ..char_classes import (
LIST_ELLIPSES,
LIST_ICONS,
HYPHENS,
LIST_PUNCT,
LIST_QUOTES,
CURRENCY,
UNITS,
PUNCT,
LIST_CURRENCY,
CONCAT_QUOTES,
)
from ..char_classes import CONCAT_QUOTES, ALPHA_LOWER, ALPHA_UPPER, ALPHA
from ..char_classes import merge_chars
from ..punctuation import TOKENIZER_PREFIXES as BASE_TOKENIZER_PREFIXES
INCLUDE_SPECIAL = ["\\+", "\\/", "\\", "\\¯", "\\=", "\\×"] + HYPHENS.split("|")
_prefixes = INCLUDE_SPECIAL + BASE_TOKENIZER_PREFIXES
_suffixes = (
INCLUDE_SPECIAL
+ LIST_PUNCT
+ LIST_ELLIPSES
+ LIST_QUOTES
+ LIST_ICONS
+ [
r"(?<=°[FfCcKk])\.",
r"(?<=[0-9])(?:{c})".format(c=CURRENCY),
r"(?<=[0-9])(?:{u})".format(u=UNITS),
r"(?<=[{al}{e}{p}(?:{q})])\.".format(
al=ALPHA_LOWER, e=r"%²\-\+", q=CONCAT_QUOTES, p=PUNCT
),
r"(?<=[{au}][{au}])\.".format(au=ALPHA_UPPER),
# split initials like J.K. Rowling
r"(?<=[A-Z]\.)(?:[A-Z].)",
]
)
# a list of all suffixes following a hyphen that are shouldn't split (eg. BTC-jev)
# source: Obeliks tokenizer - https://github.com/clarinsi/obeliks/blob/master/obeliks/res/TokRulesPart1.txt
CONCAT_QUOTES = CONCAT_QUOTES.replace("'", "")
HYPHENS_PERMITTED = (
"((a)|(evemu)|(evskega)|(i)|(jevega)|(jevska)|(jevskimi)|(jinemu)|(oma)|(ovim)|"
"(ovski)|(e)|(evi)|(evskem)|(ih)|(jevem)|(jevske)|(jevsko)|(jini)|(ov)|(ovima)|"
"(ovskih)|(em)|(evih)|(evskemu)|(ja)|(jevemu)|(jevskega)|(ji)|(jinih)|(ova)|"
"(ovimi)|(ovskim)|(ema)|(evim)|(evski)|(je)|(jevi)|(jevskem)|(jih)|(jinim)|"
"(ove)|(ovo)|(ovskima)|(ev)|(evima)|(evskih)|(jem)|(jevih)|(jevskemu)|(jin)|"
"(jinima)|(ovega)|(ovska)|(ovskimi)|(eva)|(evimi)|(evskim)|(jema)|(jevim)|"
"(jevski)|(jina)|(jinimi)|(ovem)|(ovske)|(ovsko)|(eve)|(evo)|(evskima)|(jev)|"
"(jevima)|(jevskih)|(jine)|(jino)|(ovemu)|(ovskega)|(u)|(evega)|(evska)|"
"(evskimi)|(jeva)|(jevimi)|(jevskim)|(jinega)|(ju)|(ovi)|(ovskem)|(evem)|"
"(evske)|(evsko)|(jeve)|(jevo)|(jevskima)|(jinem)|(om)|(ovih)|(ovskemu)|"
"(ovec)|(ovca)|(ovcu)|(ovcem)|(ovcev)|(ovcema)|(ovcih)|(ovci)|(ovce)|(ovcimi)|"
"(evec)|(evca)|(evcu)|(evcem)|(evcev)|(evcema)|(evcih)|(evci)|(evce)|(evcimi)|"
"(jevec)|(jevca)|(jevcu)|(jevcem)|(jevcev)|(jevcema)|(jevcih)|(jevci)|(jevce)|"
"(jevcimi)|(ovka)|(ovke)|(ovki)|(ovko)|(ovk)|(ovkama)|(ovkah)|(ovkam)|(ovkami)|"
"(evka)|(evke)|(evki)|(evko)|(evk)|(evkama)|(evkah)|(evkam)|(evkami)|(jevka)|"
"(jevke)|(jevki)|(jevko)|(jevk)|(jevkama)|(jevkah)|(jevkam)|(jevkami)|(timi)|"
"(im)|(ima)|(a)|(imi)|(e)|(o)|(ega)|(ti)|(em)|(tih)|(emu)|(tim)|(i)|(tima)|"
"(ih)|(ta)|(te)|(to)|(tega)|(tem)|(temu))"
)
_infixes = (
LIST_ELLIPSES
+ LIST_ICONS
+ [
r"(?<=[0-9])[+\-\*^](?=[0-9-])",
r"(?<=[{al}{q}])\.(?=[{au}{q}])".format(
al=ALPHA_LOWER, au=ALPHA_UPPER, q=CONCAT_QUOTES
),
r"(?<=[{a}]),(?=[{a}])".format(a=ALPHA),
r"(?<=[{a}0-9])(?:{h})(?!{hp}$)(?=[{a}])".format(
a=ALPHA, h=HYPHENS, hp=HYPHENS_PERMITTED
),
r"(?<=[{a}0-9])[:<>=/](?=[{a}])".format(a=ALPHA),
]
)
TOKENIZER_PREFIXES = _prefixes
TOKENIZER_SUFFIXES = _suffixes
TOKENIZER_INFIXES = _infixes

View File

@ -1,326 +1,84 @@
# Source: https://github.com/stopwords-iso/stopwords-sl
# Removed various words that are not normally considered stop words, such as months.
STOP_WORDS = set(
"""
a
ali
b
bi
bil
bila
bile
bili
bilo
biti
blizu
bo
bodo
bolj
bom
bomo
boste
bova
boš
brez
c
cel
cela
celi
celo
d
da
daleč
dan
danes
do
dober
dobra
dobri
dobro
dokler
dol
dovolj
e
eden
en
ena
ene
eni
enkrat
eno
etc.
a ali
b bi bil bila bile bili bilo biti blizu bo bodo bojo bolj bom bomo
boste bova boš brez
c cel cela celi celo
č če često četrta četrtek četrti četrto čez čigav
d da daleč dan danes datum deset deseta deseti deseto devet
deveta deveti deveto do dober dobra dobri dobro dokler dol dolg
dolga dolgi dovolj drug druga drugi drugo dva dve
e eden en ena ene eni enkrat eno etc.
f
g
g.
ga
ga.
gor
gospa
gospod
h
halo
i
idr.
ii
iii
in
iv
ix
iz
j
jaz
je
ji
jih
jim
jo
k
kadarkoli
kaj
kajti
kako
kakor
kamor
kamorkoli
kar
karkoli
katerikoli
kdaj
kdo
kdorkoli
ker
ki
kje
kjer
kjerkoli
ko
koderkoli
koga
komu
kot
l
le
lep
lepa
lepe
lepi
lepo
m
manj
me
med
medtem
mene
mi
midva
midve
mnogo
moj
moja
moje
mora
morajo
moram
moramo
morate
moraš
morem
mu
n
na
nad
naj
najina
najino
najmanj
naju
največ
nam
nas
nato
nazaj
naš
naša
naše
ne
nedavno
nek
neka
nekaj
nekatere
nekateri
nekatero
nekdo
neke
nekega
neki
nekje
neko
nekoga
nekoč
ni
nikamor
nikdar
nikjer
nikoli
nič
nje
njega
njegov
njegova
njegovo
njej
njemu
njen
njena
njeno
nji
njih
njihov
njihova
njihovo
njiju
njim
njo
njun
njuna
njuno
no
nocoj
npr.
o
ob
oba
obe
oboje
od
okoli
on
onadva
one
oni
onidve
oz.
p
pa
po
pod
pogosto
poleg
ponavadi
ponovno
potem
povsod
prbl.
precej
pred
prej
preko
pri
pribl.
približno
proti
r
redko
res
s
saj
sam
sama
same
sami
samo
se
sebe
sebi
sedaj
sem
seveda
si
sicer
skoraj
skozi
smo
so
spet
sta
ste
sva
t
ta
tak
taka
take
taki
tako
takoj
tam
te
tebe
tebi
tega
ti
tista
tiste
tisti
tisto
tj.
tja
to
toda
tu
tudi
tukaj
tvoj
tvoja
tvoje
g g. ga ga. gor gospa gospod
h halo
i idr. ii iii in iv ix iz
j jaz je ji jih jim jo jutri
k kadarkoli kaj kajti kako kakor kamor kamorkoli kar karkoli
katerikoli kdaj kdo kdorkoli ker ki kje kjer kjerkoli
ko koder koderkoli koga komu kot kratek kratka kratke kratki
l lahka lahke lahki lahko le lep lepa lepe lepi lepo leto
m majhen majhna majhni malce malo manj me med medtem mene
mesec mi midva midve mnogo moj moja moje mora morajo moram
moramo morate moraš morem mu
n na nad naj najina najino najmanj naju največ nam narobe
nas nato nazaj naš naša naše ne nedavno nedelja nek neka
nekaj nekatere nekateri nekatero nekdo neke nekega neki
nekje neko nekoga nekoč ni nikamor nikdar nikjer nikoli
nič nje njega njegov njegova njegovo njej njemu njen
njena njeno nji njih njihov njihova njihovo njiju njim
njo njun njuna njuno no nocoj npr.
o ob oba obe oboje od odprt odprta odprti okoli on
onadva one oni onidve osem osma osmi osmo oz.
p pa pet peta petek peti peto po pod pogosto poleg poln
polna polni polno ponavadi ponedeljek ponovno potem
povsod pozdravljen pozdravljeni prav prava prave pravi
pravo prazen prazna prazno prbl. precej pred prej preko
pri pribl. približno primer pripravljen pripravljena
pripravljeni proti prva prvi prvo
r ravno redko res reč
s saj sam sama same sami samo se sebe sebi sedaj sedem
sedma sedmi sedmo sem seveda si sicer skoraj skozi slab sm
so sobota spet sreda srednja srednji sta ste stran stvar sva
š šest šesta šesti šesto štiri
t ta tak taka take taki tako takoj tam te tebe tebi tega
težak težka težki težko ti tista tiste tisti tisto tj.
tja to toda torek tretja tretje tretji tri tu tudi tukaj
tvoj tvoja tvoje
u
v
vaju
vam
vas
vaš
vaša
vaše
ve
vedno
vendar
ves
več
vi
vidva
vii
viii
vsa
vsaj
vsak
vsaka
vsakdo
vsake
vsaki
vsakomur
vse
vsega
vsi
vso
včasih
v vaju vam vas vaš vaša vaše ve vedno velik velika veliki
veliko vendar ves več vi vidva vii viii visok visoka visoke
visoki vsa vsaj vsak vsaka vsakdo vsake vsaki vsakomur vse
vsega vsi vso včasih včeraj
x
z
za
zadaj
zadnji
zakaj
zdaj
zelo
zunaj
č
če
često
čez
čigav
š
ž
že
z za zadaj zadnji zakaj zaprta zaprti zaprto zdaj zelo zunaj
ž že
""".split()
)

View File

@ -0,0 +1,272 @@
from typing import Dict, List
from ..tokenizer_exceptions import BASE_EXCEPTIONS
from ...symbols import ORTH, NORM
from ...util import update_exc
_exc: Dict[str, List[Dict]] = {}
_other_exc = {
"t.i.": [{ORTH: "t.", NORM: "tako"}, {ORTH: "i.", NORM: "imenovano"}],
"t.j.": [{ORTH: "t.", NORM: "to"}, {ORTH: "j.", NORM: "je"}],
"T.j.": [{ORTH: "T.", NORM: "to"}, {ORTH: "j.", NORM: "je"}],
"d.o.o.": [
{ORTH: "d.", NORM: "družba"},
{ORTH: "o.", NORM: "omejeno"},
{ORTH: "o.", NORM: "odgovornostjo"},
],
"D.O.O.": [
{ORTH: "D.", NORM: "družba"},
{ORTH: "O.", NORM: "omejeno"},
{ORTH: "O.", NORM: "odgovornostjo"},
],
"d.n.o.": [
{ORTH: "d.", NORM: "družba"},
{ORTH: "n.", NORM: "neomejeno"},
{ORTH: "o.", NORM: "odgovornostjo"},
],
"D.N.O.": [
{ORTH: "D.", NORM: "družba"},
{ORTH: "N.", NORM: "neomejeno"},
{ORTH: "O.", NORM: "odgovornostjo"},
],
"d.d.": [{ORTH: "d.", NORM: "delniška"}, {ORTH: "d.", NORM: "družba"}],
"D.D.": [{ORTH: "D.", NORM: "delniška"}, {ORTH: "D.", NORM: "družba"}],
"s.p.": [{ORTH: "s.", NORM: "samostojni"}, {ORTH: "p.", NORM: "podjetnik"}],
"S.P.": [{ORTH: "S.", NORM: "samostojni"}, {ORTH: "P.", NORM: "podjetnik"}],
"l.r.": [{ORTH: "l.", NORM: "lastno"}, {ORTH: "r.", NORM: "ročno"}],
"le-te": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "te"}],
"Le-te": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "te"}],
"le-ti": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "ti"}],
"Le-ti": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "ti"}],
"le-to": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "to"}],
"Le-to": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "to"}],
"le-ta": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "ta"}],
"Le-ta": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "ta"}],
"le-tega": [{ORTH: "le"}, {ORTH: "-"}, {ORTH: "tega"}],
"Le-tega": [{ORTH: "Le"}, {ORTH: "-"}, {ORTH: "tega"}],
}
_exc.update(_other_exc)
for exc_data in [
{ORTH: "adm.", NORM: "administracija"},
{ORTH: "aer.", NORM: "aeronavtika"},
{ORTH: "agr.", NORM: "agronomija"},
{ORTH: "amer.", NORM: "ameriško"},
{ORTH: "anat.", NORM: "anatomija"},
{ORTH: "angl.", NORM: "angleški"},
{ORTH: "ant.", NORM: "antonim"},
{ORTH: "antr.", NORM: "antropologija"},
{ORTH: "apr.", NORM: "april"},
{ORTH: "arab.", NORM: "arabsko"},
{ORTH: "arheol.", NORM: "arheologija"},
{ORTH: "arhit.", NORM: "arhitektura"},
{ORTH: "avg.", NORM: "avgust"},
{ORTH: "avstr.", NORM: "avstrijsko"},
{ORTH: "avt.", NORM: "avtomobilizem"},
{ORTH: "bibl.", NORM: "biblijsko"},
{ORTH: "biokem.", NORM: "biokemija"},
{ORTH: "biol.", NORM: "biologija"},
{ORTH: "bolg.", NORM: "bolgarski"},
{ORTH: "bot.", NORM: "botanika"},
{ORTH: "cit.", NORM: "citat"},
{ORTH: "daj.", NORM: "dajalnik"},
{ORTH: "del.", NORM: "deležnik"},
{ORTH: "ed.", NORM: "ednina"},
{ORTH: "etn.", NORM: "etnografija"},
{ORTH: "farm.", NORM: "farmacija"},
{ORTH: "filat.", NORM: "filatelija"},
{ORTH: "filoz.", NORM: "filozofija"},
{ORTH: "fin.", NORM: "finančništvo"},
{ORTH: "fiz.", NORM: "fizika"},
{ORTH: "fot.", NORM: "fotografija"},
{ORTH: "fr.", NORM: "francoski"},
{ORTH: "friz.", NORM: "frizerstvo"},
{ORTH: "gastr.", NORM: "gastronomija"},
{ORTH: "geogr.", NORM: "geografija"},
{ORTH: "geol.", NORM: "geologija"},
{ORTH: "geom.", NORM: "geometrija"},
{ORTH: "germ.", NORM: "germanski"},
{ORTH: "gl.", NORM: "glej"},
{ORTH: "glag.", NORM: "glagolski"},
{ORTH: "glasb.", NORM: "glasba"},
{ORTH: "gled.", NORM: "gledališče"},
{ORTH: "gost.", NORM: "gostinstvo"},
{ORTH: "gozd.", NORM: "gozdarstvo"},
{ORTH: "gr.", NORM: "grški"},
{ORTH: "grad.", NORM: "gradbeništvo"},
{ORTH: "hebr.", NORM: "hebrejsko"},
{ORTH: "hrv.", NORM: "hrvaško"},
{ORTH: "ide.", NORM: "indoevropsko"},
{ORTH: "igr.", NORM: "igre"},
{ORTH: "im.", NORM: "imenovalnik"},
{ORTH: "iron.", NORM: "ironično"},
{ORTH: "it.", NORM: "italijanski"},
{ORTH: "itd.", NORM: "in tako dalje"},
{ORTH: "itn.", NORM: "in tako naprej"},
{ORTH: "ipd.", NORM: "in podobno"},
{ORTH: "jap.", NORM: "japonsko"},
{ORTH: "jul.", NORM: "julij"},
{ORTH: "jun.", NORM: "junij"},
{ORTH: "kit.", NORM: "kitajsko"},
{ORTH: "knj.", NORM: "knjižno"},
{ORTH: "knjiž.", NORM: "knjižno"},
{ORTH: "kor.", NORM: "koreografija"},
{ORTH: "lat.", NORM: "latinski"},
{ORTH: "les.", NORM: "lesna stroka"},
{ORTH: "lingv.", NORM: "lingvistika"},
{ORTH: "lit.", NORM: "literarni"},
{ORTH: "ljubk.", NORM: "ljubkovalno"},
{ORTH: "lov.", NORM: "lovstvo"},
{ORTH: "m.", NORM: "moški"},
{ORTH: "mak.", NORM: "makedonski"},
{ORTH: "mar.", NORM: "marec"},
{ORTH: "mat.", NORM: "matematika"},
{ORTH: "med.", NORM: "medicina"},
{ORTH: "meh.", NORM: "mehiško"},
{ORTH: "mest.", NORM: "mestnik"},
{ORTH: "mdr.", NORM: "med drugim"},
{ORTH: "min.", NORM: "mineralogija"},
{ORTH: "mitol.", NORM: "mitologija"},
{ORTH: "mn.", NORM: "množina"},
{ORTH: "mont.", NORM: "montanistika"},
{ORTH: "muz.", NORM: "muzikologija"},
{ORTH: "nam.", NORM: "namenilnik"},
{ORTH: "nar.", NORM: "narečno"},
{ORTH: "nav.", NORM: "navadno"},
{ORTH: "nedol.", NORM: "nedoločnik"},
{ORTH: "nedov.", NORM: "nedovršni"},
{ORTH: "neprav.", NORM: "nepravilno"},
{ORTH: "nepreh.", NORM: "neprehodno"},
{ORTH: "neskl.", NORM: "nesklonljiv(o)"},
{ORTH: "nestrok.", NORM: "nestrokovno"},
{ORTH: "num.", NORM: "numizmatika"},
{ORTH: "npr.", NORM: "na primer"},
{ORTH: "obrt.", NORM: "obrtništvo"},
{ORTH: "okt.", NORM: "oktober"},
{ORTH: "or.", NORM: "orodnik"},
{ORTH: "os.", NORM: "oseba"},
{ORTH: "otr.", NORM: "otroško"},
{ORTH: "oz.", NORM: "oziroma"},
{ORTH: "pal.", NORM: "paleontologija"},
{ORTH: "papir.", NORM: "papirništvo"},
{ORTH: "ped.", NORM: "pedagogika"},
{ORTH: "pisar.", NORM: "pisarniško"},
{ORTH: "pog.", NORM: "pogovorno"},
{ORTH: "polit.", NORM: "politika"},
{ORTH: "polj.", NORM: "poljsko"},
{ORTH: "poljud.", NORM: "poljudno"},
{ORTH: "preg.", NORM: "pregovor"},
{ORTH: "preh.", NORM: "prehodno"},
{ORTH: "pren.", NORM: "preneseno"},
{ORTH: "prid.", NORM: "pridevnik"},
{ORTH: "prim.", NORM: "primerjaj"},
{ORTH: "prisl.", NORM: "prislov"},
{ORTH: "psih.", NORM: "psihologija"},
{ORTH: "psiht.", NORM: "psihiatrija"},
{ORTH: "rad.", NORM: "radiotehnika"},
{ORTH: "rač.", NORM: "računalništvo"},
{ORTH: "rib.", NORM: "ribištvo"},
{ORTH: "rod.", NORM: "rodilnik"},
{ORTH: "rus.", NORM: "rusko"},
{ORTH: "s.", NORM: "srednji"},
{ORTH: "sam.", NORM: "samostalniški"},
{ORTH: "sed.", NORM: "sedanjik"},
{ORTH: "sep.", NORM: "september"},
{ORTH: "slabš.", NORM: "slabšalno"},
{ORTH: "slovan.", NORM: "slovansko"},
{ORTH: "slovaš.", NORM: "slovaško"},
{ORTH: "srb.", NORM: "srbsko"},
{ORTH: "star.", NORM: "starinsko"},
{ORTH: "stil.", NORM: "stilno"},
{ORTH: "sv.", NORM: "svet(i)"},
{ORTH: "teh.", NORM: "tehnika"},
{ORTH: "tisk.", NORM: "tiskarstvo"},
{ORTH: "tj.", NORM: "to je"},
{ORTH: "tož.", NORM: "tožilnik"},
{ORTH: "trg.", NORM: "trgovina"},
{ORTH: "ukr.", NORM: "ukrajinski"},
{ORTH: "um.", NORM: "umetnost"},
{ORTH: "vel.", NORM: "velelnik"},
{ORTH: "vet.", NORM: "veterina"},
{ORTH: "vez.", NORM: "veznik"},
{ORTH: "vn.", NORM: "visokonemško"},
{ORTH: "voj.", NORM: "vojska"},
{ORTH: "vrtn.", NORM: "vrtnarstvo"},
{ORTH: "vulg.", NORM: "vulgarno"},
{ORTH: "vznes.", NORM: "vzneseno"},
{ORTH: "zal.", NORM: "založništvo"},
{ORTH: "zastar.", NORM: "zastarelo"},
{ORTH: "zgod.", NORM: "zgodovina"},
{ORTH: "zool.", NORM: "zoologija"},
{ORTH: "čeb.", NORM: "čebelarstvo"},
{ORTH: "češ.", NORM: "češki"},
{ORTH: "člov.", NORM: "človeškost"},
{ORTH: "šah.", NORM: "šahovski"},
{ORTH: "šalj.", NORM: "šaljivo"},
{ORTH: "šp.", NORM: "španski"},
{ORTH: "špan.", NORM: "špansko"},
{ORTH: "šport.", NORM: "športni"},
{ORTH: "štev.", NORM: "števnik"},
{ORTH: "šved.", NORM: "švedsko"},
{ORTH: "švic.", NORM: "švicarsko"},
{ORTH: "ž.", NORM: "ženski"},
{ORTH: "žarg.", NORM: "žargonsko"},
{ORTH: "žel.", NORM: "železnica"},
{ORTH: "živ.", NORM: "živost"},
]:
_exc[exc_data[ORTH]] = [exc_data]
abbrv = """
Co. Ch. DIPL. DR. Dr. Ev. Inc. Jr. Kr. Mag. M. MR. Mr. Mt. Murr. Npr. OZ.
Opr. Osn. Prim. Roj. ST. Sim. Sp. Sred. St. Sv. Škofl. Tel. UR. Zb.
a. aa. ab. abc. abit. abl. abs. abt. acc. accel. add. adj. adv. aet. afr. akad. al. alban. all. alleg.
alp. alt. alter. alžir. am. an. andr. ang. anh. anon. ans. antrop. apoc. app. approx. apt. ar. arc. arch.
arh. arr. as. asist. assist. assoc. asst. astr. attn. aug. avstral. az. b. bab. bal. bbl. bd. belg. bioinf.
biomed. bk. bl. bn. borg. bp. br. braz. brit. bros. broš. bt. bu. c. ca. cal. can. cand. cantab. cap. capt.
cat. cath. cc. cca. cd. cdr. cdre. cent. cerkv. cert. cf. cfr. ch. chap. chem. chr. chs. cic. circ. civ. cl.
cm. cmd. cnr. co. cod. col. coll. colo. com. comp. con. conc. cond. conn. cons. cont. coop. corr. cost. cp.
cpl. cr. crd. cres. cresc. ct. cu. d. dan. dat. davč. ddr. dec. ded. def. dem. dent. dept. dia. dip. dipl.
dir. disp. diss. div. do. doc. dok. dol. doo. dop. dott. dr. dram. druž. družb. drž. dt. duh. dur. dvr. dwt. e.
ea. ecc. eccl. eccles. econ. edn. egipt. egr. ekon. eksp. el. em. enc. eng. eo. ep. err. esp. esq. est.
et. etc. etnogr. etnol. ev. evfem. evr. ex. exc. excl. exp. expl. ext. exx. f. fa. facs. fak. faks. fas.
fasc. fco. fcp. feb. febr. fec. fed. fem. ff. fff. fid. fig. fil. film. fiziol. fiziot. flam. fm. fo. fol. folk.
frag. fran. franc. fsc. g. ga. gal. gdč. ge. gen. geod. geog. geotehnol. gg. gimn. glas. glav. gnr. go. gor.
gosp. gp. graf. gram. gren. grš. gs. h. hab. hf. hist. ho. hort. i. ia. ib. ibid. id. idr. idridr. ill. imen.
imp. impf. impr. in. inc. incl. ind. indus. inf. inform. ing. init. ins. int. inv. inšp. inštr. inž. is. islam.
ist. ital. iur. iz. izbr. izd. izg. izgr. izr. izv. j. jak. jam. jan. jav. je. jez. jr. jsl. jud. jug.
jugoslovan. jur. juž. jv. jz. k. kal. kan. kand. kat. kdo. kem. kip. kmet. kol. kom. komp. konf. kont. kost. kov.
kp. kpfw. kr. kraj. krat. kub. kult. kv. kval. l. la. lab. lb. ld. let. lib. lik. litt. lj. ljud. ll. loc. log.
loč. lt. ma. madž. mag. manag. manjš. masc. mass. mater. max. maxmax. mb. md. mech. medic. medij. medn.
mehč. mem. menedž. mes. mess. metal. meteor. meteorol. mex. mi. mikr. mil. minn. mio. misc. miss. mit. mk.
mkt. ml. mlad. mlle. mlr. mm. mme. množ. mo. moj. moš. možn. mr. mrd. mrs. ms. msc. msgr. mt. murr. mus. mut.
n. na. nad. nadalj. nadom. nagl. nakl. namer. nan. naniz. nasl. nat. navt. nač. ned. nem. nik. nizoz. nm. nn.
no. nom. norv. notr. nov. novogr. ns. o. ob. obd. obj. oblač. obl. oblik. obr. obraz. obs. obst. obt. obč. oc.
oct. od. odd. odg. odn. odst. odv. oec. off. ok. okla. okr. ont. oo. op. opis. opp. opr. orch. ord. ore. oreg.
org. orient. orig. ork. ort. oseb. osn. ot. ozir. ošk. p. pag. par. para. parc. parl. part. past. pat. pdk.
pen. perf. pert. perz. pesn. pet. pev. pf. pfc. ph. pharm. phil. pis. pl. po. pod. podr. podaljš. pogl. pogoj. pojm.
pok. pokr. pol. poljed. poljub. polu. pom. pomen. pon. ponov. pop. por. port. pos. posl. posn. pov. pp. ppl. pr.
praet. prav. pravopis. pravosl. preb. pred. predl. predm. predp. preds. pref. pregib. prel. prem. premen. prep.
pres. pret. prev. pribl. prih. pril. primerj. primor. prip. pripor. prir. prist. priv. proc. prof. prog. proiz.
prom. pron. prop. prot. protest. prov. ps. pss. pt. publ. pz. q. qld. qu. quad. que. r. racc. rastl. razgl.
razl. razv. rd. red. ref. reg. rel. relig. rep. repr. rer. resp. rest. ret. rev. revol. rež. rim. rist. rkp. rm.
roj. rom. romun. rp. rr. rt. rud. ruš. ry. sal. samogl. san. sc. scen. sci. scr. sdv. seg. sek. sen. sept. ser.
sev. sg. sgt. sh. sig. sigg. sign. sim. sin. sing. sinh. skand. skl. sklad. sklanj. sklep. skr. sl. slik. slov.
slovak. slovn. sn. so. sob. soc. sociol. sod. sopomen. sopr. sor. sov. sovj. sp. spec. spl. spr. spreg. sq. sr.
sre. sred. sredoz. srh. ss. ssp. st. sta. stan. stanstar. stcsl. ste. stim. stol. stom. str. stroj. strok. stsl.
stud. sup. supl. suppl. svet. sz. t. tab. tech. ted. tehn. tehnol. tek. teks. tekst. tel. temp. ten. teol. ter.
term. test. th. theol. tim. tip. tisočl. tit. tl. tol. tolmač. tom. tor. tov. tr. trad. traj. trans. tren.
trib. tril. trop. trp. trž. ts. tt. tu. tur. turiz. tvor. tvorb. . u. ul. umet. un. univ. up. upr. ur. urad.
us. ust. utr. v. va. val. var. varn. ven. ver. verb. vest. vezal. vic. vis. viv. viz. viš. vod. vok. vol. vpr.
vrst. vrstil. vs. vv. vzd. vzg. vzh. vzor. w. wed. wg. wk. x. y. z. zah. zaim. zak. zap. zasl. zavar. zač. zb.
združ. zg. zn. znan. znanstv. zoot. zun. zv. zvd. á. é. ć. č. čas. čet. čl. člen. čustv. đ. ľ. ł. ş. ŠT. š. šir.
škofl. škot. šol. št. števil. štud. ů. ű. žen. žival.
""".split()
for orth in abbrv:
_exc[orth] = [{ORTH: orth}]
TOKENIZER_EXCEPTIONS = update_exc(BASE_EXCEPTIONS, _exc)

