mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-06 07:16:29 +03:00
Update landing [ci skip]
This commit is contained in:
parent
8eff159603
commit
9227f9a3ca
BIN
website/docs/images/prodigy_overview.jpg
Normal file
BIN
website/docs/images/prodigy_overview.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 281 KiB |
|
@ -37,8 +37,8 @@ export const LandingSubtitle = ({ children }) => (
|
|||
)
|
||||
|
||||
export const LandingGrid = ({ cols = 3, blocks = false, children }) => (
|
||||
<Content className={classNames(classes.grid, { [classes.blocks]: blocks })}>
|
||||
<Grid cols={cols} narrow={blocks}>
|
||||
<Content className={classNames({ [classes.blocks]: blocks })}>
|
||||
<Grid cols={cols} narrow={blocks} className={classes.grid}>
|
||||
{children}
|
||||
</Grid>
|
||||
</Content>
|
||||
|
|
|
@ -76,7 +76,7 @@
|
|||
.banner
|
||||
background: var(--color-theme)
|
||||
color: var(--color-back)
|
||||
padding: 5rem
|
||||
padding: 1rem 5rem
|
||||
margin-bottom: var(--spacing-md)
|
||||
background-size: cover
|
||||
|
||||
|
@ -128,14 +128,17 @@
|
|||
padding-right: 2rem
|
||||
|
||||
@include breakpoint(max, md)
|
||||
.banner
|
||||
padding: 1rem 3rem
|
||||
|
||||
.banner-content
|
||||
display: block
|
||||
|
||||
.banner-text
|
||||
padding-top: 0
|
||||
|
||||
.col
|
||||
grid-column: 1 / span 2
|
||||
.grid
|
||||
grid-template-columns: 1fr !important
|
||||
|
||||
.banner-button
|
||||
margin-bottom: var(--spacing-sm)
|
||||
|
|
|
@ -20,6 +20,7 @@ import Button from '../components/button'
|
|||
import Link from '../components/link'
|
||||
|
||||
import courseImage from '../../docs/images/course.jpg'
|
||||
import prodigyImage from '../../docs/images/prodigy_overview.jpg'
|
||||
|
||||
import BenchmarksChoi from 'usage/_benchmarks-choi.md'
|
||||
|
||||
|
@ -147,6 +148,59 @@ const Landing = ({ data }) => {
|
|||
</LandingCol>
|
||||
</LandingGrid>
|
||||
|
||||
<LandingBannerGrid>
|
||||
<LandingBanner
|
||||
title="spaCy v3.0 nightly: Transformer-based pipelines, new training system, project templates & more"
|
||||
label="Try the pre-release"
|
||||
to="https://nightly.spacy.io"
|
||||
button="See what's new"
|
||||
background="#8758fe"
|
||||
color="#ffffff"
|
||||
small
|
||||
>
|
||||
spaCy v3.0 features all new <strong>transformer-based pipelines</strong> that
|
||||
bring spaCy's accuracy right up to the current <strong>state-of-the-art</strong>
|
||||
. You can use any pretrained transformer to train your own pipelines, and even
|
||||
share one transformer between multiple components with{' '}
|
||||
<strong>multi-task learning</strong>. Training is now fully configurable and
|
||||
extensible, and you can define your own custom models using{' '}
|
||||
<strong>PyTorch</strong>, <strong>TensorFlow</strong> and other frameworks. The
|
||||
new spaCy projects system lets you describe whole{' '}
|
||||
<strong>end-to-end workflows</strong> in a single file, giving you an easy path
|
||||
from prototype to production, and making it easy to clone and adapt
|
||||
best-practice projects for your own use cases.
|
||||
</LandingBanner>
|
||||
|
||||
<LandingBanner
|
||||
title="Prodigy: Radically efficient machine teaching"
|
||||
label="From the makers of spaCy"
|
||||
to="https://prodi.gy"
|
||||
button="Try it out"
|
||||
background="#f6f6f6"
|
||||
color="#000"
|
||||
small
|
||||
>
|
||||
<Link to="https://prodi.gy" hidden>
|
||||
<img
|
||||
src={prodigyImage}
|
||||
alt="Prodigy: Radically efficient machine teaching"
|
||||
/>
|
||||
</Link>
|
||||
<br />
|
||||
<br />
|
||||
Prodigy is an <strong>annotation tool</strong> so efficient that data scientists
|
||||
can do the annotation themselves, enabling a new level of rapid iteration.