View File

@ -29,7 +29,7 @@ class Ukrainian(Language):
assigns=["token.lemma"],
default_config={
"model": None,
"mode": "pymorphy2",
"mode": "pymorphy3",
"overwrite": False,
"scorer": {"@scorers": "spacy.lemmatizer_scorer.v1"},
},

View File

@ -14,11 +14,11 @@ class UkrainianLemmatizer(RussianLemmatizer):
model: Optional[Model],
name: str = "lemmatizer",
*,
mode: str = "pymorphy2",
mode: str = "pymorphy3",
overwrite: bool = False,
scorer: Optional[Callable] = lemmatizer_score,
) -> None:
if mode == "pymorphy2":
if mode in {"pymorphy2", "pymorphy2_lookup"}:
try:
from pymorphy2 import MorphAnalyzer
except ImportError:
@ -29,6 +29,17 @@ class UkrainianLemmatizer(RussianLemmatizer):
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer(lang="uk")
elif mode == "pymorphy3":
try:
from pymorphy3 import MorphAnalyzer
except ImportError:
raise ImportError(
"The Ukrainian lemmatizer mode 'pymorphy3' requires the "
"pymorphy3 library and dictionaries. Install them with: "
"pip install pymorphy3 pymorphy3-dicts-uk"
) from None
if getattr(self, "_morph", None) is None:
self._morph = MorphAnalyzer(lang="uk")
super().__init__(
vocab, model, name, mode=mode, overwrite=overwrite, scorer=scorer
)

View File

@ -1,4 +1,4 @@
from typing import Iterator, Optional, Any, Dict, Callable, Iterable, Collection
from typing import Iterator, Optional, Any, Dict, Callable, Iterable
from typing import Union, Tuple, List, Set, Pattern, Sequence
from typing import NoReturn, TYPE_CHECKING, TypeVar, cast, overload
@ -10,6 +10,7 @@ from contextlib import contextmanager
from copy import deepcopy
from pathlib import Path
import warnings
from thinc.api import get_current_ops, Config, CupyOps, Optimizer
import srsly
import multiprocessing as mp
@ -24,7 +25,7 @@ from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
from .training import Example, validate_examples
from .training.initialize import init_vocab, init_tok2vec
from .scorer import Scorer
from .util import registry, SimpleFrozenList, _pipe, raise_error
from .util import registry, SimpleFrozenList, _pipe, raise_error, _DEFAULT_EMPTY_PIPES
from .util import SimpleFrozenDict, combine_score_weights, CONFIG_SECTION_ORDER
from .util import warn_if_jupyter_cupy
from .lang.tokenizer_exceptions import URL_MATCH, BASE_EXCEPTIONS
@ -1698,9 +1699,9 @@ class Language:
config: Union[Dict[str, Any], Config] = {},
*,
vocab: Union[Vocab, bool] = True,
disable: Union[str, Iterable[str]] = SimpleFrozenList(),
enable: Union[str, Iterable[str]] = SimpleFrozenList(),
exclude: Union[str, Iterable[str]] = SimpleFrozenList(),
disable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
meta: Dict[str, Any] = SimpleFrozenDict(),
auto_fill: bool = True,
validate: bool = True,
@ -1727,12 +1728,6 @@ class Language:
DOCS: https://spacy.io/api/language#from_config
"""
if isinstance(disable, str):
disable = [disable]
if isinstance(enable, str):
enable = [enable]
if isinstance(exclude, str):
exclude = [exclude]
if auto_fill:
config = Config(
cls.default_config, section_order=CONFIG_SECTION_ORDER
@ -1877,9 +1872,38 @@ class Language:
nlp.vocab.from_bytes(vocab_b)
# Resolve disabled/enabled settings.
if isinstance(disable, str):
disable = [disable]
if isinstance(enable, str):
enable = [enable]
if isinstance(exclude, str):
exclude = [exclude]
def fetch_pipes_status(value: Iterable[str], key: str) -> Iterable[str]:
"""Fetch value for `enable` or `disable` w.r.t. the specified config and passed arguments passed to
.load(). If both arguments and config specified values for this field, the passed arguments take precedence
and a warning is printed.
value (Iterable[str]): Passed value for `enable` or `disable`.
key (str): Key for field in config (either "enabled" or "disabled").
RETURN (Iterable[str]):
"""
# We assume that no argument was passed if the value is the specified default value.
if id(value) == id(_DEFAULT_EMPTY_PIPES):
return config["nlp"].get(key, [])
else:
if len(config["nlp"].get(key, [])):
warnings.warn(
Warnings.W123.format(
arg=key[:-1],
arg_value=value,
config_value=config["nlp"][key],
)
)
return value
disabled_pipes = cls._resolve_component_status(
[*config["nlp"]["disabled"], *disable],
[*config["nlp"].get("enabled", []), *enable],
fetch_pipes_status(disable, "disabled"),
fetch_pipes_status(enable, "enabled"),
config["nlp"]["pipeline"],
)
nlp._disabled = set(p for p in disabled_pipes if p not in exclude)
@ -2064,14 +2088,7 @@ class Language:
pipe_name for pipe_name in pipe_names if pipe_name not in enable
]
if disable and disable != to_disable:
raise ValueError(
Errors.E1042.format(
arg1="enable",
arg2="disable",
arg1_values=enable,
arg2_values=disable,
)
)
raise ValueError(Errors.E1042.format(enable=enable, disable=disable))
return tuple(to_disable)

View File

@ -1,11 +1,12 @@
from pathlib import Path
from typing import Optional, Callable, Iterable, List, Tuple
from thinc.types import Floats2d
from thinc.api import chain, clone, list2ragged, reduce_mean, residual
from thinc.api import Model, Maxout, Linear, noop, tuplify, Ragged
from thinc.api import chain, list2ragged, reduce_mean, residual
from thinc.api import Model, Maxout, Linear, tuplify, Ragged
from ...util import registry
from ...kb import KnowledgeBase, Candidate, get_candidates
from ...kb import KnowledgeBase, InMemoryLookupKB
from ...kb import Candidate, get_candidates, get_candidates_batch
from ...vocab import Vocab
from ...tokens import Span, Doc
from ..extract_spans import extract_spans
@ -78,9 +79,11 @@ def span_maker_forward(model, docs: List[Doc], is_train) -> Tuple[Ragged, Callab
@registry.misc("spacy.KBFromFile.v1")
def load_kb(kb_path: Path) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
def load_kb(
kb_path: Path,
) -> Callable[[Vocab], KnowledgeBase]:
def kb_from_file(vocab: Vocab):
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.from_disk(kb_path)
return kb
@ -88,9 +91,11 @@ def load_kb(kb_path: Path) -> Callable[[Vocab], KnowledgeBase]:
@registry.misc("spacy.EmptyKB.v1")
def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab):
return KnowledgeBase(vocab=vocab, entity_vector_length=entity_vector_length)
def empty_kb(
entity_vector_length: int,
) -> Callable[[Vocab], KnowledgeBase]:
def empty_kb_factory(vocab: Vocab):
return InMemoryLookupKB(vocab=vocab, entity_vector_length=entity_vector_length)
return empty_kb_factory
@ -98,3 +103,10 @@ def empty_kb(entity_vector_length: int) -> Callable[[Vocab], KnowledgeBase]:
@registry.misc("spacy.CandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, Span], Iterable[Candidate]]:
return get_candidates
@registry.misc("spacy.CandidateBatchGenerator.v1")
def create_candidates_batch() -> Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
]:
return get_candidates_batch

View File

@ -1,7 +1,6 @@
from typing import cast, Any, Callable, Dict, Iterable, List, Optional
from typing import Sequence, Tuple, Union
from typing import Tuple
from collections import Counter
from copy import deepcopy
from itertools import islice
import numpy as np
@ -149,9 +148,7 @@ class EditTreeLemmatizer(TrainablePipe):
if not any(len(doc) for doc in docs):
# Handle cases where there are no tokens in any docs.
n_labels = len(self.cfg["labels"])
guesses: List[Ints2d] = [
self.model.ops.alloc((0, n_labels), dtype="i") for doc in docs
]
guesses: List[Ints2d] = [self.model.ops.alloc2i(0, n_labels) for _ in docs]
assert len(guesses) == n_docs
return guesses
scores = self.model.predict(docs)

View File

@ -53,9 +53,11 @@ DEFAULT_NEL_MODEL = Config().from_str(default_model_config)["model"]
"incl_context": True,
"entity_vector_length": 64,
"get_candidates": {"@misc": "spacy.CandidateGenerator.v1"},
"get_candidates_batch": {"@misc": "spacy.CandidateBatchGenerator.v1"},
"overwrite": True,
"scorer": {"@scorers": "spacy.entity_linker_scorer.v1"},
"use_gold_ents": True,
"candidates_batch_size": 1,
"threshold": None,
},
default_score_weights={
@ -75,9 +77,13 @@ def make_entity_linker(
incl_context: bool,
entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
overwrite: bool,
scorer: Optional[Callable],
use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None,
):
"""Construct an EntityLinker component.
@ -90,17 +96,21 @@ def make_entity_linker(
incl_prior (bool): Whether or not to include prior probabilities from the KB in the model.
incl_context (bool): Whether or not to include the local context in the model.
entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]): Function that
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention.
get_candidates_batch (
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]], Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
scorer (Optional[Callable]): The scoring method.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations.
candidates_batch_size (int): Size of batches for entity candidate generation.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the threshold,
prediction is discarded. If None, predictions are not filtered by any threshold.
"""
if not model.attrs.get("include_span_maker", False):
# The only difference in arguments here is that use_gold_ents is not available
# The only difference in arguments here is that use_gold_ents and threshold aren't available.
return EntityLinker_v1(
nlp.vocab,
model,
@ -124,9 +134,11 @@ def make_entity_linker(
incl_context=incl_context,
entity_vector_length=entity_vector_length,
get_candidates=get_candidates,
get_candidates_batch=get_candidates_batch,
overwrite=overwrite,
scorer=scorer,
use_gold_ents=use_gold_ents,
candidates_batch_size=candidates_batch_size,
threshold=threshold,
)
@ -160,9 +172,13 @@ class EntityLinker(TrainablePipe):
incl_context: bool,
entity_vector_length: int,
get_candidates: Callable[[KnowledgeBase, Span], Iterable[Candidate]],
get_candidates_batch: Callable[
[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]
],
overwrite: bool = BACKWARD_OVERWRITE,
scorer: Optional[Callable] = entity_linker_score,
use_gold_ents: bool,
candidates_batch_size: int,
threshold: Optional[float] = None,
) -> None:
"""Initialize an entity linker.
@ -178,10 +194,14 @@ class EntityLinker(TrainablePipe):
entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_links.
get_candidates_batch (
Callable[[KnowledgeBase, Iterable[Span]], Iterable[Iterable[Candidate]]],
Iterable[Candidate]]
): Function that produces a list of candidates, given a certain knowledge base and several textual mentions.
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
use_gold_ents (bool): Whether to copy entities from gold docs or not. If false, another
component must provide entity annotations.
candidates_batch_size (int): Size of batches for entity candidate generation.
threshold (Optional[float]): Confidence threshold for entity predictions. If confidence is below the
threshold, prediction is discarded. If None, predictions are not filtered by any threshold.
DOCS: https://spacy.io/api/entitylinker#init
@ -204,22 +224,27 @@ class EntityLinker(TrainablePipe):
self.incl_prior = incl_prior
self.incl_context = incl_context
self.get_candidates = get_candidates
self.get_candidates_batch = get_candidates_batch
self.cfg: Dict[str, Any] = {"overwrite": overwrite}
self.distance = CosineDistance(normalize=False)
# how many neighbour sentences to take into account
# create an empty KB by default. If you want to load a predefined one, specify it in 'initialize'.
# create an empty KB by default
self.kb = empty_kb(entity_vector_length)(self.vocab)
self.scorer = scorer
self.use_gold_ents = use_gold_ents
self.candidates_batch_size = candidates_batch_size
self.threshold = threshold
if candidates_batch_size < 1:
raise ValueError(Errors.E1044)
def set_kb(self, kb_loader: Callable[[Vocab], KnowledgeBase]):
"""Define the KB of this pipe by providing a function that will
create it using this object's vocab."""
if not callable(kb_loader):
raise ValueError(Errors.E885.format(arg_type=type(kb_loader)))
self.kb = kb_loader(self.vocab)
self.kb = kb_loader(self.vocab) # type: ignore
def validate_kb(self) -> None:
# Raise an error if the knowledge base is not initialized.
@ -241,8 +266,8 @@ class EntityLinker(TrainablePipe):
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
Note that providing this argument, will overwrite all data accumulated in the current KB.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab
instance. Note that providing this argument will overwrite all data accumulated in the current KB.
Use this only when loading a KB as-such from file.
DOCS: https://spacy.io/api/entitylinker#initialize
@ -419,66 +444,93 @@ class EntityLinker(TrainablePipe):
if len(doc) == 0:
continue
sentences = [s for s in doc.sents]
# Looping through each entity (TODO: rewrite)
for ent in doc.ents:
sent_index = sentences.index(ent.sent)
assert sent_index >= 0
if self.incl_context:
# get n_neighbour sentences, clipped to the length of the document
start_sentence = max(0, sent_index - self.n_sents)
end_sentence = min(len(sentences) - 1, sent_index + self.n_sents)
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
sentence_encoding = self.model.predict([sent_doc])[0]
sentence_encoding_t = sentence_encoding.T
sentence_norm = xp.linalg.norm(sentence_encoding_t)
entity_count += 1
if ent.label_ in self.labels_discard:
# ignoring this entity - setting to NIL
final_kb_ids.append(self.NIL)
else:
candidates = list(self.get_candidates(self.kb, ent))
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL)
elif len(candidates) == 1 and self.threshold is None:
# shortcut for efficiency reasons: take the 1 candidate
final_kb_ids.append(candidates[0].entity_)
else:
random.shuffle(candidates)
# set all prior probabilities to 0 if incl_prior=False
prior_probs = xp.asarray([c.prior_prob for c in candidates])
if not self.incl_prior:
prior_probs = xp.asarray([0.0 for _ in candidates])
scores = prior_probs
# add in similarity from the context
if self.incl_context:
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
sentence_norm * entity_norm
)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = prior_probs + sims - (prior_probs * sims)
final_kb_ids.append(
candidates[scores.argmax().item()].entity_
if self.threshold is None or scores.max() >= self.threshold
else EntityLinker.NIL
# Loop over entities in batches.
for ent_idx in range(0, len(doc.ents), self.candidates_batch_size):
ent_batch = doc.ents[ent_idx : ent_idx + self.candidates_batch_size]
# Look up candidate entities.
valid_ent_idx = [
idx
for idx in range(len(ent_batch))
if ent_batch[idx].label_ not in self.labels_discard
]
batch_candidates = list(
self.get_candidates_batch(
self.kb, [ent_batch[idx] for idx in valid_ent_idx]
)
if self.candidates_batch_size > 1
else [
self.get_candidates(self.kb, ent_batch[idx])
for idx in valid_ent_idx
]
)
# Looping through each entity in batch (TODO: rewrite)
for j, ent in enumerate(ent_batch):
sent_index = sentences.index(ent.sent)
assert sent_index >= 0
if self.incl_context:
# get n_neighbour sentences, clipped to the length of the document
start_sentence = max(0, sent_index - self.n_sents)
end_sentence = min(
len(sentences) - 1, sent_index + self.n_sents
)
start_token = sentences[start_sentence].start
end_token = sentences[end_sentence].end
sent_doc = doc[start_token:end_token].as_doc()
# currently, the context is the same for each entity in a sentence (should be refined)
sentence_encoding = self.model.predict([sent_doc])[0]
sentence_encoding_t = sentence_encoding.T
sentence_norm = xp.linalg.norm(sentence_encoding_t)
entity_count += 1
if ent.label_ in self.labels_discard:
# ignoring this entity - setting to NIL
final_kb_ids.append(self.NIL)
else:
candidates = list(batch_candidates[j])
if not candidates:
# no prediction possible for this entity - setting to NIL
final_kb_ids.append(self.NIL)
elif len(candidates) == 1 and self.threshold is None:
# shortcut for efficiency reasons: take the 1 candidate
final_kb_ids.append(candidates[0].entity_)
else:
random.shuffle(candidates)
# set all prior probabilities to 0 if incl_prior=False
prior_probs = xp.asarray([c.prior_prob for c in candidates])
if not self.incl_prior:
prior_probs = xp.asarray([0.0 for _ in candidates])
scores = prior_probs
# add in similarity from the context
if self.incl_context:
entity_encodings = xp.asarray(
[c.entity_vector for c in candidates]
)
entity_norm = xp.linalg.norm(entity_encodings, axis=1)
if len(entity_encodings) != len(prior_probs):
raise RuntimeError(
Errors.E147.format(
method="predict",
msg="vectors not of equal length",
)
)
# cosine similarity
sims = xp.dot(entity_encodings, sentence_encoding_t) / (
sentence_norm * entity_norm
)
if sims.shape != prior_probs.shape:
raise ValueError(Errors.E161)
scores = prior_probs + sims - (prior_probs * sims)
final_kb_ids.append(
candidates[scores.argmax().item()].entity_
if self.threshold is None
or scores.max() >= self.threshold
else EntityLinker.NIL
)
if not (len(final_kb_ids) == entity_count):
err = Errors.E147.format(
method="predict", msg="result variables not of equal length"

View File

@ -1,6 +1,5 @@
import warnings
from typing import Optional, Union, List, Dict, Tuple, Iterable, Any, Callable, Sequence
from typing import cast
import warnings
from collections import defaultdict
from pathlib import Path
import srsly
@ -317,7 +316,7 @@ class EntityRuler(Pipe):
phrase_pattern["id"] = ent_id
phrase_patterns.append(phrase_pattern)
for entry in token_patterns + phrase_patterns: # type: ignore[operator]
label = entry["label"]
label = entry["label"] # type: ignore
if "id" in entry:
ent_label = label
label = self._create_label(label, entry["id"])

View File

@ -68,8 +68,7 @@ class EntityLinker_v1(TrainablePipe):
entity_vector_length (int): Size of encoding vectors in the KB.
get_candidates (Callable[[KnowledgeBase, Span], Iterable[Candidate]]): Function that
produces a list of candidates, given a certain knowledge base and a textual mention.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_links.
scorer (Optional[Callable]): The scoring method. Defaults to Scorer.score_links.
DOCS: https://spacy.io/api/entitylinker#init
"""
self.vocab = vocab
@ -115,7 +114,7 @@ class EntityLinker_v1(TrainablePipe):
get_examples (Callable[[], Iterable[Example]]): Function that
returns a representative sample of gold-standard Example objects.
nlp (Language): The current nlp object the component is part of.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates a KnowledgeBase from a Vocab instance.
kb_loader (Callable[[Vocab], KnowledgeBase]): A function that creates an InMemoryLookupKB from a Vocab instance.
Note that providing this argument, will overwrite all data accumulated in the current KB.
Use this only when loading a KB as-such from file.

View File

@ -26,17 +26,17 @@ scorer = {"@layers": "spacy.LinearLogistic.v1"}
hidden_size = 128
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v1"
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v1"
@architectures = "spacy.MultiHashEmbed.v2"
width = 96
rows = [5000, 2000, 1000, 1000]
attrs = ["ORTH", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
@ -133,6 +133,9 @@ def make_spancat(
spans_key (str): Key of the doc.spans dict to save the spans under. During
initialization and training, the component will look for spans on the
reference document under the same key.
scorer (Optional[Callable]): The scoring method. Defaults to
Scorer.score_spans for the Doc.spans[spans_key] with overlapping
spans allowed.
threshold (float): Minimum probability to consider a prediction positive.
Spans with a positive prediction will be saved on the Doc. Defaults to
0.5.

View File

@ -24,8 +24,8 @@ single_label_default_config = """
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
rows = [2000, 2000, 500, 1000, 500]
attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]

View File

@ -19,17 +19,17 @@ multi_label_default_config = """
@architectures = "spacy.TextCatEnsemble.v2"
[model.tok2vec]
@architectures = "spacy.Tok2Vec.v1"
@architectures = "spacy.Tok2Vec.v2"
[model.tok2vec.embed]
@architectures = "spacy.MultiHashEmbed.v2"
width = 64
rows = [2000, 2000, 1000, 1000, 1000, 1000]
attrs = ["ORTH", "LOWER", "PREFIX", "SUFFIX", "SHAPE", "ID"]
rows = [2000, 2000, 500, 1000, 500]
attrs = ["NORM", "LOWER", "PREFIX", "SUFFIX", "SHAPE"]
include_static_vectors = false
[model.tok2vec.encode]
@architectures = "spacy.MaxoutWindowEncoder.v1"
@architectures = "spacy.MaxoutWindowEncoder.v2"
width = ${model.tok2vec.embed.width}
window_size = 1
maxout_pieces = 3
@ -96,8 +96,8 @@ def make_multilabel_textcat(
model: Model[List[Doc], List[Floats2d]],
threshold: float,
scorer: Optional[Callable],
) -> "TextCategorizer":
"""Create a TextCategorizer component. The text categorizer predicts categories
) -> "MultiLabel_TextCategorizer":
"""Create a MultiLabel_TextCategorizer component. The text categorizer predicts categories
over a whole document. It can learn one or more labels, and the labels are considered
to be non-mutually exclusive, which means that there can be zero or more labels
per doc).
@ -105,6 +105,7 @@ def make_multilabel_textcat(
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
scores for each category.
threshold (float): Cutoff to consider a prediction "positive".
scorer (Optional[Callable]): The scoring method.
"""
return MultiLabel_TextCategorizer(
nlp.vocab, model, name, threshold=threshold, scorer=scorer
@ -147,6 +148,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
name (str): The component instance name, used to add entries to the
losses during training.
threshold (float): Cutoff to consider a prediction "positive".
scorer (Optional[Callable]): The scoring method.
DOCS: https://spacy.io/api/textcategorizer#init
"""

View File

@ -123,9 +123,6 @@ class Tok2Vec(TrainablePipe):
width = self.model.get_dim("nO")
return [self.model.ops.alloc((0, width)) for doc in docs]
tokvecs = self.model.predict(docs)
batch_id = Tok2VecListener.get_batch_id(docs)
for listener in self.listeners:
listener.receive(batch_id, tokvecs, _empty_backprop)
return tokvecs
def set_annotations(self, docs: Sequence[Doc], tokvecses) -> None:
@ -286,8 +283,19 @@ class Tok2VecListener(Model):
def forward(model: Tok2VecListener, inputs, is_train: bool):
"""Supply the outputs from the upstream Tok2Vec component."""
if is_train:
model.verify_inputs(inputs)
return model._outputs, model._backprop
# This might occur during training when the tok2vec layer is frozen / hasn't been updated.
# In that case, it should be set to "annotating" so we can retrieve the embeddings from the doc.
if model._batch_id is None:
outputs = []
for doc in inputs:
if doc.tensor.size == 0:
raise ValueError(Errors.E203.format(name="tok2vec"))
else:
outputs.append(doc.tensor)
return outputs, _empty_backprop
else:
model.verify_inputs(inputs)
return model._outputs, model._backprop
else:
# This is pretty grim, but it's hard to do better :(.
# It's hard to avoid relying on the doc.tensor attribute, because the
@ -306,7 +314,7 @@ def forward(model: Tok2VecListener, inputs, is_train: bool):
outputs.append(model.ops.alloc2f(len(doc), width))
else:
outputs.append(doc.tensor)
return outputs, lambda dX: []
return outputs, _empty_backprop
def _empty_backprop(dX): # for pickling

View File

@ -181,12 +181,12 @@ class TokenPatternNumber(BaseModel):
IS_SUBSET: Optional[List[StrictInt]] = Field(None, alias="is_subset")
IS_SUPERSET: Optional[List[StrictInt]] = Field(None, alias="is_superset")
INTERSECTS: Optional[List[StrictInt]] = Field(None, alias="intersects")
EQ: Union[StrictInt, StrictFloat] = Field(None, alias="==")
NEQ: Union[StrictInt, StrictFloat] = Field(None, alias="!=")
GEQ: Union[StrictInt, StrictFloat] = Field(None, alias=">=")
LEQ: Union[StrictInt, StrictFloat] = Field(None, alias="<=")
GT: Union[StrictInt, StrictFloat] = Field(None, alias=">")
LT: Union[StrictInt, StrictFloat] = Field(None, alias="<")
EQ: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias="==")
NEQ: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias="!=")
GEQ: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias=">=")
LEQ: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias="<=")
GT: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias=">")
LT: Optional[Union[StrictInt, StrictFloat]] = Field(None, alias="<")
class Config:
extra = "forbid"
@ -430,7 +430,7 @@ class ProjectConfigAssetURL(BaseModel):
# fmt: off
dest: StrictStr = Field(..., title="Destination of downloaded asset")
url: Optional[StrictStr] = Field(None, title="URL of asset")
checksum: str = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
description: StrictStr = Field("", title="Description of asset")
# fmt: on
@ -438,7 +438,7 @@ class ProjectConfigAssetURL(BaseModel):
class ProjectConfigAssetGit(BaseModel):
# fmt: off
git: ProjectConfigAssetGitItem = Field(..., title="Git repo information")
checksum: str = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
checksum: Optional[str] = Field(None, title="MD5 hash of file", regex=r"([a-fA-F\d]{32})")
description: Optional[StrictStr] = Field(None, title="Description of asset")
# fmt: on
@ -508,9 +508,9 @@ class DocJSONSchema(BaseModel):
None, title="Indices of sentences' start and end indices"
)
text: StrictStr = Field(..., title="Document text")
spans: Dict[StrictStr, List[Dict[StrictStr, Union[StrictStr, StrictInt]]]] = Field(
None, title="Span information - end/start indices, label, KB ID"
)
spans: Optional[
Dict[StrictStr, List[Dict[StrictStr, Union[StrictStr, StrictInt]]]]
] = Field(None, title="Span information - end/start indices, label, KB ID")
tokens: List[Dict[StrictStr, Union[StrictStr, StrictInt]]] = Field(
..., title="Token information - ID, start, annotations"
)
@ -519,9 +519,9 @@ class DocJSONSchema(BaseModel):
title="Any custom data stored in the document's _ attribute",
alias="_",
)
underscore_token: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field(
underscore_token: Optional[Dict[StrictStr, List[Dict[StrictStr, Any]]]] = Field(
None, title="Any custom data stored in the token's _ attribute"
)
underscore_span: Optional[Dict[StrictStr, Dict[StrictStr, Any]]] = Field(
underscore_span: Optional[Dict[StrictStr, List[Dict[StrictStr, Any]]]] = Field(
None, title="Any custom data stored in the span's _ attribute"
)

View File

@ -333,16 +333,24 @@ def ro_tokenizer():
@pytest.fixture(scope="session")
def ru_tokenizer():
pytest.importorskip("pymorphy2")
pytest.importorskip("pymorphy3")
return get_lang_class("ru")().tokenizer
@pytest.fixture
def ru_lemmatizer():
pytest.importorskip("pymorphy2")
pytest.importorskip("pymorphy3")
return get_lang_class("ru")().add_pipe("lemmatizer")
@pytest.fixture
def ru_lookup_lemmatizer():
pytest.importorskip("pymorphy2")
return get_lang_class("ru")().add_pipe(
"lemmatizer", config={"mode": "pymorphy2_lookup"}
)
@pytest.fixture(scope="session")
def sa_tokenizer():
return get_lang_class("sa")().tokenizer
@ -411,15 +419,24 @@ def ky_tokenizer():
@pytest.fixture(scope="session")
def uk_tokenizer():
pytest.importorskip("pymorphy2")
pytest.importorskip("pymorphy3")
return get_lang_class("uk")().tokenizer
@pytest.fixture
def uk_lemmatizer():
pytest.importorskip("pymorphy3")
pytest.importorskip("pymorphy3_dicts_uk")
return get_lang_class("uk")().add_pipe("lemmatizer")
@pytest.fixture
def uk_lookup_lemmatizer():
pytest.importorskip("pymorphy2")
pytest.importorskip("pymorphy2_dicts_uk")
return get_lang_class("uk")().add_pipe("lemmatizer")
return get_lang_class("uk")().add_pipe(
"lemmatizer", config={"mode": "pymorphy2_lookup"}
)
@pytest.fixture(scope="session")

View File

@ -82,6 +82,21 @@ def test_issue2396(en_vocab):
assert (span.get_lca_matrix() == matrix).all()
@pytest.mark.issue(11499)
def test_init_args_unmodified(en_vocab):
words = ["A", "sentence"]
ents = ["B-TYPE1", ""]
sent_starts = [True, False]
Doc(
vocab=en_vocab,
words=words,
ents=ents,
sent_starts=sent_starts,
)
assert ents == ["B-TYPE1", ""]
assert sent_starts == [True, False]
@pytest.mark.parametrize("text", ["-0.23", "+123,456", "±1"])
@pytest.mark.parametrize("lang_cls", [English, MultiLanguage])
@pytest.mark.issue(2782)

View File

@ -128,7 +128,9 @@ def test_doc_to_json_with_token_span_attributes(doc):
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
doc[0:1]._.span_test = "span_attribute"
doc[0:2]._.span_test = "span_attribute_2"
doc[0]._.token_test = 117
doc[1]._.token_test = 118
doc.spans["span_group"] = [doc[0:1]]
json_doc = doc.to_json(
underscore=["json_test1", "json_test2", "token_test", "span_test"]
@ -139,8 +141,10 @@ def test_doc_to_json_with_token_span_attributes(doc):
assert json_doc["_"]["json_test2"] == [1, 2, 3]
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["token_test"]["value"] == 117
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert json_doc["underscore_token"]["token_test"][0]["value"] == 117
assert json_doc["underscore_token"]["token_test"][1]["value"] == 118
assert json_doc["underscore_span"]["span_test"][0]["value"] == "span_attribute"
assert json_doc["underscore_span"]["span_test"][1]["value"] == "span_attribute_2"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
@ -161,8 +165,8 @@ def test_doc_to_json_with_custom_user_data(doc):
assert json_doc["_"]["json_test"] == "hello world"
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["token_test"]["value"] == 117
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert json_doc["underscore_token"]["token_test"][0]["value"] == 117
assert json_doc["underscore_span"]["span_test"][0]["value"] == "span_attribute"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
@ -181,8 +185,8 @@ def test_doc_to_json_with_token_span_same_identifier(doc):
assert json_doc["_"]["my_ext"] == "hello world"
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_token"]["my_ext"]["value"] == 117
assert json_doc["underscore_span"]["my_ext"]["value"] == "span_attribute"
assert json_doc["underscore_token"]["my_ext"][0]["value"] == 117
assert json_doc["underscore_span"]["my_ext"][0]["value"] == "span_attribute"
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
assert srsly.json_loads(srsly.json_dumps(json_doc)) == json_doc
@ -195,10 +199,9 @@ def test_doc_to_json_with_token_attributes_missing(doc):
doc[0]._.token_test = 117
json_doc = doc.to_json(underscore=["span_test"])
assert "underscore_token" in json_doc
assert "underscore_span" in json_doc
assert json_doc["underscore_span"]["span_test"]["value"] == "span_attribute"
assert "token_test" not in json_doc["underscore_token"]
assert json_doc["underscore_span"]["span_test"][0]["value"] == "span_attribute"
assert "underscore_token" not in json_doc
assert len(schemas.validate(schemas.DocJSONSchema, json_doc)) == 0
@ -283,7 +286,9 @@ def test_json_to_doc_with_token_span_attributes(doc):
doc._.json_test1 = "hello world"
doc._.json_test2 = [1, 2, 3]
doc[0:1]._.span_test = "span_attribute"
doc[0:2]._.span_test = "span_attribute_2"
doc[0]._.token_test = 117
doc[1]._.token_test = 118
json_doc = doc.to_json(
underscore=["json_test1", "json_test2", "token_test", "span_test"]
@ -295,7 +300,9 @@ def test_json_to_doc_with_token_span_attributes(doc):
assert new_doc._.json_test1 == "hello world"
assert new_doc._.json_test2 == [1, 2, 3]
assert new_doc[0]._.token_test == 117
assert new_doc[1]._.token_test == 118
assert new_doc[0:1]._.span_test == "span_attribute"
assert new_doc[0:2]._.span_test == "span_attribute_2"
assert new_doc.user_data == doc.user_data
assert new_doc.to_bytes(exclude=["user_data"]) == doc.to_bytes(
exclude=["user_data"]