|
||||
Whether you're working on entity recognition, intent detection or image
|
||||
classification, Prodigy can help you <strong>train and evaluate</strong> your
|
||||
models faster.
|
||||
</LandingBanner>
|
||||
</LandingBannerGrid>
|
||||
|
||||
<LandingLogos title="spaCy is trusted by" logos={data.logosUsers}>
|
||||
<Button to={`https://github.com/${data.repo}/stargazers`}>and many more</Button>
|
||||
</LandingLogos>
|
||||
<LandingLogos title="Featured on" logos={data.logosPublications} />
|
||||
|
||||
<LandingBannerGrid>
|
||||
<LandingBanner
|
||||
to="https://course.spacy.io"
|
||||
|
@ -169,45 +223,23 @@ const Landing = ({ data }) => {
|
|||
<strong>55 exercises</strong> featuring videos, slide decks, multiple-choice
|
||||
questions and interactive coding practice in the browser.
|
||||
</LandingBanner>
|
||||
|
||||
<LandingBanner
|
||||
title="Prodigy: Radically efficient machine teaching"
|
||||
label="From the makers of spaCy"
|
||||
to="https://prodi.gy"
|
||||
button="Try it out"
|
||||
background="#eee"
|
||||
color="#000"
|
||||
title="BERT-style language model pretraining"
|
||||
label="New in v2.1"
|
||||
to="/usage/v2-1"
|
||||
button="Read more"
|
||||
small
|
||||
>
|
||||
Prodigy is an <strong>annotation tool</strong> so efficient that data scientists
|
||||
can do the annotation themselves, enabling a new level of rapid iteration.
|
||||
Whether you're working on entity recognition, intent detection or image
|
||||
classification, Prodigy can help you <strong>train and evaluate</strong> your
|
||||
models faster. Stream in your own examples or real-world data from live APIs,
|
||||
update your model in real-time and chain models together to build more complex
|
||||
systems.
|
||||
Learn more from small training corpora by initializing your models with{' '}
|
||||
<strong>knowledge from raw text</strong>. The new pretrain command teaches
|
||||
spaCy's CNN model to predict words based on their context, producing
|
||||
representations of words in contexts. If you've seen Google's BERT system or
|
||||
fast.ai's ULMFiT, spaCy's pretraining is similar – but much more efficient. It's
|
||||
still experimental, but users are already reporting good results, so give it a
|
||||
try!
|
||||
</LandingBanner>
|
||||
</LandingBannerGrid>
|
||||
|
||||
<LandingLogos title="spaCy is trusted by" logos={data.logosUsers}>
|
||||
<Button to={`https://github.com/${data.repo}/stargazers`}>and many more</Button>
|
||||
</LandingLogos>
|
||||
<LandingLogos title="Featured on" logos={data.logosPublications} />
|
||||
|
||||
<LandingBanner
|
||||
title="BERT-style language model pretraining"
|
||||
label="New in v2.1"
|
||||
to="/usage/v2-1"
|
||||
button="Read more"
|
||||
>
|
||||
Learn more from small training corpora by initializing your models with{' '}
|
||||
<strong>knowledge from raw text</strong>. The new pretrain command teaches spaCy's
|
||||
CNN model to predict words based on their context, producing representations of
|
||||
words in contexts. If you've seen Google's BERT system or fast.ai's ULMFiT, spaCy's
|
||||
pretraining is similar – but much more efficient. It's still experimental, but users
|
||||
are already reporting good results, so give it a try!
|
||||
</LandingBanner>
|
||||
|
||||
<LandingGrid cols={2}>
|
||||
<LandingCol>
|
||||
<H2>Benchmarks</H2>
|
||||
|
|
Loading…
Reference in New Issue
Block a user