View File

@ -0,0 +1,18 @@
import pytest
# fmt: off
GRC_TOKEN_EXCEPTION_TESTS = [
("τὸ 〈τῆς〉 φιλοσοφίας ἔργον ἔνιοί φασιν ἀπὸ ⟦βαρβάρων⟧ ἄρξαι.", ["τὸ", "", "τῆς", "", "φιλοσοφίας", "ἔργον", "ἔνιοί", "φασιν", "ἀπὸ", "", "βαρβάρων", "", "ἄρξαι", "."]),
("τὴν δὲ τῶν Αἰγυπτίων φιλοσοφίαν εἶναι τοιαύτην περί τε †θεῶν† καὶ ὑπὲρ δικαιοσύνης.", ["τὴν", "δὲ", "τῶν", "Αἰγυπτίων", "φιλοσοφίαν", "εἶναι", "τοιαύτην", "περί", "τε", "", "θεῶν", "", "καὶ", "ὑπὲρ", "δικαιοσύνης", "."]),
("⸏πόσις δ' Ἐρεχθεύς ἐστί μοι σεσωσμένος⸏", ["", "πόσις", "δ'", "Ἐρεχθεύς", "ἐστί", "μοι", "σεσωσμένος", ""]),
("⸏ὔπνον ἴδωμεν⸎", ["", "ὔπνον", "ἴδωμεν", ""]),
]
# fmt: on
@pytest.mark.parametrize("text,expected_tokens", GRC_TOKEN_EXCEPTION_TESTS)
def test_grc_tokenizer(grc_tokenizer, text, expected_tokens):
tokens = grc_tokenizer(text)
token_list = [token.text for token in tokens if not token.is_space]
assert expected_tokens == token_list

View File

@ -78,3 +78,17 @@ def test_ru_lemmatizer_punct(ru_lemmatizer):
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
doc = Doc(ru_lemmatizer.vocab, words=["»"], pos=["PUNCT"])
assert ru_lemmatizer.pymorphy2_lemmatize(doc[0]) == ['"']
def test_ru_doc_lookup_lemmatization(ru_lookup_lemmatizer):
words = ["мама", "мыла", "раму"]
pos = ["NOUN", "VERB", "NOUN"]
morphs = [
"Animacy=Anim|Case=Nom|Gender=Fem|Number=Sing",
"Aspect=Imp|Gender=Fem|Mood=Ind|Number=Sing|Tense=Past|VerbForm=Fin|Voice=Act",
"Animacy=Anim|Case=Acc|Gender=Fem|Number=Sing",
]
doc = Doc(ru_lookup_lemmatizer.vocab, words=words, pos=pos, morphs=morphs)
doc = ru_lookup_lemmatizer(doc)
lemmas = [token.lemma_ for token in doc]
assert lemmas == ["мама", "мыла", "раму"]

View File

@ -20,7 +20,6 @@ od katerih so te svoboščine odvisne,
assert len(tokens) == 116
@pytest.mark.xfail
def test_ordinal_number(sl_tokenizer):
text = "10. decembra 1948"
tokens = sl_tokenizer(text)

View File

@ -9,3 +9,11 @@ def test_uk_lemmatizer(uk_lemmatizer):
"""Check that the default uk lemmatizer runs."""
doc = Doc(uk_lemmatizer.vocab, words=["a", "b", "c"])
uk_lemmatizer(doc)
assert [token.lemma for token in doc]
def test_uk_lookup_lemmatizer(uk_lookup_lemmatizer):
"""Check that the lookup uk lemmatizer runs."""
doc = Doc(uk_lookup_lemmatizer.vocab, words=["a", "b", "c"])
uk_lookup_lemmatizer(doc)
assert [token.lemma for token in doc]

View File

@ -6,7 +6,7 @@ from numpy.testing import assert_equal
from spacy import registry, util
from spacy.attrs import ENT_KB_ID
from spacy.compat import pickle
from spacy.kb import Candidate, KnowledgeBase, get_candidates
from spacy.kb import Candidate, InMemoryLookupKB, get_candidates, KnowledgeBase
from spacy.lang.en import English
from spacy.ml import load_kb
from spacy.pipeline import EntityLinker
@ -34,7 +34,7 @@ def assert_almost_equal(a, b):
def test_issue4674():
"""Test that setting entities with overlapping identifiers does not mess up IO"""
nlp = English()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
vector1 = [0.9, 1.1, 1.01]
vector2 = [1.8, 2.25, 2.01]
with pytest.warns(UserWarning):
@ -51,7 +51,7 @@ def test_issue4674():
dir_path.mkdir()
file_path = dir_path / "kb"
kb.to_disk(str(file_path))
kb2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb2.from_disk(str(file_path))
assert kb2.get_size_entities() == 1
@ -59,9 +59,9 @@ def test_issue4674():
@pytest.mark.issue(6730)
def test_issue6730(en_vocab):
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
from spacy.kb import KnowledgeBase
from spacy.kb.kb_in_memory import InMemoryLookupKB
kb = KnowledgeBase(en_vocab, entity_vector_length=3)
kb = InMemoryLookupKB(en_vocab, entity_vector_length=3)
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
with pytest.raises(ValueError):
@ -127,7 +127,7 @@ def test_issue7065_b():
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q270853", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
alias="No. 8",
@ -190,7 +190,7 @@ def test_no_entities():
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb
@ -231,7 +231,7 @@ def test_partial_links():
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Russ Cochran", ["Q2146908"], [0.9])
return mykb
@ -263,7 +263,7 @@ def test_partial_links():
def test_kb_valid_entities(nlp):
"""Test the valid construction of a KB with 3 entities and two aliases"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3])
@ -292,7 +292,7 @@ def test_kb_valid_entities(nlp):
def test_kb_invalid_entities(nlp):
"""Test the invalid construction of a KB with an alias linked to a non-existing entity"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -308,7 +308,7 @@ def test_kb_invalid_entities(nlp):
def test_kb_invalid_probabilities(nlp):
"""Test the invalid construction of a KB with wrong prior probabilities"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -322,7 +322,7 @@ def test_kb_invalid_probabilities(nlp):
def test_kb_invalid_combination(nlp):
"""Test the invalid construction of a KB with non-matching entity and probability lists"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
@ -338,7 +338,7 @@ def test_kb_invalid_combination(nlp):
def test_kb_invalid_entity_vector(nlp):
"""Test the invalid construction of a KB with non-matching entity vector lengths"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=3)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1, 2, 3])
@ -376,7 +376,7 @@ def test_kb_initialize_empty(nlp):
def test_kb_serialize(nlp):
"""Test serialization of the KB"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d:
# normal read-write behaviour
mykb.to_disk(d / "kb")
@ -393,12 +393,12 @@ def test_kb_serialize(nlp):
@pytest.mark.issue(9137)
def test_kb_serialize_2(nlp):
v = [5, 6, 7, 8]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E1"], [1], [v])
assert kb1.get_vector("E1") == v
with make_tempdir() as d:
kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb")
assert kb2.get_vector("E1") == v
@ -408,7 +408,7 @@ def test_kb_set_entities(nlp):
v = [5, 6, 7, 8]
v1 = [1, 1, 1, 0]
v2 = [2, 2, 2, 3]
kb1 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb1 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb1.set_entities(["E0"], [1], [v])
assert kb1.get_entity_strings() == ["E0"]
kb1.set_entities(["E1", "E2"], [1, 9], [v1, v2])
@ -417,7 +417,7 @@ def test_kb_set_entities(nlp):
assert kb1.get_vector("E2") == v2
with make_tempdir() as d:
kb1.to_disk(d / "kb")
kb2 = KnowledgeBase(vocab=nlp.vocab, entity_vector_length=4)
kb2 = InMemoryLookupKB(vocab=nlp.vocab, entity_vector_length=4)
kb2.from_disk(d / "kb")
assert set(kb2.get_entity_strings()) == {"E1", "E2"}
assert kb2.get_vector("E1") == v1
@ -428,7 +428,7 @@ def test_kb_serialize_vocab(nlp):
"""Test serialization of the KB and custom strings"""
entity = "MyFunnyID"
assert entity not in nlp.vocab.strings
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
assert not mykb.contains_entity(entity)
mykb.add_entity(entity, freq=342, entity_vector=[3])
assert mykb.contains_entity(entity)
@ -436,14 +436,14 @@ def test_kb_serialize_vocab(nlp):
with make_tempdir() as d:
# normal read-write behaviour
mykb.to_disk(d / "kb")
mykb_new = KnowledgeBase(Vocab(), entity_vector_length=1)
mykb_new = InMemoryLookupKB(Vocab(), entity_vector_length=1)
mykb_new.from_disk(d / "kb")
assert entity in mykb_new.vocab.strings
def test_candidate_generation(nlp):
"""Test correct candidate generation"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
doc = nlp("douglas adam Adam shrubbery")
douglas_ent = doc[0:1]
@ -481,7 +481,7 @@ def test_el_pipe_configuration(nlp):
ruler.add_patterns([pattern])
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.add_entity(entity="Q2", freq=12, entity_vector=[2])
kb.add_entity(entity="Q3", freq=5, entity_vector=[3])
kb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.1])
@ -500,10 +500,21 @@ def test_el_pipe_configuration(nlp):
def get_lowercased_candidates(kb, span):
return kb.get_alias_candidates(span.text.lower())
def get_lowercased_candidates_batch(kb, spans):
return [get_lowercased_candidates(kb, span) for span in spans]
@registry.misc("spacy.LowercaseCandidateGenerator.v1")
def create_candidates() -> Callable[[KnowledgeBase, "Span"], Iterable[Candidate]]:
def create_candidates() -> Callable[
[InMemoryLookupKB, "Span"], Iterable[Candidate]
]:
return get_lowercased_candidates
@registry.misc("spacy.LowercaseCandidateBatchGenerator.v1")
def create_candidates_batch() -> Callable[
[InMemoryLookupKB, Iterable["Span"]], Iterable[Iterable[Candidate]]
]:
return get_lowercased_candidates_batch
# replace the pipe with a new one with with a different candidate generator
entity_linker = nlp.replace_pipe(
"entity_linker",
@ -511,6 +522,9 @@ def test_el_pipe_configuration(nlp):
config={
"incl_context": False,
"get_candidates": {"@misc": "spacy.LowercaseCandidateGenerator.v1"},
"get_candidates_batch": {
"@misc": "spacy.LowercaseCandidateBatchGenerator.v1"
},
},
)
entity_linker.set_kb(create_kb)
@ -532,7 +546,7 @@ def test_nel_nsents(nlp):
def test_vocab_serialization(nlp):
"""Test that string information is retained across storage"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -552,7 +566,7 @@ def test_vocab_serialization(nlp):
with make_tempdir() as d:
mykb.to_disk(d / "kb")
kb_new_vocab = KnowledgeBase(Vocab(), entity_vector_length=1)
kb_new_vocab = InMemoryLookupKB(Vocab(), entity_vector_length=1)
kb_new_vocab.from_disk(d / "kb")
candidates = kb_new_vocab.get_alias_candidates("adam")
@ -568,7 +582,7 @@ def test_vocab_serialization(nlp):
def test_append_alias(nlp):
"""Test that we can append additional alias-entity pairs"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -599,7 +613,7 @@ def test_append_alias(nlp):
@pytest.mark.filterwarnings("ignore:\\[W036")
def test_append_invalid_alias(nlp):
"""Test that append an alias will throw an error if prior probs are exceeding 1"""
mykb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
# adding entities
mykb.add_entity(entity="Q1", freq=27, entity_vector=[1])
@ -621,7 +635,7 @@ def test_preserving_links_asdoc(nlp):
vector_length = 1
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
# adding entities
mykb.add_entity(entity="Q1", freq=19, entity_vector=[1])
mykb.add_entity(entity="Q2", freq=8, entity_vector=[1])
@ -723,7 +737,7 @@ def test_overfitting_IO():
# create artificial KB - assign same prior weight to the two russ cochran's
# Q2146908 (Russ Cochran): American golfer
# Q7381115 (Russ Cochran): publisher
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
@ -805,7 +819,7 @@ def test_kb_serialization():
kb_dir = tmp_dir / "kb"
nlp1 = English()
assert "Q2146908" not in nlp1.vocab.strings
mykb = KnowledgeBase(nlp1.vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(nlp1.vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
assert "Q2146908" in nlp1.vocab.strings
@ -828,7 +842,7 @@ def test_kb_serialization():
def test_kb_pickle():
# Test that the KB can be pickled
nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
assert not kb_1.contains_alias("Russ Cochran")
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
@ -842,7 +856,7 @@ def test_kb_pickle():
def test_nel_pickle():
# Test that a pipeline with an EL component can be pickled
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3)
kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb
@ -864,7 +878,7 @@ def test_nel_pickle():
def test_kb_to_bytes():
# Test that the KB's to_bytes method works correctly
nlp = English()
kb_1 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb_1 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
kb_1.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb_1.add_entity(entity="Q66", freq=9, entity_vector=[1, 2, 3])
kb_1.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
@ -874,7 +888,7 @@ def test_kb_to_bytes():
)
assert kb_1.contains_alias("Russ Cochran")
kb_bytes = kb_1.to_bytes()
kb_2 = KnowledgeBase(nlp.vocab, entity_vector_length=3)
kb_2 = InMemoryLookupKB(nlp.vocab, entity_vector_length=3)
assert not kb_2.contains_alias("Russ Cochran")
kb_2 = kb_2.from_bytes(kb_bytes)
# check that both KBs are exactly the same
@ -897,7 +911,7 @@ def test_kb_to_bytes():
def test_nel_to_bytes():
# Test that a pipeline with an EL component can be converted to bytes
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3)
kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
kb.add_alias(alias="Russ Cochran", entities=["Q2146908"], probabilities=[0.8])
return kb
@ -987,7 +1001,7 @@ def test_legacy_architectures(name, config):
train_examples.append(Example.from_dict(doc, annotation))
def create_kb(vocab):
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q2146908", freq=12, entity_vector=[6, -4, 3])
mykb.add_entity(entity="Q7381115", freq=12, entity_vector=[9, 1, -7])
mykb.add_alias(
@ -1054,7 +1068,7 @@ def test_no_gold_ents(patterns):
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9])
# Placeholder
@ -1104,7 +1118,7 @@ def test_tokenization_mismatch():
def create_kb(vocab):
# create placeholder KB
mykb = KnowledgeBase(vocab, entity_vector_length=vector_length)
mykb = InMemoryLookupKB(vocab, entity_vector_length=vector_length)
mykb.add_entity(entity="Q613241", freq=12, entity_vector=[6, -4, 3])
mykb.add_alias("Kirby", ["Q613241"], [0.9])
return mykb
@ -1121,6 +1135,12 @@ def test_tokenization_mismatch():
nlp.evaluate(train_examples)
def test_abstract_kb_instantiation():
"""Test whether instantiation of abstract KB base class fails."""
with pytest.raises(TypeError):
KnowledgeBase(None, 3)
# fmt: off
@pytest.mark.parametrize(
"meet_threshold,config",
@ -1151,7 +1171,7 @@ def test_threshold(meet_threshold: bool, config: Dict[str, Any]):
def create_kb(vocab):
# create artificial KB
mykb = KnowledgeBase(vocab, entity_vector_length=3)
mykb = InMemoryLookupKB(vocab, entity_vector_length=3)
mykb.add_entity(entity=entity_id, freq=12, entity_vector=[6, -4, 3])
mykb.add_alias(
alias="Mahler",

View File

@ -605,10 +605,35 @@ def test_update_with_annotates():
assert results[component] == ""
def test_load_disable_enable() -> None:
"""
Tests spacy.load() with dis-/enabling components.
"""
@pytest.mark.issue(11443)
def test_enable_disable_conflict_with_config():
"""Test conflict between enable/disable w.r.t. `nlp.disabled` set in the config."""
nlp = English()
nlp.add_pipe("tagger")
nlp.add_pipe("senter")
nlp.add_pipe("sentencizer")
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
# Expected to fail, as config and arguments conflict.
with pytest.raises(ValueError):
spacy.load(
tmp_dir, enable=["tagger"], config={"nlp": {"disabled": ["senter"]}}
)
# Expected to succeed without warning due to the lack of a conflicting config option.
spacy.load(tmp_dir, enable=["tagger"])
# Expected to succeed with a warning, as disable=[] should override the config setting.
with pytest.warns(UserWarning):
spacy.load(
tmp_dir,
enable=["tagger"],
disable=[],
config={"nlp": {"disabled": ["senter"]}},
)
def test_load_disable_enable():
"""Tests spacy.load() with dis-/enabling components."""
base_nlp = English()
for pipe in ("sentencizer", "tagger", "parser"):

View File

@ -230,6 +230,97 @@ def test_tok2vec_listener_callback():
assert get_dX(Y) is not None
def test_tok2vec_listener_overfitting():
"""Test that a pipeline with a listener properly overfits, even if 'tok2vec' is in the annotating components"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(50):
losses = {}
nlp.update(train_examples, sgd=optimizer, losses=losses, annotates=["tok2vec"])
assert losses["tagger"] < 0.00001
# test the trained model
test_text = "I like blue eggs"
doc = nlp(test_text)
assert doc[0].tag_ == "N"
assert doc[1].tag_ == "V"
assert doc[2].tag_ == "J"
assert doc[3].tag_ == "N"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert doc2[0].tag_ == "N"
assert doc2[1].tag_ == "V"
assert doc2[2].tag_ == "J"
assert doc2[3].tag_ == "N"
def test_tok2vec_frozen_not_annotating():
"""Test that a pipeline with a frozen tok2vec raises an error when the tok2vec is not annotating"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(2):
losses = {}
with pytest.raises(
ValueError, match=r"the tok2vec embedding layer is not updated"
):
nlp.update(
train_examples, sgd=optimizer, losses=losses, exclude=["tok2vec"]
)
def test_tok2vec_frozen_overfitting():
"""Test that a pipeline with a frozen & annotating tok2vec can still overfit"""
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)
train_examples = []
for t in TRAIN_DATA:
train_examples.append(Example.from_dict(nlp.make_doc(t[0]), t[1]))
optimizer = nlp.initialize(get_examples=lambda: train_examples)
for i in range(100):
losses = {}
nlp.update(
train_examples,
sgd=optimizer,
losses=losses,
exclude=["tok2vec"],
annotates=["tok2vec"],
)
assert losses["tagger"] < 0.0001
# test the trained model
test_text = "I like blue eggs"
doc = nlp(test_text)
assert doc[0].tag_ == "N"
assert doc[1].tag_ == "V"
assert doc[2].tag_ == "J"
assert doc[3].tag_ == "N"
# Also test the results are still the same after IO
with make_tempdir() as tmp_dir:
nlp.to_disk(tmp_dir)
nlp2 = util.load_model_from_path(tmp_dir)
doc2 = nlp2(test_text)
assert doc2[0].tag_ == "N"
assert doc2[1].tag_ == "V"
assert doc2[2].tag_ == "J"
assert doc2[3].tag_ == "N"
def test_replace_listeners():
orig_config = Config().from_str(cfg_string)
nlp = util.load_model_from_config(orig_config, auto_fill=True, validate=True)

View File

@ -3,7 +3,7 @@ from unittest import TestCase
import pytest
import srsly
from numpy import zeros
from spacy.kb import KnowledgeBase, Writer
from spacy.kb.kb_in_memory import InMemoryLookupKB, Writer
from spacy.vectors import Vectors
from spacy.language import Language
from spacy.pipeline import TrainablePipe
@ -71,7 +71,7 @@ def entity_linker():
nlp = Language()
def create_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=1)
kb = InMemoryLookupKB(vocab, entity_vector_length=1)
kb.add_entity("test", 0.0, zeros((1, 1), dtype="f"))
return kb
@ -120,7 +120,7 @@ def test_writer_with_path_py35():
def test_save_and_load_knowledge_base():
nlp = Language()
kb = KnowledgeBase(nlp.vocab, entity_vector_length=1)
kb = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
with make_tempdir() as d:
path = d / "kb"
try:
@ -129,7 +129,7 @@ def test_save_and_load_knowledge_base():
pytest.fail(str(e))
try:
kb_loaded = KnowledgeBase(nlp.vocab, entity_vector_length=1)
kb_loaded = InMemoryLookupKB(nlp.vocab, entity_vector_length=1)
kb_loaded.from_disk(path)
except Exception as e:
pytest.fail(str(e))

View File

@ -2,7 +2,7 @@ from typing import Callable
from spacy import util
from spacy.util import ensure_path, registry, load_model_from_config
from spacy.kb import KnowledgeBase
from spacy.kb.kb_in_memory import InMemoryLookupKB
from spacy.vocab import Vocab
from thinc.api import Config
@ -22,7 +22,7 @@ def test_serialize_kb_disk(en_vocab):
dir_path.mkdir()
file_path = dir_path / "kb"
kb1.to_disk(str(file_path))
kb2 = KnowledgeBase(vocab=en_vocab, entity_vector_length=3)
kb2 = InMemoryLookupKB(vocab=en_vocab, entity_vector_length=3)
kb2.from_disk(str(file_path))
# final assertions
@ -30,7 +30,7 @@ def test_serialize_kb_disk(en_vocab):
def _get_dummy_kb(vocab):
kb = KnowledgeBase(vocab, entity_vector_length=3)
kb = InMemoryLookupKB(vocab, entity_vector_length=3)
kb.add_entity(entity="Q53", freq=33, entity_vector=[0, 5, 3])
kb.add_entity(entity="Q17", freq=2, entity_vector=[7, 1, 0])
kb.add_entity(entity="Q007", freq=7, entity_vector=[0, 0, 7])
@ -104,7 +104,7 @@ def test_serialize_subclassed_kb():
custom_field = 666
"""
class SubKnowledgeBase(KnowledgeBase):
class SubInMemoryLookupKB(InMemoryLookupKB):
def __init__(self, vocab, entity_vector_length, custom_field):
super().__init__(vocab, entity_vector_length)
self.custom_field = custom_field
@ -112,9 +112,9 @@ def test_serialize_subclassed_kb():
@registry.misc("spacy.CustomKB.v1")
def custom_kb(
entity_vector_length: int, custom_field: int
) -> Callable[[Vocab], KnowledgeBase]:
) -> Callable[[Vocab], InMemoryLookupKB]:
def custom_kb_factory(vocab):
kb = SubKnowledgeBase(
kb = SubInMemoryLookupKB(
vocab=vocab,
entity_vector_length=entity_vector_length,
custom_field=custom_field,
@ -129,7 +129,7 @@ def test_serialize_subclassed_kb():
nlp.initialize()
entity_linker = nlp.get_pipe("entity_linker")
assert type(entity_linker.kb) == SubKnowledgeBase
assert type(entity_linker.kb) == SubInMemoryLookupKB
assert entity_linker.kb.entity_vector_length == 342
assert entity_linker.kb.custom_field == 666
@ -139,6 +139,6 @@ def test_serialize_subclassed_kb():
nlp2 = util.load_model_from_path(tmp_dir)
entity_linker2 = nlp2.get_pipe("entity_linker")
# After IO, the KB is the standard one
assert type(entity_linker2.kb) == KnowledgeBase
assert type(entity_linker2.kb) == InMemoryLookupKB
assert entity_linker2.kb.entity_vector_length == 342
assert not hasattr(entity_linker2.kb, "custom_field")

View File

@ -404,10 +404,11 @@ def test_serialize_pipeline_disable_enable():
assert nlp3.component_names == ["ner", "tagger"]
with make_tempdir() as d:
nlp3.to_disk(d)
nlp4 = spacy.load(d, disable=["ner"])
assert nlp4.pipe_names == []
with pytest.warns(UserWarning):
nlp4 = spacy.load(d, disable=["ner"])
assert nlp4.pipe_names == ["tagger"]
assert nlp4.component_names == ["ner", "tagger"]
assert nlp4.disabled == ["ner", "tagger"]
assert nlp4.disabled == ["ner"]
with make_tempdir() as d:
nlp.to_disk(d)
nlp5 = spacy.load(d, exclude=["tagger"])

View File

@ -23,7 +23,7 @@ def get_textcat_bow_kwargs():
def get_textcat_cnn_kwargs():
return {"tok2vec": test_tok2vec(), "exclusive_classes": False, "nO": 13}
return {"tok2vec": make_test_tok2vec(), "exclusive_classes": False, "nO": 13}
def get_all_params(model):
@ -65,7 +65,7 @@ def get_tok2vec_kwargs():
}
def test_tok2vec():
def make_test_tok2vec():
return build_Tok2Vec_model(**get_tok2vec_kwargs())

View File

@ -31,7 +31,7 @@ def doc(nlp):
words = ["Sarah", "'s", "sister", "flew", "to", "Silicon", "Valley", "via", "London", "."]
tags = ["NNP", "POS", "NN", "VBD", "IN", "NNP", "NNP", "IN", "NNP", "."]
pos = ["PROPN", "PART", "NOUN", "VERB", "ADP", "PROPN", "PROPN", "ADP", "PROPN", "PUNCT"]
ents = ["B-PERSON", "I-PERSON", "O", "O", "O", "B-LOC", "I-LOC", "O", "B-GPE", "O"]
ents = ["B-PERSON", "I-PERSON", "O", "", "O", "B-LOC", "I-LOC", "O", "B-GPE", "O"]
cats = {"TRAVEL": 1.0, "BAKING": 0.0}
# fmt: on
doc = Doc(nlp.vocab, words=words, tags=tags, pos=pos, ents=ents)
@ -106,6 +106,7 @@ def test_lowercase_augmenter(nlp, doc):
assert [(e.start, e.end, e.label) for e in eg.reference.ents] == ents
for ref_ent, orig_ent in zip(eg.reference.ents, doc.ents):
assert ref_ent.text == orig_ent.text.lower()
assert [t.ent_iob for t in doc] == [t.ent_iob for t in eg.reference]
assert [t.pos_ for t in eg.reference] == [t.pos_ for t in doc]
# check that augmentation works when lowercasing leads to different
@ -166,7 +167,7 @@ def test_make_whitespace_variant(nlp):
lemmas = ["they", "fly", "to", "New", "York", "City", ".", "\n", "then", "they", "drive", "to", "Washington", ",", "D.C."]
heads = [1, 1, 1, 4, 5, 2, 1, 10, 10, 10, 10, 10, 11, 12, 12]
deps = ["nsubj", "ROOT", "prep", "compound", "compound", "pobj", "punct", "dep", "advmod", "nsubj", "ROOT", "prep", "pobj", "punct", "appos"]
ents = ["O", "O", "O", "B-GPE", "I-GPE", "I-GPE", "O", "O", "O", "O", "O", "O", "B-GPE", "O", "B-GPE"]
ents = ["O", "", "O", "B-GPE", "I-GPE", "I-GPE", "O", "O", "O", "O", "O", "O", "B-GPE", "O", "B-GPE"]
# fmt: on
doc = Doc(
nlp.vocab,
@ -215,6 +216,8 @@ def test_make_whitespace_variant(nlp):
assert mod_ex2.reference[j].head.i == j - 1
# entities are well-formed
assert len(doc.ents) == len(mod_ex.reference.ents)
# there is one token with missing entity information
assert any(t.ent_iob == 0 for t in mod_ex.reference)
for ent in mod_ex.reference.ents:
assert not ent[0].is_space
assert not ent[-1].is_space

View File

@ -42,7 +42,8 @@ class SpanGroups(UserDict):
def copy(self, doc: Optional["Doc"] = None) -> "SpanGroups":
if doc is None:
doc = self._ensure_doc()
return SpanGroups(doc).from_bytes(self.to_bytes())
data_copy = ((k, v.copy(doc=doc)) for k, v in self.items())
return SpanGroups(doc, items=data_copy)
def setdefault(self, key, default=None):
if not isinstance(default, SpanGroup):

View File

@ -72,7 +72,7 @@ class Doc:
lemmas: Optional[List[str]] = ...,
heads: Optional[List[int]] = ...,
deps: Optional[List[str]] = ...,
sent_starts: Optional[List[Union[bool, None]]] = ...,
sent_starts: Optional[List[Union[bool, int, None]]] = ...,
ents: Optional[List[str]] = ...,
) -> None: ...
@property

View File

@ -217,9 +217,9 @@ cdef class Doc:
head in the doc. Defaults to None.
deps (Optional[List[str]]): A list of unicode strings, of the same
length as words, to assign as token.dep. Defaults to None.
sent_starts (Optional[List[Union[bool, None]]]): A list of values, of
the same length as words, to assign as token.is_sent_start. Will be
overridden by heads if heads is provided. Defaults to None.
sent_starts (Optional[List[Union[bool, int, None]]]): A list of values,
of the same length as words, to assign as token.is_sent_start. Will
be overridden by heads if heads is provided. Defaults to None.
ents (Optional[List[str]]): A list of unicode strings, of the same
length as words, as IOB tags to assign as token.ent_iob and
token.ent_type. Defaults to None.
@ -285,6 +285,7 @@ cdef class Doc:
heads = [0] * len(deps)
if heads and not deps:
raise ValueError(Errors.E1017)
sent_starts = list(sent_starts) if sent_starts is not None else None
if sent_starts is not None:
for i in range(len(sent_starts)):
if sent_starts[i] is True:
@ -300,12 +301,11 @@ cdef class Doc:
ent_iobs = None
ent_types = None
if ents is not None:
ents = [ent if ent != "" else None for ent in ents]
iob_strings = Token.iob_strings()
# make valid IOB2 out of IOB1 or IOB2
for i, ent in enumerate(ents):
if ent is "":
ents[i] = None
elif ent is not None and not isinstance(ent, str):
if ent is not None and not isinstance(ent, str):
raise ValueError(Errors.E177.format(tag=ent))
if i < len(ents) - 1:
# OI -> OB
@ -1608,24 +1608,20 @@ cdef class Doc:
Doc.set_extension(attr)
self._.set(attr, doc_json["_"][attr])
if doc_json.get("underscore_token", {}):
for token_attr in doc_json["underscore_token"]:
token_start = doc_json["underscore_token"][token_attr]["token_start"]
value = doc_json["underscore_token"][token_attr]["value"]
for token_attr in doc_json.get("underscore_token", {}):
if not Token.has_extension(token_attr):
Token.set_extension(token_attr)
for token_data in doc_json["underscore_token"][token_attr]:
start = token_by_char(self.c, self.length, token_data["start"])
value = token_data["value"]
self[start]._.set(token_attr, value)
if not Token.has_extension(token_attr):
Token.set_extension(token_attr)
self[token_start]._.set(token_attr, value)
if doc_json.get("underscore_span", {}):
for span_attr in doc_json["underscore_span"]:
token_start = doc_json["underscore_span"][span_attr]["token_start"]
token_end = doc_json["underscore_span"][span_attr]["token_end"]
value = doc_json["underscore_span"][span_attr]["value"]
if not Span.has_extension(span_attr):
Span.set_extension(span_attr)
self[token_start:token_end]._.set(span_attr, value)
for span_attr in doc_json.get("underscore_span", {}):
if not Span.has_extension(span_attr):
Span.set_extension(span_attr)
for span_data in doc_json["underscore_span"][span_attr]:
value = span_data["value"]
self.char_span(span_data["start"], span_data["end"])._.set(span_attr, value)
return self
def to_json(self, underscore=None):
@ -1673,30 +1669,34 @@ cdef class Doc:
if underscore:
user_keys = set()
if self.user_data:
data["_"] = {}
data["underscore_token"] = {}
data["underscore_span"] = {}
for data_key in self.user_data:
for data_key, value in self.user_data.copy().items():
if type(data_key) == tuple and len(data_key) >= 4 and data_key[0] == "._.":
attr = data_key[1]
start = data_key[2]
end = data_key[3]
if attr in underscore:
user_keys.add(attr)
value = self.user_data[data_key]
if not srsly.is_json_serializable(value):
raise ValueError(Errors.E107.format(attr=attr, value=repr(value)))
# Check if doc attribute
if start is None:
if "_" not in data:
data["_"] = {}
data["_"][attr] = value
# Check if token attribute
elif end is None:
if "underscore_token" not in data:
data["underscore_token"] = {}
if attr not in data["underscore_token"]:
data["underscore_token"][attr] = {"token_start": start, "value": value}
data["underscore_token"][attr] = []
data["underscore_token"][attr].append({"start": start, "value": value})
# Else span attribute
else:
if "underscore_span" not in data:
data["underscore_span"] = {}
if attr not in data["underscore_span"]:
data["underscore_span"][attr] = {"token_start": start, "token_end": end, "value": value}
data["underscore_span"][attr] = []
data["underscore_span"][attr].append({"start": start, "end": end, "value": value})
for attr in underscore:
if attr not in user_keys:

View File

@ -1,4 +1,4 @@
from typing import Any, Dict, Iterable
from typing import Any, Dict, Iterable, Optional
from .doc import Doc
from .span import Span
@ -24,4 +24,4 @@ class SpanGroup:
def __getitem__(self, i: int) -> Span: ...
def to_bytes(self) -> bytes: ...
def from_bytes(self, bytes_data: bytes) -> SpanGroup: ...
def copy(self) -> SpanGroup: ...
def copy(self, doc: Optional[Doc] = ...) -> SpanGroup: ...

View File

@ -241,15 +241,18 @@ cdef class SpanGroup:
cdef void push_back(self, SpanC span) nogil:
self.c.push_back(span)
def copy(self) -> SpanGroup:
def copy(self, doc: Optional["Doc"] = None) -> SpanGroup:
"""Clones the span group.
doc (Doc): New reference document to which the copy is bound.
RETURNS (SpanGroup): A copy of the span group.
DOCS: https://spacy.io/api/spangroup#copy
"""
if doc is None:
doc = self.doc
return SpanGroup(
self.doc,
doc,
name=self.name,
attrs=deepcopy(self.attrs),
spans=list(self),

View File

@ -6,7 +6,7 @@ from functools import partial
from ..util import registry
from .example import Example
from .iob_utils import split_bilu_label
from .iob_utils import split_bilu_label, _doc_to_biluo_tags_with_partial
if TYPE_CHECKING:
from ..language import Language # noqa: F401
@ -62,6 +62,9 @@ def combined_augmenter(
if orth_variants and random.random() < orth_level:
raw_text = example.text
orig_dict = example.to_dict()
orig_dict["doc_annotation"]["entities"] = _doc_to_biluo_tags_with_partial(
example.reference
)
variant_text, variant_token_annot = make_orth_variants(
nlp,
raw_text,
@ -128,6 +131,9 @@ def lower_casing_augmenter(
def make_lowercase_variant(nlp: "Language", example: Example):
example_dict = example.to_dict()
example_dict["doc_annotation"]["entities"] = _doc_to_biluo_tags_with_partial(
example.reference
)
doc = nlp.make_doc(example.text.lower())
example_dict["token_annotation"]["ORTH"] = [t.lower_ for t in example.reference]
return example.from_dict(doc, example_dict)
@ -146,6 +152,9 @@ def orth_variants_augmenter(
else:
raw_text = example.text
orig_dict = example.to_dict()
orig_dict["doc_annotation"]["entities"] = _doc_to_biluo_tags_with_partial(
example.reference
)
variant_text, variant_token_annot = make_orth_variants(
nlp,
raw_text,
@ -248,6 +257,9 @@ def make_whitespace_variant(
RETURNS (Example): Example with one additional space token.
"""
example_dict = example.to_dict()
example_dict["doc_annotation"]["entities"] = _doc_to_biluo_tags_with_partial(
example.reference
)
doc_dict = example_dict.get("doc_annotation", {})
token_dict = example_dict.get("token_annotation", {})
# returned unmodified if:

View File

@ -60,6 +60,14 @@ def doc_to_biluo_tags(doc: Doc, missing: str = "O"):
)
def _doc_to_biluo_tags_with_partial(doc: Doc) -> List[str]:
ents = doc_to_biluo_tags(doc, missing="-")
for i, token in enumerate(doc):
if token.ent_iob == 2:
ents[i] = "O"
return ents
def offsets_to_biluo_tags(
doc: Doc, entities: Iterable[Tuple[int, int, Union[str, int]]], missing: str = "O"
) -> List[str]:

View File

@ -67,7 +67,6 @@ LEXEME_NORM_LANGS = ["cs", "da", "de", "el", "en", "id", "lb", "mk", "pt", "ru",
CONFIG_SECTION_ORDER = ["paths", "variables", "system", "nlp", "components", "corpora", "training", "pretraining", "initialize"]
# fmt: on
logger = logging.getLogger("spacy")
logger_stream_handler = logging.StreamHandler()
logger_stream_handler.setFormatter(
@ -394,13 +393,17 @@ def get_module_path(module: ModuleType) -> Path:
return file_path.parent
# Default value for passed enable/disable values.
_DEFAULT_EMPTY_PIPES = SimpleFrozenList()
def load_model(
name: Union[str, Path],
*,
vocab: Union["Vocab", bool] = True,
disable: Union[str, Iterable[str]] = SimpleFrozenList(),
enable: Union[str, Iterable[str]] = SimpleFrozenList(),
exclude: Union[str, Iterable[str]] = SimpleFrozenList(),
disable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Load a model from a package or data path.
@ -470,9 +473,9 @@ def load_model_from_path(
*,
meta: Optional[Dict[str, Any]] = None,
vocab: Union["Vocab", bool] = True,
disable: Union[str, Iterable[str]] = SimpleFrozenList(),
enable: Union[str, Iterable[str]] = SimpleFrozenList(),
exclude: Union[str, Iterable[str]] = SimpleFrozenList(),
disable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
config: Union[Dict[str, Any], Config] = SimpleFrozenDict(),
) -> "Language":
"""Load a model from a data directory path. Creates Language class with
@ -516,9 +519,9 @@ def load_model_from_config(
*,
meta: Dict[str, Any] = SimpleFrozenDict(),
vocab: Union["Vocab", bool] = True,
disable: Union[str, Iterable[str]] = SimpleFrozenList(),
enable: Union[str, Iterable[str]] = SimpleFrozenList(),
exclude: Union[str, Iterable[str]] = SimpleFrozenList(),
disable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
enable: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
exclude: Union[str, Iterable[str]] = _DEFAULT_EMPTY_PIPES,
auto_fill: bool = False,
validate: bool = True,
) -> "Language":

View File

@ -11,6 +11,7 @@ menu:
- ['Text Classification', 'textcat']
- ['Span Classification', 'spancat']
- ['Entity Linking', 'entitylinker']
- ['Coreference', 'coref-architectures']
---
A **model architecture** is a function that wires up a
@ -587,8 +588,8 @@ consists of either two or three subnetworks:
run once for each batch.
- **lower**: Construct a feature-specific vector for each `(token, feature)`
pair. This is also run once for each batch. Constructing the state
representation is then a matter of summing the component features and
applying the non-linearity.
representation is then a matter of summing the component features and applying
the non-linearity.
- **upper** (optional): A feed-forward network that predicts scores from the
state representation. If not present, the output from the lower model is used
as action scores directly.
@ -628,8 +629,8 @@ same signature, but the `use_upper` argument was `True` by default.
> ```
Build a tagger model, using a provided token-to-vector component. The tagger
model adds a linear layer with softmax activation to predict scores given
the token vectors.
model adds a linear layer with softmax activation to predict scores given the
token vectors.
| Name | Description |
| ----------- | ------------------------------------------------------------------------------------------ |
@ -920,5 +921,84 @@ A function that reads an existing `KnowledgeBase` from file.
A function that takes as input a [`KnowledgeBase`](/api/kb) and a
[`Span`](/api/span) object denoting a named entity, and returns a list of
plausible [`Candidate`](/api/kb/#candidate) objects. The default
`CandidateGenerator` uses the text of a mention to find its potential
aliases in the `KnowledgeBase`. Note that this function is case-dependent.
`CandidateGenerator` uses the text of a mention to find its potential aliases in
the `KnowledgeBase`. Note that this function is case-dependent.
## Coreference {#coref-architectures tag="experimental"}
A [`CoreferenceResolver`](/api/coref) component identifies tokens that refer to
the same entity. A [`SpanResolver`](/api/span-resolver) component infers spans
from single tokens. Together these components can be used to reproduce
traditional coreference models. You can also omit the `SpanResolver` if working
with only token-level clusters is acceptable.
### spacy-experimental.Coref.v1 {#Coref tag="experimental"}
> #### Example Config
>
> ```ini
>
> [model]
> @architectures = "spacy-experimental.Coref.v1"
> distance_embedding_size = 20
> dropout = 0.3
> hidden_size = 1024
> depth = 2
> antecedent_limit = 50
> antecedent_batch_size = 512
>
> [model.tok2vec]
> @architectures = "spacy-transformers.TransformerListener.v1"
> grad_factor = 1.0
> upstream = "transformer"
> pooling = {"@layers":"reduce_mean.v1"}
> ```
The `Coref` model architecture is a Thinc `Model`.
| Name | Description |
| ------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
| `distance_embedding_size` | A representation of the distance between candidates. ~~int~~ |
| `dropout` | The dropout to use internally. Unlike some Thinc models, this has separate dropout for the internal PyTorch layers. ~~float~~ |
| `hidden_size` | Size of the main internal layers. ~~int~~ |
| `depth` | Depth of the internal network. ~~int~~ |
| `antecedent_limit` | How many candidate antecedents to keep after rough scoring. This has a significant effect on memory usage. Typical values would be 50 to 200, or higher for very long documents. ~~int~~ |
| `antecedent_batch_size` | Internal batch size. ~~int~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], Floats2d]~~ |
### spacy-experimental.SpanResolver.v1 {#SpanResolver tag="experimental"}
> #### Example Config
>
> ```ini
>
> [model]
> @architectures = "spacy-experimental.SpanResolver.v1"
> hidden_size = 1024
> distance_embedding_size = 64
> conv_channels = 4
> window_size = 1
> max_distance = 128
> prefix = "coref_head_clusters"
>
> [model.tok2vec]
> @architectures = "spacy-transformers.TransformerListener.v1"
> grad_factor = 1.0
> upstream = "transformer"
> pooling = {"@layers":"reduce_mean.v1"}
> ```
The `SpanResolver` model architecture is a Thinc `Model`. Note that
`MentionClusters` is `List[List[Tuple[int, int]]]`.
| Name | Description |
| ------------------------- | -------------------------------------------------------------------------------------------------------------------- |
| `tok2vec` | The [`tok2vec`](#tok2vec) layer of the model. ~~Model~~ |
| `hidden_size` | Size of the main internal layers. ~~int~~ |
| `distance_embedding_size` | A representation of the distance between two candidates. ~~int~~ |
| `conv_channels` | The number of channels in the internal CNN. ~~int~~ |
| `window_size` | The number of neighboring tokens to consider in the internal CNN. `1` means consider one token on each side. ~~int~~ |
| `max_distance` | The longest possible length of a predicted span. ~~int~~ |
| `prefix` | The prefix that indicates spans to use for input data. ~~string~~ |
| **CREATES** | The model using the architecture. ~~Model[List[Doc], List[MentionClusters]]~~ |

View File

@ -1482,7 +1482,7 @@ You'll also need to add the assets you want to track with
</Infobox>
```cli
$ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
$ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose] [--quiet]
```
> #### Example
@ -1499,6 +1499,7 @@ $ python -m spacy project dvc [project_dir] [workflow] [--force] [--verbose]
| `workflow` | Name of workflow defined in `project.yml`. Defaults to first workflow if not set. ~~Optional[str] \(option)~~ |
| `--force`, `-F` | Force-updating config file. ~~bool (flag)~~ |
| `--verbose`, `-V` | Print more output generated by DVC. ~~bool (flag)~~ |
| `--quiet`, `-q` | Print no output generated by DVC. ~~bool (flag)~~ |
| `--help`, `-h` | Show help message and available arguments. ~~bool (flag)~~ |
| **CREATES** | A `dvc.yaml` file in the project directory, based on the steps defined in the given workflow. |

353
website/docs/api/coref.md Normal file
View File

@ -0,0 +1,353 @@
---
title: CoreferenceResolver
tag: class,experimental
source: spacy-experimental/coref/coref_component.py
teaser: 'Pipeline component for word-level coreference resolution'
api_base_class: /api/pipe
api_string_name: coref
api_trainable: true
---
> #### Installation
>
> ```bash
> $ pip install -U spacy-experimental
> ```
<Infobox title="Important note" variant="warning">
This component is not yet integrated into spaCy core, and is available via the
extension package
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
in version 0.6.0. It exposes the component via
[entry points](/usage/saving-loading/#entry-points), so if you have the package
installed, using `factory = "experimental_coref"` in your
[training config](/usage/training#config) or
`nlp.add_pipe("experimental_coref")` will work out-of-the-box.
</Infobox>
A `CoreferenceResolver` component groups tokens into clusters that refer to the
same thing. Clusters are represented as SpanGroups that start with a prefix
(`coref_clusters` by default).
A `CoreferenceResolver` component can be paired with a
[`SpanResolver`](/api/span-resolver) to expand single tokens to spans.
## Assigned Attributes {#assigned-attributes}
Predictions will be saved to `Doc.spans` as a [`SpanGroup`](/api/spangroup). The
span key will be a prefix plus a serial number referring to the coreference
cluster, starting from zero.
The span key prefix defaults to `"coref_clusters"`, but can be passed as a
parameter.
| Location | Value |
| ------------------------------------------ | ------------------------------------------------------------------------------------------------------- |
| `Doc.spans[prefix + "_" + cluster_number]` | One coreference cluster, represented as single-token spans. Cluster numbers start from 1. ~~SpanGroup~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures#coref-architectures) documentation for
details on the architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy_experimental.coref.coref_component import DEFAULT_COREF_MODEL
> from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX
> config={
> "model": DEFAULT_COREF_MODEL,
> "span_cluster_prefix": DEFAULT_CLUSTER_PREFIX,
> },
> nlp.add_pipe("experimental_coref", config=config)
> ```
| Setting | Description |
| --------------------- | ---------------------------------------------------------------------------------------------------------------------------------------- |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [Coref](/api/architectures#Coref). ~~Model~~ |
| `span_cluster_prefix` | The prefix for the keys for clusters saved to `doc.spans`. Defaults to `coref_clusters`. ~~str~~ |
## CoreferenceResolver.\_\_init\_\_ {#init tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> coref = nlp.add_pipe("experimental_coref")
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_coref.v1"}}
> coref = nlp.add_pipe("experimental_coref", config=config)
>
> # Construction from class
> from spacy_experimental.coref.coref_component import CoreferenceResolver
> coref = CoreferenceResolver(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#add_pipe).
| Name | Description |
| --------------------- | --------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `span_cluster_prefix` | The prefix for the key for saving clusters of spans. ~~bool~~ |
## CoreferenceResolver.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](/api/coref#call) and [`pipe`](/api/coref#pipe) delegate to the
[`predict`](/api/coref#predict) and
[`set_annotations`](/api/coref#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> coref = nlp.add_pipe("experimental_coref")
> # This usually happens under the hood
> processed = coref(doc)
> ```
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## CoreferenceResolver.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/coref#call) and
[`pipe`](/api/coref#pipe) delegate to the [`predict`](/api/coref#predict) and
[`set_annotations`](/api/coref#set_annotations) methods.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> for doc in coref.pipe(docs, batch_size=50):
> pass
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## CoreferenceResolver.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> coref.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## CoreferenceResolver.predict {#predict tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
modifying them. Clusters are returned as a list of `MentionClusters`, one for
each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
of `int`s, where each item corresponds to a cluster, and the `int`s correspond
to token indices.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> clusters = coref.predict([doc1, doc2])
> ```
| Name | Description |
| ----------- | ---------------------------------------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ |
## CoreferenceResolver.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, saving coreference clusters in `Doc.spans`.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> clusters = coref.predict([doc1, doc2])
> coref.set_annotations([doc1, doc2], clusters)
> ```
| Name | Description |
| ---------- | ---------------------------------------------------------------------------- |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `clusters` | The predicted coreference clusters for the `docs`. ~~List[MentionClusters]~~ |
## CoreferenceResolver.update {#update tag="method"}
Learn from a batch of [`Example`](/api/example) objects. Delegates to
[`predict`](/api/coref#predict).
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> optimizer = nlp.initialize()
> losses = coref.update(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## CoreferenceResolver.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> optimizer = coref.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## CoreferenceResolver.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> with coref.use_params(optimizer.averages):
> coref.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## CoreferenceResolver.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> coref.to_disk("/path/to/coref")
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## CoreferenceResolver.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> coref.from_disk("/path/to/coref")
> ```
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `CoreferenceResolver` object. ~~CoreferenceResolver~~ |
## CoreferenceResolver.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> coref = nlp.add_pipe("experimental_coref")
> coref_bytes = coref.to_bytes()
> ```
Serialize the pipe to a bytestring, including the `KnowledgeBase`.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `CoreferenceResolver` object. ~~bytes~~ |
## CoreferenceResolver.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> coref_bytes = coref.to_bytes()
> coref = nlp.add_pipe("experimental_coref")
> coref.from_bytes(coref_bytes)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `CoreferenceResolver` object. ~~CoreferenceResolver~~ |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = coref.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |

View File

@ -31,21 +31,21 @@ Construct a `Doc` object. The most common way to get a `Doc` object is via the
> doc = Doc(nlp.vocab, words=words, spaces=spaces)
> ```
| Name | Description |
| ---------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
| `words` | A list of strings or integer hash values to add to the document as words. ~~Optional[List[Union[str,int]]]~~ |
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
| _keyword-only_ | |
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
| `tags` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `pos` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `morphs` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `lemmas` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.lemma` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `heads` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as the head for each word. Head indices are the absolute position of the head in the `Doc`. Defaults to `None`. ~~Optional[List[int]]~~ |
| `deps` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.dep` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `sent_starts` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as `token.is_sent_start`. Will be overridden by heads if `heads` is provided. Defaults to `None`. ~~Optional[List[Optional[bool]]]~~ |
| `ents` <Tag variant="new">3</Tag> | A list of strings, of the same length of `words`, to assign the token-based IOB tag. Defaults to `None`. ~~Optional[List[str]]~~ |
| Name | Description |
| ---------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `vocab` | A storage container for lexical types. ~~Vocab~~ |
| `words` | A list of strings or integer hash values to add to the document as words. ~~Optional[List[Union[str,int]]]~~ |
| `spaces` | A list of boolean values indicating whether each word has a subsequent space. Must have the same length as `words`, if specified. Defaults to a sequence of `True`. ~~Optional[List[bool]]~~ |
| _keyword-only_ | |
| `user\_data` | Optional extra data to attach to the Doc. ~~Dict~~ |
| `tags` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.tag` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `pos` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.pos` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `morphs` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.morph` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `lemmas` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.lemma` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `heads` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as the head for each word. Head indices are the absolute position of the head in the `Doc`. Defaults to `None`. ~~Optional[List[int]]~~ |
| `deps` <Tag variant="new">3</Tag> | A list of strings, of the same length as `words`, to assign as `token.dep` for each word. Defaults to `None`. ~~Optional[List[str]]~~ |
| `sent_starts` <Tag variant="new">3</Tag> | A list of values, of the same length as `words`, to assign as `token.is_sent_start`. Will be overridden by heads if `heads` is provided. Defaults to `None`. ~~Optional[List[Union[bool, int, None]]]~~ |
| `ents` <Tag variant="new">3</Tag> | A list of strings, of the same length of `words`, to assign the token-based IOB tag. Defaults to `None`. ~~Optional[List[str]]~~ |
## Doc.\_\_getitem\_\_ {#getitem tag="method"}

View File

@ -14,7 +14,8 @@ entities) to unique identifiers, grounding the named entities into the "real
world". It requires a `KnowledgeBase`, as well as a function to generate
plausible candidates from that `KnowledgeBase` given a certain textual mention,
and a machine learning model to pick the right candidate, given the local
context of the mention.
context of the mention. `EntityLinker` defaults to using the
[`InMemoryLookupKB`](/api/kb_in_memory) implementation.
## Assigned Attributes {#assigned-attributes}
@ -170,7 +171,7 @@ with the current vocab.
>
> ```python
> def create_kb(vocab):
> kb = KnowledgeBase(vocab, entity_vector_length=128)
> kb = InMemoryLookupKB(vocab, entity_vector_length=128)
> kb.add_entity(...)
> kb.add_alias(...)
> return kb

View File

@ -4,27 +4,45 @@ teaser:
A storage class for entities and aliases of a specific knowledge base
(ontology)
tag: class
source: spacy/kb.pyx
source: spacy/kb/kb.pyx
new: 2.2
---
The `KnowledgeBase` object provides a method to generate
[`Candidate`](/api/kb/#candidate) objects, which are plausible external
The `KnowledgeBase` object is an abstract class providing a method to generate
[`Candidate`](/api/kb#candidate) objects, which are plausible external
identifiers given a certain textual mention. Each such `Candidate` holds
information from the relevant KB entities, such as its frequency in text and
possible aliases. Each entity in the knowledge base also has a pretrained entity
vector of a fixed size.
Beyond that, `KnowledgeBase` classes have to implement a number of utility
functions called by the [`EntityLinker`](/api/entitylinker) component.
<Infobox variant="warning">
This class was not abstract up to spaCy version 3.5. The `KnowledgeBase`
implementation up to that point is available as `InMemoryLookupKB` from 3.5
onwards.
</Infobox>
## KnowledgeBase.\_\_init\_\_ {#init tag="method"}
Create the knowledge base.
`KnowledgeBase` is an abstract class and cannot be instantiated. Its child
classes should call `__init__()` to set up some necessary attributes.
> #### Example
>
> ```python
> from spacy.kb import KnowledgeBase
> from spacy.vocab import Vocab
>
> class FullyImplementedKB(KnowledgeBase):
> def __init__(self, vocab: Vocab, entity_vector_length: int):
> super().__init__(vocab, entity_vector_length)
> ...
> vocab = nlp.vocab
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64)
> kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> ```
| Name | Description |
@ -40,133 +58,66 @@ The length of the fixed-size entity vectors in the knowledge base.
| ----------- | ------------------------------------------------ |
| **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ |
## KnowledgeBase.add_entity {#add_entity tag="method"}
## KnowledgeBase.get_candidates {#get_candidates tag="method"}
Add an entity to the knowledge base, specifying its corpus frequency and entity
vector, which should be of length
[`entity_vector_length`](/api/kb#entity_vector_length).
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb#candidate).
> #### Example
>
> ```python
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1)
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2)
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates(doc[0:2])
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------- |
| `entity` | The unique entity identifier. ~~str~~ |
| `freq` | The frequency of the entity in a typical corpus. ~~float~~ |
| `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `mention` | The textual mention or alias. ~~Span~~ |
| **RETURNS** | An iterable of relevant `Candidate` objects. ~~Iterable[Candidate]~~ |
## KnowledgeBase.set_entities {#set_entities tag="method"}
## KnowledgeBase.get_candidates_batch {#get_candidates_batch tag="method"}
Define the full list of entities in the knowledge base, specifying the corpus
frequency and entity vector for each entity.
Same as [`get_candidates()`](/api/kb#get_candidates), but for an arbitrary
number of mentions. The [`EntityLinker`](/api/entitylinker) component will call
`get_candidates_batch()` instead of `get_candidates()`, if the config parameter
`candidates_batch_size` is greater or equal than 1.
The default implementation of `get_candidates_batch()` executes
`get_candidates()` in a loop. We recommend implementing a more efficient way to
retrieve candidates for multiple mentions at once, if performance is of concern
to you.
> #### Example
>
> ```python
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2])
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates((doc[0:2], doc[3:]))
> ```
| Name | Description |
| ------------- | ---------------------------------------------------------------- |
| `entity_list` | List of unique entity identifiers. ~~Iterable[Union[str, int]]~~ |
| `freq_list` | List of entity frequencies. ~~Iterable[int]~~ |
| `vector_list` | List of entity vectors. ~~Iterable[numpy.ndarray]~~ |
## KnowledgeBase.add_alias {#add_alias tag="method"}
Add an alias or mention to the knowledge base, specifying its potential KB
identifiers and their prior probabilities. The entity identifiers should refer
to entities previously added with [`add_entity`](/api/kb#add_entity) or
[`set_entities`](/api/kb#set_entities). The sum of the prior probabilities
should not exceed 1. Note that an empty string can not be used as alias.
> #### Example
>
> ```python
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------- |
| `alias` | The textual mention or alias. Can not be the empty string. ~~str~~ |
| `entities` | The potential entities that the alias may refer to. ~~Iterable[Union[str, int]]~~ |
| `probabilities` | The prior probabilities of each entity. ~~Iterable[float]~~ |
## KnowledgeBase.\_\_len\_\_ {#len tag="method"}
Get the total number of entities in the knowledge base.
> #### Example
>
> ```python
> total_entities = len(kb)
> ```
| Name | Description |
| ----------- | ----------------------------------------------------- |
| **RETURNS** | The number of entities in the knowledge base. ~~int~~ |
## KnowledgeBase.get_entity_strings {#get_entity_strings tag="method"}
Get a list of all entity IDs in the knowledge base.
> #### Example
>
> ```python
> all_entities = kb.get_entity_strings()
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| **RETURNS** | The list of entities in the knowledge base. ~~List[str]~~ |
## KnowledgeBase.get_size_aliases {#get_size_aliases tag="method"}
Get the total number of aliases in the knowledge base.
> #### Example
>
> ```python
> total_aliases = kb.get_size_aliases()
> ```
| Name | Description |
| ----------- | ---------------------------------------------------- |
| **RETURNS** | The number of aliases in the knowledge base. ~~int~~ |
## KnowledgeBase.get_alias_strings {#get_alias_strings tag="method"}
Get a list of all aliases in the knowledge base.
> #### Example
>
> ```python
> all_aliases = kb.get_alias_strings()
> ```
| Name | Description |
| ----------- | -------------------------------------------------------- |
| **RETURNS** | The list of aliases in the knowledge base. ~~List[str]~~ |
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------- |
| `mentions` | The textual mention or alias. ~~Iterable[Span]~~ |
| **RETURNS** | An iterable of iterable with relevant `Candidate` objects. ~~Iterable[Iterable[Candidate]]~~ |
## KnowledgeBase.get_alias_candidates {#get_alias_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb/#candidate).
<Infobox variant="warning">
This method is _not_ available from spaCy 3.5 onwards.
</Infobox>
> #### Example
>
> ```python
> candidates = kb.get_alias_candidates("Douglas")
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------- |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The list of relevant `Candidate` objects. ~~List[Candidate]~~ |
From spaCy 3.5 on `KnowledgeBase` is an abstract class (with
[`InMemoryLookupKB`](/api/kb_in_memory) being a drop-in replacement) to allow
more flexibility in customizing knowledge bases. Some of its methods were moved
to [`InMemoryLookupKB`](/api/kb_in_memory) during this refactoring, one of those
being `get_alias_candidates()`. This method is now available as
[`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
Note: [`InMemoryLookupKB.get_candidates()`](/api/kb_in_memory#get_candidates)
defaults to
[`InMemoryLookupKB.get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
## KnowledgeBase.get_vector {#get_vector tag="method"}
@ -178,27 +129,30 @@ Given a certain entity ID, retrieve its pretrained entity vector.
> vector = kb.get_vector("Q42")
> ```
| Name | Description |
| ----------- | ------------------------------------ |
| `entity` | The entity ID. ~~str~~ |
| **RETURNS** | The entity vector. ~~numpy.ndarray~~ |
| Name | Description |
| ----------- | -------------------------------------- |
| `entity` | The entity ID. ~~str~~ |
| **RETURNS** | The entity vector. ~~Iterable[float]~~ |
## KnowledgeBase.get_prior_prob {#get_prior_prob tag="method"}
## KnowledgeBase.get_vectors {#get_vectors tag="method"}
Given a certain entity ID and a certain textual mention, retrieve the prior
probability of the fact that the mention links to the entity ID.
Same as [`get_vector()`](/api/kb#get_vector), but for an arbitrary number of
entity IDs.
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
We recommend implementing a more efficient way to retrieve vectors for multiple
entities at once, if performance is of concern to you.
> #### Example
>
> ```python
> probability = kb.get_prior_prob("Q42", "Douglas")
> vectors = kb.get_vectors(("Q42", "Q3107329"))
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------------- |
| `entity` | The entity ID. ~~str~~ |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The prior probability of the `alias` referring to the `entity`. ~~float~~ |
| Name | Description |
| ----------- | --------------------------------------------------------- |
| `entities` | The entity IDs. ~~Iterable[str]~~ |
| **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ |
## KnowledgeBase.to_disk {#to_disk tag="method"}
@ -207,12 +161,13 @@ Save the current state of the knowledge base to a directory.
> #### Example
>
> ```python
> kb.to_disk(loc)
> kb.to_disk(path)
> ```
| Name | Description |
| ----- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `loc` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
## KnowledgeBase.from_disk {#from_disk tag="method"}
@ -222,16 +177,16 @@ Restore the state of the knowledge base from a given directory. Note that the
> #### Example
>
> ```python
> from spacy.kb import KnowledgeBase
> from spacy.vocab import Vocab
> vocab = Vocab().from_disk("/path/to/vocab")
> kb = KnowledgeBase(vocab=vocab, entity_vector_length=64)
> kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> kb.from_disk("/path/to/kb")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ |
## Candidate {#candidate tag="class"}

View File

@ -0,0 +1,302 @@
---
title: InMemoryLookupKB
teaser:
The default implementation of the KnowledgeBase interface. Stores all
information in-memory.
tag: class
source: spacy/kb/kb_in_memory.pyx
new: 3.5
---
The `InMemoryLookupKB` class inherits from [`KnowledgeBase`](/api/kb) and
implements all of its methods. It stores all KB data in-memory and generates
[`Candidate`](/api/kb#candidate) objects by exactly matching mentions with
entity names. It's highly optimized for both a low memory footprint and speed of
retrieval.
## InMemoryLookupKB.\_\_init\_\_ {#init tag="method"}
Create the knowledge base.
> #### Example
>
> ```python
> from spacy.kb import InMemoryLookupKB
> vocab = nlp.vocab
> kb = InMemoryLookupKB(vocab=vocab, entity_vector_length=64)
> ```
| Name | Description |
| ---------------------- | ------------------------------------------------ |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `entity_vector_length` | Length of the fixed-size entity vectors. ~~int~~ |
## InMemoryLookupKB.entity_vector_length {#entity_vector_length tag="property"}
The length of the fixed-size entity vectors in the knowledge base.
| Name | Description |
| ----------- | ------------------------------------------------ |
| **RETURNS** | Length of the fixed-size entity vectors. ~~int~~ |
## InMemoryLookupKB.add_entity {#add_entity tag="method"}
Add an entity to the knowledge base, specifying its corpus frequency and entity
vector, which should be of length
[`entity_vector_length`](/api/kb_in_memory#entity_vector_length).
> #### Example
>
> ```python
> kb.add_entity(entity="Q42", freq=32, entity_vector=vector1)
> kb.add_entity(entity="Q463035", freq=111, entity_vector=vector2)
> ```
| Name | Description |
| --------------- | ---------------------------------------------------------- |
| `entity` | The unique entity identifier. ~~str~~ |
| `freq` | The frequency of the entity in a typical corpus. ~~float~~ |
| `entity_vector` | The pretrained vector of the entity. ~~numpy.ndarray~~ |
## InMemoryLookupKB.set_entities {#set_entities tag="method"}
Define the full list of entities in the knowledge base, specifying the corpus
frequency and entity vector for each entity.
> #### Example
>
> ```python
> kb.set_entities(entity_list=["Q42", "Q463035"], freq_list=[32, 111], vector_list=[vector1, vector2])
> ```
| Name | Description |
| ------------- | ---------------------------------------------------------------- |
| `entity_list` | List of unique entity identifiers. ~~Iterable[Union[str, int]]~~ |
| `freq_list` | List of entity frequencies. ~~Iterable[int]~~ |
| `vector_list` | List of entity vectors. ~~Iterable[numpy.ndarray]~~ |
## InMemoryLookupKB.add_alias {#add_alias tag="method"}
Add an alias or mention to the knowledge base, specifying its potential KB
identifiers and their prior probabilities. The entity identifiers should refer
to entities previously added with [`add_entity`](/api/kb_in_memory#add_entity)
or [`set_entities`](/api/kb_in_memory#set_entities). The sum of the prior
probabilities should not exceed 1. Note that an empty string can not be used as
alias.
> #### Example
>
> ```python
> kb.add_alias(alias="Douglas", entities=["Q42", "Q463035"], probabilities=[0.6, 0.3])
> ```
| Name | Description |
| --------------- | --------------------------------------------------------------------------------- |
| `alias` | The textual mention or alias. Can not be the empty string. ~~str~~ |
| `entities` | The potential entities that the alias may refer to. ~~Iterable[Union[str, int]]~~ |
| `probabilities` | The prior probabilities of each entity. ~~Iterable[float]~~ |
## InMemoryLookupKB.\_\_len\_\_ {#len tag="method"}
Get the total number of entities in the knowledge base.
> #### Example
>
> ```python
> total_entities = len(kb)
> ```
| Name | Description |
| ----------- | ----------------------------------------------------- |
| **RETURNS** | The number of entities in the knowledge base. ~~int~~ |
## InMemoryLookupKB.get_entity_strings {#get_entity_strings tag="method"}
Get a list of all entity IDs in the knowledge base.
> #### Example
>
> ```python
> all_entities = kb.get_entity_strings()
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| **RETURNS** | The list of entities in the knowledge base. ~~List[str]~~ |
## InMemoryLookupKB.get_size_aliases {#get_size_aliases tag="method"}
Get the total number of aliases in the knowledge base.
> #### Example
>
> ```python
> total_aliases = kb.get_size_aliases()
> ```
| Name | Description |
| ----------- | ---------------------------------------------------- |
| **RETURNS** | The number of aliases in the knowledge base. ~~int~~ |
## InMemoryLookupKB.get_alias_strings {#get_alias_strings tag="method"}
Get a list of all aliases in the knowledge base.
> #### Example
>
> ```python
> all_aliases = kb.get_alias_strings()
> ```
| Name | Description |
| ----------- | -------------------------------------------------------- |
| **RETURNS** | The list of aliases in the knowledge base. ~~List[str]~~ |
## InMemoryLookupKB.get_candidates {#get_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb#candidate). Wraps
[`get_alias_candidates()`](/api/kb_in_memory#get_alias_candidates).
> #### Example
>
> ```python
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates(doc[0:2])
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------- |
| `mention` | The textual mention or alias. ~~Span~~ |
| **RETURNS** | An iterable of relevant `Candidate` objects. ~~Iterable[Candidate]~~ |
## InMemoryLookupKB.get_candidates_batch {#get_candidates_batch tag="method"}
Same as [`get_candidates()`](/api/kb_in_memory#get_candidates), but for an
arbitrary number of mentions. The [`EntityLinker`](/api/entitylinker) component
will call `get_candidates_batch()` instead of `get_candidates()`, if the config
parameter `candidates_batch_size` is greater or equal than 1.
The default implementation of `get_candidates_batch()` executes
`get_candidates()` in a loop. We recommend implementing a more efficient way to
retrieve candidates for multiple mentions at once, if performance is of concern
to you.
> #### Example
>
> ```python
> from spacy.lang.en import English
> nlp = English()
> doc = nlp("Douglas Adams wrote 'The Hitchhiker's Guide to the Galaxy'.")
> candidates = kb.get_candidates((doc[0:2], doc[3:]))
> ```
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------- |
| `mentions` | The textual mention or alias. ~~Iterable[Span]~~ |
| **RETURNS** | An iterable of iterable with relevant `Candidate` objects. ~~Iterable[Iterable[Candidate]]~~ |
## InMemoryLookupKB.get_alias_candidates {#get_alias_candidates tag="method"}
Given a certain textual mention as input, retrieve a list of candidate entities
of type [`Candidate`](/api/kb#candidate).
> #### Example
>
> ```python
> candidates = kb.get_alias_candidates("Douglas")
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------- |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The list of relevant `Candidate` objects. ~~List[Candidate]~~ |
## InMemoryLookupKB.get_vector {#get_vector tag="method"}
Given a certain entity ID, retrieve its pretrained entity vector.
> #### Example
>
> ```python
> vector = kb.get_vector("Q42")
> ```
| Name | Description |
| ----------- | ------------------------------------ |
| `entity` | The entity ID. ~~str~~ |
| **RETURNS** | The entity vector. ~~numpy.ndarray~~ |
## InMemoryLookupKB.get_vectors {#get_vectors tag="method"}
Same as [`get_vector()`](/api/kb_in_memory#get_vector), but for an arbitrary
number of entity IDs.
The default implementation of `get_vectors()` executes `get_vector()` in a loop.
We recommend implementing a more efficient way to retrieve vectors for multiple
entities at once, if performance is of concern to you.
> #### Example
>
> ```python
> vectors = kb.get_vectors(("Q42", "Q3107329"))
> ```
| Name | Description |
| ----------- | --------------------------------------------------------- |
| `entities` | The entity IDs. ~~Iterable[str]~~ |
| **RETURNS** | The entity vectors. ~~Iterable[Iterable[numpy.ndarray]]~~ |
## InMemoryLookupKB.get_prior_prob {#get_prior_prob tag="method"}
Given a certain entity ID and a certain textual mention, retrieve the prior
probability of the fact that the mention links to the entity ID.
> #### Example
>
> ```python
> probability = kb.get_prior_prob("Q42", "Douglas")
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------------- |
| `entity` | The entity ID. ~~str~~ |
| `alias` | The textual mention or alias. ~~str~~ |
| **RETURNS** | The prior probability of the `alias` referring to the `entity`. ~~float~~ |
## InMemoryLookupKB.to_disk {#to_disk tag="method"}
Save the current state of the knowledge base to a directory.
> #### Example
>
> ```python
> kb.to_disk(path)
> ```
| Name | Description |
| --------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
## InMemoryLookupKB.from_disk {#from_disk tag="method"}
Restore the state of the knowledge base from a given directory. Note that the
[`Vocab`](/api/vocab) should also be the same as the one used to create the KB.
> #### Example
>
> ```python
> from spacy.vocab import Vocab
> vocab = Vocab().from_disk("/path/to/vocab")
> kb = FullyImplementedKB(vocab=vocab, entity_vector_length=64)
> kb.from_disk("/path/to/kb")
> ```
| Name | Description |
| ----------- | ----------------------------------------------------------------------------------------------- |
| `loc` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| `exclude` | List of components to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `KnowledgeBase` object. ~~KnowledgeBase~~ |

View File

@ -164,6 +164,9 @@ examples, see the
Apply the pipeline to some text. The text can span multiple sentences, and can
contain arbitrary whitespace. Alignment into the original string is preserved.
Instead of text, a `Doc` can be passed as input, in which case tokenization is
skipped, but the rest of the pipeline is run.
> #### Example
>
> ```python
@ -173,7 +176,7 @@ contain arbitrary whitespace. Alignment into the original string is preserved.
| Name | Description |
| --------------- | ---------------------------------------------------------------------------------------------------------------------------------------------- |
| `text` | The text to be processed. ~~str~~ |
| `text` | The text to be processed, or a Doc. ~~Union[str, Doc]~~ |
| _keyword-only_ | |
| `disable` | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). ~~List[str]~~ |
| `component_cfg` | Optional dictionary of keyword arguments for components, keyed by component names. Defaults to `None`. ~~Optional[Dict[str, Dict[str, Any]]]~~ |
@ -184,6 +187,9 @@ contain arbitrary whitespace. Alignment into the original string is preserved.
Process texts as a stream, and yield `Doc` objects in order. This is usually
more efficient than processing texts one-by-one.
Instead of text, a `Doc` object can be passed as input. In this case
tokenization is skipped but the rest of the pipeline is run.
> #### Example
>
> ```python
@ -194,7 +200,7 @@ more efficient than processing texts one-by-one.
| Name | Description |
| ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `texts` | A sequence of strings. ~~Iterable[str]~~ |
| `texts` | A sequence of strings (or `Doc` objects). ~~Iterable[Union[str, Doc]]~~ |
| _keyword-only_ | |
| `as_tuples` | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. ~~bool~~ |
| `batch_size` | The number of texts to buffer. ~~Optional[int]~~ |

View File

@ -70,7 +70,7 @@ lemmatizer is available. The lemmatizer modes `rule` and `pos_lookup` require
[`token.pos`](/api/token) from a previous pipeline component (see example
pipeline configurations in the
[pretrained pipeline design details](/models#design-cnn)) or rely on third-party
libraries (`pymorphy2`).
libraries (`pymorphy3`).
| Language | Default Mode |
| -------- | ------------ |
@ -86,9 +86,9 @@ libraries (`pymorphy2`).
| `nb` | `rule` |
| `nl` | `rule` |
| `pl` | `pos_lookup` |
| `ru` | `pymorphy2` |
| `ru` | `pymorphy3` |
| `sv` | `rule` |
| `uk` | `pymorphy2` |
| `uk` | `pymorphy3` |
```python
%%GITHUB_SPACY/spacy/pipeline/lemmatizer.py

View File

@ -153,3 +153,36 @@ whole pipeline has run.
| `attrs` | A dict of the `Doc` attributes and the values to set them to. Defaults to `{"tensor": None, "_.trf_data": None}` to clean up after `tok2vec` and `transformer` components. ~~dict~~ |
| `silent` | If `False`, show warnings if attributes aren't found or can't be set. Defaults to `True`. ~~bool~~ |
| **RETURNS** | The modified `Doc` with the modified attributes. ~~Doc~~ |
## span_cleaner {#span_cleaner tag="function,experimental"}
Remove `SpanGroup`s from `doc.spans` based on a key prefix. This is used to
clean up after the [`CoreferenceResolver`](/api/coref) when it's paired with a
[`SpanResolver`](/api/span-resolver).
<Infobox title="Important note" variant="warning">
This pipeline function is not yet integrated into spaCy core, and is available
via the extension package
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
in version 0.6.0. It exposes the component via
[entry points](/usage/saving-loading/#entry-points), so if you have the package
installed, using `factory = "span_cleaner"` in your
[training config](/usage/training#config) or `nlp.add_pipe("span_cleaner")` will
work out-of-the-box.
</Infobox>
> #### Example
>
> ```python
> config = {"prefix": "coref_head_clusters"}
> nlp.add_pipe("span_cleaner", config=config)
> doc = nlp("text")
> assert "coref_head_clusters_1" not in doc.spans
> ```
| Setting | Description |
| ----------- | ------------------------------------------------------------------------------------------------------------------------- |
| `prefix` | A prefix to check `SpanGroup` keys for. Any matching groups will be removed. Defaults to `"coref_head_clusters"`. ~~str~~ |
| **RETURNS** | The modified `Doc` with any matching spans removed. ~~Doc~~ |

View File

@ -270,3 +270,62 @@ Compute micro-PRF and per-entity PRF scores.
| Name | Description |
| ---------- | ------------------------------------------------------------------------------------------------------------------- |
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
## score_coref_clusters {#score_coref_clusters tag="experimental"}
Returns LEA ([Moosavi and Strube, 2016](https://aclanthology.org/P16-1060/)) PRF
scores for coreference clusters.
<Infobox title="Important note" variant="warning">
Note this scoring function is not yet included in spaCy core - for details, see
the [CoreferenceResolver](/api/coref) docs.
</Infobox>
> #### Example
>
> ```python
> scores = score_coref_clusters(
> examples,
> span_cluster_prefix="coref_clusters",
> )
> print(scores["coref_f"])
> ```
| Name | Description |
| --------------------- | ------------------------------------------------------------------------------------------------------------------- |
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `span_cluster_prefix` | The prefix used for spans representing coreference clusters. ~~str~~ |
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |
## score_span_predictions {#score_span_predictions tag="experimental"}
Return accuracy for reconstructions of spans from single tokens. Only exactly
correct predictions are counted as correct, there is no partial credit for near
answers. Used by the [SpanResolver](/api/span-resolver).
<Infobox title="Important note" variant="warning">
Note this scoring function is not yet included in spaCy core - for details, see
the [SpanResolver](/api/span-resolver) docs.
</Infobox>
> #### Example
>
> ```python
> scores = score_span_predictions(
> examples,
> output_prefix="coref_clusters",
> )
> print(scores["span_coref_clusters_accuracy"])
> ```
| Name | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------- |
| `examples` | The `Example` objects holding both the predictions and the correct gold-standard annotations. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `output_prefix` | The prefix used for spans representing the final predicted spans. ~~str~~ |
| **RETURNS** | A dictionary containing the scores. ~~Dict[str, Optional[float]]~~ |

View File

@ -0,0 +1,356 @@
---
title: SpanResolver
tag: class,experimental
source: spacy-experimental/coref/span_resolver_component.py
teaser: 'Pipeline component for resolving tokens into spans'
api_base_class: /api/pipe
api_string_name: span_resolver
api_trainable: true
---
> #### Installation
>
> ```bash
> $ pip install -U spacy-experimental
> ```
<Infobox title="Important note" variant="warning">
This component not yet integrated into spaCy core, and is available via the
extension package
[`spacy-experimental`](https://github.com/explosion/spacy-experimental) starting
in version 0.6.0. It exposes the component via
[entry points](/usage/saving-loading/#entry-points), so if you have the package
installed, using `factory = "experimental_span_resolver"` in your
[training config](/usage/training#config) or
`nlp.add_pipe("experimental_span_resolver")` will work out-of-the-box.
</Infobox>
A `SpanResolver` component takes in tokens (represented as `Span` objects of
length 1) and resolves them into `Span` objects of arbitrary length. The initial
use case is as a post-processing step on word-level
[coreference resolution](/api/coref). The input and output keys used to store
`Span` objects are configurable.
## Assigned Attributes {#assigned-attributes}
Predictions will be saved to `Doc.spans` as [`SpanGroup`s](/api/spangroup).
Input token spans will be read in using an input prefix, by default
`"coref_head_clusters"`, and output spans will be saved using an output prefix
(default `"coref_clusters"`) plus a serial number starting from one. The
prefixes are configurable.
| Location | Value |
| ------------------------------------------------- | ------------------------------------------------------------------------- |
| `Doc.spans[output_prefix + "_" + cluster_number]` | One group of predicted spans. Cluster number starts from 1. ~~SpanGroup~~ |
## Config and implementation {#config}
The default config is defined by the pipeline component factory and describes
how the component should be configured. You can override its settings via the
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
[`config.cfg` for training](/usage/training#config). See the
[model architectures](/api/architectures#coref-architectures) documentation for
details on the architectures and their arguments and hyperparameters.
> #### Example
>
> ```python
> from spacy_experimental.coref.span_resolver_component import DEFAULT_SPAN_RESOLVER_MODEL
> from spacy_experimental.coref.coref_util import DEFAULT_CLUSTER_PREFIX, DEFAULT_CLUSTER_HEAD_PREFIX
> config={
> "model": DEFAULT_SPAN_RESOLVER_MODEL,
> "input_prefix": DEFAULT_CLUSTER_HEAD_PREFIX,
> "output_prefix": DEFAULT_CLUSTER_PREFIX,
> },
> nlp.add_pipe("experimental_span_resolver", config=config)
> ```
| Setting | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. Defaults to [SpanResolver](/api/architectures#SpanResolver). ~~Model~~ |
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
## SpanResolver.\_\_init\_\_ {#init tag="method"}
> #### Example
>
> ```python
> # Construction via add_pipe with default model
> span_resolver = nlp.add_pipe("experimental_span_resolver")
>
> # Construction via add_pipe with custom model
> config = {"model": {"@architectures": "my_span_resolver.v1"}}
> span_resolver = nlp.add_pipe("experimental_span_resolver", config=config)
>
> # Construction from class
> from spacy_experimental.coref.span_resolver_component import SpanResolver
> span_resolver = SpanResolver(nlp.vocab, model)
> ```
Create a new pipeline instance. In your application, you would normally use a
shortcut for this and instantiate the component using its string name and
[`nlp.add_pipe`](/api/language#add_pipe).
| Name | Description |
| --------------- | --------------------------------------------------------------------------------------------------- |
| `vocab` | The shared vocabulary. ~~Vocab~~ |
| `model` | The [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model~~ |
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
| _keyword-only_ | |
| `input_prefix` | The prefix to use for input `SpanGroup`s. Defaults to `coref_head_clusters`. ~~str~~ |
| `output_prefix` | The prefix for predicted `SpanGroup`s. Defaults to `coref_clusters`. ~~str~~ |
## SpanResolver.\_\_call\_\_ {#call tag="method"}
Apply the pipe to one document. The document is modified in place and returned.
This usually happens under the hood when the `nlp` object is called on a text
and all pipeline components are applied to the `Doc` in order. Both
[`__call__`](#call) and [`pipe`](#pipe) delegate to the [`predict`](#predict)
and [`set_annotations`](#set_annotations) methods.
> #### Example
>
> ```python
> doc = nlp("This is a sentence.")
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> # This usually happens under the hood
> processed = span_resolver(doc)
> ```
| Name | Description |
| ----------- | -------------------------------- |
| `doc` | The document to process. ~~Doc~~ |
| **RETURNS** | The processed document. ~~Doc~~ |
## SpanResolver.pipe {#pipe tag="method"}
Apply the pipe to a stream of documents. This usually happens under the hood
when the `nlp` object is called on a text and all pipeline components are
applied to the `Doc` in order. Both [`__call__`](/api/span-resolver#call) and
[`pipe`](/api/span-resolver#pipe) delegate to the
[`predict`](/api/span-resolver#predict) and
[`set_annotations`](/api/span-resolver#set_annotations) methods.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> for doc in span_resolver.pipe(docs, batch_size=50):
> pass
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------- |
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
| _keyword-only_ | |
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
| **YIELDS** | The processed documents in order. ~~Doc~~ |
## SpanResolver.initialize {#initialize tag="method"}
Initialize the component for training. `get_examples` should be a function that
returns an iterable of [`Example`](/api/example) objects. **At least one example
should be supplied.** The data examples are used to **initialize the model** of
the component and can either be the full training data or a representative
sample. Initialization includes validating the network,
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
setting up the label scheme based on the data. This method is typically called
by [`Language.initialize`](/api/language#initialize).
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> span_resolver.initialize(lambda: examples, nlp=nlp)
> ```
| Name | Description |
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. Must contain at least one `Example`. ~~Callable[[], Iterable[Example]]~~ |
| _keyword-only_ | |
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
## SpanResolver.predict {#predict tag="method"}
Apply the component's model to a batch of [`Doc`](/api/doc) objects, without
modifying them. Predictions are returned as a list of `MentionClusters`, one for
each input `Doc`. A `MentionClusters` instance is just a list of lists of pairs
of `int`s, where each item corresponds to an input `SpanGroup`, and the `int`s
correspond to token indices.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> spans = span_resolver.predict([doc1, doc2])
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------- |
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
| **RETURNS** | The predicted spans for the `Doc`s. ~~List[MentionClusters]~~ |
## SpanResolver.set_annotations {#set_annotations tag="method"}
Modify a batch of documents, saving predictions using the output prefix in
`Doc.spans`.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> spans = span_resolver.predict([doc1, doc2])
> span_resolver.set_annotations([doc1, doc2], spans)
> ```
| Name | Description |
| ------- | ------------------------------------------------------------- |
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
| `spans` | The predicted spans for the `docs`. ~~List[MentionClusters]~~ |
## SpanResolver.update {#update tag="method"}
Learn from a batch of [`Example`](/api/example) objects. Delegates to
[`predict`](/api/span-resolver#predict).
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> optimizer = nlp.initialize()
> losses = span_resolver.update(examples, sgd=optimizer)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
| _keyword-only_ | |
| `drop` | The dropout rate. ~~float~~ |
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
## SpanResolver.create_optimizer {#create_optimizer tag="method"}
Create an optimizer for the pipeline component.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> optimizer = span_resolver.create_optimizer()
> ```
| Name | Description |
| ----------- | ---------------------------- |
| **RETURNS** | The optimizer. ~~Optimizer~~ |
## SpanResolver.use_params {#use_params tag="method, contextmanager"}
Modify the pipe's model, to use the given parameter values. At the end of the
context, the original parameters are restored.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> with span_resolver.use_params(optimizer.averages):
> span_resolver.to_disk("/best_model")
> ```
| Name | Description |
| -------- | -------------------------------------------------- |
| `params` | The parameter values to use in the model. ~~dict~~ |
## SpanResolver.to_disk {#to_disk tag="method"}
Serialize the pipe to disk.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> span_resolver.to_disk("/path/to/span_resolver")
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
## SpanResolver.from_disk {#from_disk tag="method"}
Load the pipe from disk. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> span_resolver.from_disk("/path/to/span_resolver")
> ```
| Name | Description |
| -------------- | ----------------------------------------------------------------------------------------------- |
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The modified `SpanResolver` object. ~~SpanResolver~~ |
## SpanResolver.to_bytes {#to_bytes tag="method"}
> #### Example
>
> ```python
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> span_resolver_bytes = span_resolver.to_bytes()
> ```
Serialize the pipe to a bytestring.
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The serialized form of the `SpanResolver` object. ~~bytes~~ |
## SpanResolver.from_bytes {#from_bytes tag="method"}
Load the pipe from a bytestring. Modifies the object in place and returns it.
> #### Example
>
> ```python
> span_resolver_bytes = span_resolver.to_bytes()
> span_resolver = nlp.add_pipe("experimental_span_resolver")
> span_resolver.from_bytes(span_resolver_bytes)
> ```
| Name | Description |
| -------------- | ------------------------------------------------------------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| _keyword-only_ | |
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
| **RETURNS** | The `SpanResolver` object. ~~SpanResolver~~ |
## Serialization fields {#serialization-fields}
During serialization, spaCy will export several data fields used to restore
different aspects of the object. If needed, you can exclude them from
serialization by passing in the string names via the `exclude` argument.
> #### Example
>
> ```python
> data = span_resolver.to_disk("/path", exclude=["vocab"])
> ```
| Name | Description |
| ------- | -------------------------------------------------------------- |
| `vocab` | The shared [`Vocab`](/api/vocab). |
| `cfg` | The config file. You usually don't want to exclude this. |
| `model` | The binary model data. You usually don't want to exclude this. |

View File

@ -255,9 +255,10 @@ Return a copy of the span group.
> new_group = doc.spans["errors"].copy()
> ```
| Name | Description |
| ----------- | ----------------------------------------------- |
| **RETURNS** | A copy of the `SpanGroup` object. ~~SpanGroup~~ |
| Name | Description |
| ----------- | -------------------------------------------------------------------------------------------------- |
| `doc` | The document to which the copy is bound. Defaults to `None` for the current doc. ~~Optional[Doc]~~ |
| **RETURNS** | A copy of the `SpanGroup` object. ~~SpanGroup~~ |
## SpanGroup.to_bytes {#to_bytes tag="method"}

View File

@ -78,7 +78,9 @@ operates on a `Doc` and gives you access to the matched tokens **in context**.
| Name | Description |
| ------------------------------------------------ | -------------------------------------------------------------------------------------------------- |
| [`Corpus`](/api/corpus) | Class for managing annotated corpora for training and evaluation data. |
| [`KnowledgeBase`](/api/kb) | Storage for entities and aliases of a knowledge base for entity linking. |
| [`KnowledgeBase`](/api/kb) | Abstract base class for storage and retrieval of data for entity linking. |
| [`InMemoryLookupKB`](/api/kb_in_memory) | Implementation of `KnowledgeBase` storing all data in memory. |
| [`Candidate`](/api/kb#candidate) | Object associating a textual mention with a specific entity contained in a `KnowledgeBase`. |
| [`Lookups`](/api/lookups) | Container for convenient access to large lookup tables and dictionaries. |
| [`MorphAnalysis`](/api/morphology#morphanalysis) | A morphological analysis. |
| [`Morphology`](/api/morphology) | Store morphological analyses and map them to and from hash values. |

View File

@ -148,6 +148,13 @@ skipped. You can also set `--force` to force re-running a command, or `--dry` to
perform a "dry run" and see what would happen (without actually running the
script).
Since spaCy v3.4.2, `spacy projects run` checks your installed dependencies to
verify that your environment is properly set up and aligns with the project's
`requirements.txt`, if there is one. If missing or conflicting dependencies are
detected, a corresponding warning is displayed. If you'd like to disable the
dependency check, set `check_requirements: false` in your project's
`project.yml`.
### 4. Run a workflow {#run-workfow}
> #### project.yml
@ -226,26 +233,49 @@ pipelines.
```yaml
%%GITHUB_PROJECTS/pipelines/tagger_parser_ud/project.yml
```
> #### Tip: Overriding variables on the CLI
>
> If you want to override one or more variables on the CLI and are not already specifying a
> project directory, you need to add `.` as a placeholder:
> If you want to override one or more variables on the CLI and are not already
> specifying a project directory, you need to add `.` as a placeholder:
>
> ```
> python -m spacy project run test . --vars.foo bar
> ```
| Section | Description |
| --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `title` | An optional project title used in `--help` message and [auto-generated docs](#custom-docs). |
| `description` | An optional project description used in [auto-generated docs](#custom-docs). |
| `vars` | A dictionary of variables that can be referenced in paths, URLs and scripts and overriden on the CLI, just like [`config.cfg` variables](/usage/training#config-interpolation). For example, `${vars.name}` will use the value of the variable `name`. Variables need to be defined in the section `vars`, but can be a nested dict, so you're able to reference `${vars.model.name}`. |
| `env` | A dictionary of variables, mapped to the names of environment variables that will be read in when running the project. For example, `${env.name}` will use the value of the environment variable defined as `name`. |
| `directories` | An optional list of [directories](#project-files) that should be created in the project for assets, training outputs, metrics etc. spaCy will make sure that these directories always exist. |
| `assets` | A list of assets that can be fetched with the [`project assets`](/api/cli#project-assets) command. `url` defines a URL or local path, `dest` is the destination file relative to the project directory, and an optional `checksum` ensures that an error is raised if the file's checksum doesn't match. Instead of `url`, you can also provide a `git` block with the keys `repo`, `branch` and `path`, to download from a Git repo. |
| `workflows` | A dictionary of workflow names, mapped to a list of command names, to execute in order. Workflows can be run with the [`project run`](/api/cli#project-run) command. |
| `commands` | A list of named commands. A command can define an optional help message (shown in the CLI when the user adds `--help`) and the `script`, a list of commands to run. The `deps` and `outputs` let you define the created file the command depends on and produces, respectively. This lets spaCy determine whether a command needs to be re-run because its dependencies or outputs changed. Commands can be run as part of a workflow, or separately with the [`project run`](/api/cli#project-run) command. |
| `spacy_version` | Optional spaCy version range like `>=3.0.0,<3.1.0` that the project is compatible with. If it's loaded with an incompatible version, an error is raised when the project is loaded. |
> #### Tip: Environment Variables
>
> Commands in a project file are not executed in a shell, so they don't have
> direct access to environment variables. But you can insert environment
> variables using the `env` dictionary to make values available for
> interpolation, just like values in `vars`. Here's an example `env` dict that
> makes `$PATH` available as `ENV_PATH`:
>
> ```yaml
> env:
> ENV_PATH: PATH
> ```
>
> This can be used in a project command like so:
>
> ```yaml
> - name: "echo-path"
> script:
> - "echo ${env.ENV_PATH}"
> ```
| Section | Description |
| --------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| `title` | An optional project title used in `--help` message and [auto-generated docs](#custom-docs). |
| `description` | An optional project description used in [auto-generated docs](#custom-docs). |
| `vars` | A dictionary of variables that can be referenced in paths, URLs and scripts and overriden on the CLI, just like [`config.cfg` variables](/usage/training#config-interpolation). For example, `${vars.name}` will use the value of the variable `name`. Variables need to be defined in the section `vars`, but can be a nested dict, so you're able to reference `${vars.model.name}`. |
| `env` | A dictionary of variables, mapped to the names of environment variables that will be read in when running the project. For example, `${env.name}` will use the value of the environment variable defined as `name`. |
| `directories` | An optional list of [directories](#project-files) that should be created in the project for assets, training outputs, metrics etc. spaCy will make sure that these directories always exist. |
| `assets` | A list of assets that can be fetched with the [`project assets`](/api/cli#project-assets) command. `url` defines a URL or local path, `dest` is the destination file relative to the project directory, and an optional `checksum` ensures that an error is raised if the file's checksum doesn't match. Instead of `url`, you can also provide a `git` block with the keys `repo`, `branch` and `path`, to download from a Git repo. |
| `workflows` | A dictionary of workflow names, mapped to a list of command names, to execute in order. Workflows can be run with the [`project run`](/api/cli#project-run) command. |
| `commands` | A list of named commands. A command can define an optional help message (shown in the CLI when the user adds `--help`) and the `script`, a list of commands to run. The `deps` and `outputs` let you define the created file the command depends on and produces, respectively. This lets spaCy determine whether a command needs to be re-run because its dependencies or outputs changed. Commands can be run as part of a workflow, or separately with the [`project run`](/api/cli#project-run) command. |
| `spacy_version` | Optional spaCy version range like `>=3.0.0,<3.1.0` that the project is compatible with. If it's loaded with an incompatible version, an error is raised when the project is loaded. |
| `check_requirements` <Tag variant="new">3.4.2</Tag> | A flag determining whether to verify that the installed dependencies align with the project's `requirements.txt`. Defaults to `true`. |
### Data assets {#data-assets}

View File

@ -480,7 +480,7 @@ as-is. They are also excluded when calling
> parse. So the evaluation results should always reflect what your pipeline will
> produce at runtime. If you want a frozen component to run (without updating)
> during training as well, so that downstream components can use its
> **predictions**, you can add it to the list of
> **predictions**, you should add it to the list of
> [`annotating_components`](/usage/training#annotating-components).
```ini

View File

@ -65,10 +65,10 @@ The English CNN pipelines have new word vectors:
| Package | Model Version | TAG | Parser LAS | NER F |
| ----------------------------------------------- | ------------- | ---: | ---------: | ----: |
| [`en_core_news_md`](/models/en#en_core_news_md) | v3.3.0 | 97.3 | 90.1 | 84.6 |
| [`en_core_news_md`](/models/en#en_core_news_lg) | v3.4.0 | 97.2 | 90.3 | 85.5 |
| [`en_core_news_lg`](/models/en#en_core_news_md) | v3.3.0 | 97.4 | 90.1 | 85.3 |
| [`en_core_news_lg`](/models/en#en_core_news_lg) | v3.4.0 | 97.3 | 90.2 | 85.6 |
| [`en_core_web_md`](/models/en#en_core_web_md) | v3.3.0 | 97.3 | 90.1 | 84.6 |
| [`en_core_web_md`](/models/en#en_core_web_lg) | v3.4.0 | 97.2 | 90.3 | 85.5 |
| [`en_core_web_lg`](/models/en#en_core_web_md) | v3.3.0 | 97.4 | 90.1 | 85.3 |
| [`en_core_web_lg`](/models/en#en_core_web_lg) | v3.4.0 | 97.3 | 90.2 | 85.6 |
## Notes about upgrading from v3.3 {#upgrading}

View File

@ -4,12 +4,22 @@
"code": "af",
"name": "Afrikaans"
},
{
"code": "am",
"name": "Amharic",
"has_examples": true
},
{
"code": "ar",
"name": "Arabic",
"example": "هذه جملة",
"has_examples": true
},
{
"code": "az",
"name": "Azerbaijani",
"has_examples": true
},
{
"code": "bg",
"name": "Bulgarian",
@ -65,7 +75,7 @@
{
"code": "dsb",
"name": "Lower Sorbian",
"has_examples": true
"has_examples": true
},
{
"code": "el",
@ -142,6 +152,11 @@
"code": "ga",
"name": "Irish"
},
{
"code": "grc",
"name": "Ancient Greek",
"has_examples": true
},
{
"code": "gu",
"name": "Gujarati",
@ -172,7 +187,7 @@
{
"code": "hsb",
"name": "Upper Sorbian",
"has_examples": true
"has_examples": true
},
{
"code": "hu",
@ -260,6 +275,10 @@
"example": "Адамга эң кыйыны — күн сайын адам болуу",
"has_examples": true
},
{
"code": "la",
"name": "Latin"
},
{
"code": "lb",
"name": "Luxembourgish",
@ -374,8 +393,8 @@
"has_examples": true,
"dependencies": [
{
"name": "pymorphy2",
"url": "https://github.com/kmike/pymorphy2"
"name": "pymorphy3",
"url": "https://github.com/no-plagiarism/pymorphy3"
}
],
"models": [
@ -448,6 +467,11 @@
"example": "นี่คือประโยค",
"has_examples": true
},
{
"code": "ti",
"name": "Tigrinya",
"has_examples": true
},
{
"code": "tl",
"name": "Tagalog"
@ -480,12 +504,12 @@
],
"dependencies": [
{
"name": "pymorphy2",
"url": "https://github.com/kmike/pymorphy2"
"name": "pymorphy3",
"url": "https://github.com/no-plagiarism/pymorphy3"
},
{
"name": "pymorphy2-dicts-uk",
"url": "https://github.com/kmike/pymorphy2-dicts/"
"name": "pymorphy3-dicts-uk",
"url": "https://github.com/no-plagiarism/pymorphy3-dicts"
}
]
},

View File

@ -12,7 +12,6 @@
{ "text": "New in v3.0", "url": "/usage/v3" },
{ "text": "New in v3.1", "url": "/usage/v3-1" },
{ "text": "New in v3.2", "url": "/usage/v3-2" },
{ "text": "New in v3.2", "url": "/usage/v3-2" },
{ "text": "New in v3.3", "url": "/usage/v3-3" },
{ "text": "New in v3.4", "url": "/usage/v3-4" }
]
@ -95,6 +94,7 @@
"label": "Pipeline",
"items": [
{ "text": "AttributeRuler", "url": "/api/attributeruler" },
{ "text": "CoreferenceResolver", "url": "/api/coref" },
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
{ "text": "EditTreeLemmatizer", "url": "/api/edittreelemmatizer" },
{ "text": "EntityLinker", "url": "/api/entitylinker" },
@ -105,6 +105,7 @@
{ "text": "SentenceRecognizer", "url": "/api/sentencerecognizer" },
{ "text": "Sentencizer", "url": "/api/sentencizer" },
{ "text": "SpanCategorizer", "url": "/api/spancategorizer" },
{ "text": "SpanResolver", "url": "/api/span-resolver" },
{ "text": "SpanRuler", "url": "/api/spanruler" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "TextCategorizer", "url": "/api/textcategorizer" },

View File

@ -1,5 +1,103 @@
{
"resources": [
{
"id": "spacy-cleaner",
"title": "spacy-cleaner",
"slogan": "Easily clean text with spaCy!",
"description": "**spacy-cleaner** utilises spaCy `Language` models to replace, remove, and \n mutate spaCy tokens. Cleaning actions available are:\n\n* Remove/replace stopwords.\n* Remove/replace punctuation.\n* Remove/replace numbers.\n* Remove/replace emails.\n* Remove/replace URLs.\n* Perform lemmatisation.\n\nSee our [docs](https://ce11an.github.io/spacy-cleaner/) for more information.",
"github": "Ce11an/spacy-cleaner",
"pip": "spacy-cleaner",
"code_example": [
"import spacy",
"import spacy_cleaner",
"from spacy_cleaner.processing import removers, replacers, mutators",
"",
"model = spacy.load(\"en_core_web_sm\")",
"pipeline = spacy_cleaner.Pipeline(",
" model,",
" removers.remove_stopword_token,",
" replacers.replace_punctuation_token,",
" mutators.mutate_lemma_token,",
")",
"",
"texts = [\"Hello, my name is Cellan! I love to swim!\"]",
"",
"pipeline.clean(texts)",
"# ['hello _IS_PUNCT_ Cellan _IS_PUNCT_ love swim _IS_PUNCT_']"
],
"code_language": "python",
"url": "https://ce11an.github.io/spacy-cleaner/",
"image": "https://raw.githubusercontent.com/Ce11an/spacy-cleaner/main/docs/assets/images/spacemen.png",
"author": "Cellan Hall",
"author_links": {
"twitter": "Ce11an",
"github": "Ce11an",
"website": "https://www.linkedin.com/in/cellan-hall/"
},
"category": [
"extension"
],
"tags": [
"text-processing"
]
},
{
"id": "Zshot",
"title": "Zshot",
"slogan": "Zero and Few shot named entity & relationships recognition",
"github": "ibm/zshot",
"pip": "zshot",
"code_example": [
"import spacy",
"from zshot import PipelineConfig, displacy",
"from zshot.linker import LinkerRegen",
"from zshot.mentions_extractor import MentionsExtractorSpacy",
"from zshot.utils.data_models import Entity",
"",
"nlp = spacy.load('en_core_web_sm')",
"# zero shot definition of entities",
"nlp_config = PipelineConfig(",
" mentions_extractor=MentionsExtractorSpacy(),",
" linker=LinkerRegen(),",
" entities=[",
" Entity(name='Paris',",
" description='Paris is located in northern central France, in a north-bending arc of the river Seine'),",
" Entity(name='IBM',",
" description='International Business Machines Corporation (IBM) is an American multinational technology corporation headquartered in Armonk, New York'),",
" Entity(name='New York', description='New York is a city in U.S. state'),",
" Entity(name='Florida', description='southeasternmost U.S. state'),",
" Entity(name='American',",
" description='American, something of, from, or related to the United States of America, commonly known as the United States or America'),",
" Entity(name='Chemical formula',",
" description='In chemistry, a chemical formula is a way of presenting information about the chemical proportions of atoms that constitute a particular chemical compound or molecul'),",
" Entity(name='Acetamide',",
" description='Acetamide (systematic name: ethanamide) is an organic compound with the formula CH3CONH2. It is the simplest amide derived from acetic acid. It finds some use as a plasticizer and as an industrial solvent.'),",
" Entity(name='Armonk',",
" description='Armonk is a hamlet and census-designated place (CDP) in the town of North Castle, located in Westchester County, New York, United States.'),",
" Entity(name='Acetic Acid',",
" description='Acetic acid, systematically named ethanoic acid, is an acidic, colourless liquid and organic compound with the chemical formula CH3COOH'),",
" Entity(name='Industrial solvent',",
" description='Acetamide (systematic name: ethanamide) is an organic compound with the formula CH3CONH2. It is the simplest amide derived from acetic acid. It finds some use as a plasticizer and as an industrial solvent.'),",
" ]",
")",
"nlp.add_pipe('zshot', config=nlp_config, last=True)",
"",
"text = 'International Business Machines Corporation (IBM) is an American multinational technology corporation' \\",
" ' headquartered in Armonk, New York, with operations in over 171 countries.'",
"",
"doc = nlp(text)",
"displacy.serve(doc, style='ent')"
],
"thumb": "https://ibm.github.io/zshot/img/graph.png",
"url": "https://ibm.github.io/zshot/",
"author": "IBM Research",
"author_links": {
"github": "ibm",
"twitter": "IBMResearch",
"website": "https://research.ibm.com/labs/ireland/"
},
"category": ["scientific", "models", "research"]
},
{
"id": "concepcy",
"title": "concepCy",
@ -2403,20 +2501,20 @@
"import spacy",
"from spacy_wordnet.wordnet_annotator import WordnetAnnotator ",
"",
"# Load an spacy model (supported models are \"es\" and \"en\") ",
"nlp = spacy.load('en')",
"# Spacy 3.x",
"nlp.add_pipe(\"spacy_wordnet\", after='tagger', config={'lang': nlp.lang})",
"# Spacy 2.x",
"# Load a spaCy model (supported languages are \"es\" and \"en\") ",
"nlp = spacy.load('en_core_web_sm')",
"# spaCy 3.x",
"nlp.add_pipe(\"spacy_wordnet\", after='tagger')",
"# spaCy 2.x",
"# nlp.add_pipe(WordnetAnnotator(nlp.lang), after='tagger')",
"token = nlp('prices')[0]",
"",
"# wordnet object link spacy token with nltk wordnet interface by giving acces to",
"# WordNet object links spaCy token with NLTK WordNet interface by giving access to",
"# synsets and lemmas ",
"token._.wordnet.synsets()",
"token._.wordnet.lemmas()",
"",
"# And automatically tags with wordnet domains",
"# And automatically add info about WordNet domains",
"token._.wordnet.wordnet_domains()"
],
"author": "recognai",
@ -3984,7 +4082,21 @@
},
"category": ["pipeline"],
"tags": ["interpretation", "ja"]
},
{
"id": "spacy-partial-tagger",
"title": "spaCy - Partial Tagger",
"slogan": "Sequence Tagger for Partially Annotated Dataset in spaCy",
"description": "This is a library to build a CRF tagger with a partially annotated dataset in spaCy. You can build your own tagger only from dictionary.",
"github": "doccano/spacy-partial-tagger",
"pip": "spacy-partial-tagger",
"category": ["pipeline", "training"],
"author": "Yasufumi Taniguchi",
"author_links": {
"github": "yasufumy"
}
}
],
"categories": [