Merge branch 'develop' into feature/missing-dep

This commit is contained in:
Matthew Honnibal 2021-01-14 17:39:01 +11:00 committed by GitHub
commit 92310a5e26
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
24 changed files with 1468 additions and 90 deletions

View File

@ -1,7 +1,7 @@
SHELL := /bin/bash
ifndef SPACY_EXTRAS
override SPACY_EXTRAS = spacy-lookups-data==1.0.0rc0 jieba spacy-pkuseg==0.0.26 sudachipy sudachidict_core
override SPACY_EXTRAS = spacy-lookups-data==1.0.0rc0 jieba spacy-pkuseg==0.0.28 sudachipy sudachidict_core pymorphy2
endif
ifndef PYVER

View File

@ -55,6 +55,8 @@ MOD_NAMES = [
"spacy.tokens.doc",
"spacy.tokens.span",
"spacy.tokens.token",
"spacy.tokens.span_group",
"spacy.tokens.graph",
"spacy.tokens.morphanalysis",
"spacy.tokens._retokenize",
"spacy.matcher.matcher",
@ -68,7 +70,7 @@ COMPILE_OPTIONS = {
"mingw32": ["-O2", "-Wno-strict-prototypes", "-Wno-unused-function"],
"other": ["-O2", "-Wno-strict-prototypes", "-Wno-unused-function"],
}
LINK_OPTIONS = {"msvc": [], "mingw32": [], "other": []}
LINK_OPTIONS = {"msvc": ["-std=c++11"], "mingw32": ["-std=c++11"], "other": []}
COMPILER_DIRECTIVES = {
"language_level": -3,
"embedsignature": True,
@ -201,7 +203,7 @@ def setup_package():
ext_modules = []
for name in MOD_NAMES:
mod_path = name.replace(".", "/") + ".pyx"
ext = Extension(name, [mod_path], language="c++")
ext = Extension(name, [mod_path], language="c++", extra_compile_args=["-std=c++11"])
ext_modules.append(ext)
print("Cythonizing sources")
ext_modules = cythonize(ext_modules, compiler_directives=COMPILER_DIRECTIVES)

View File

@ -30,9 +30,7 @@ class RussianLemmatizer(Lemmatizer):
except ImportError:
raise ImportError(
"The Russian lemmatizer requires the pymorphy2 library: "
'try to fix it with "pip install pymorphy2==0.8" '
'or "pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
"if you need Ukrainian too"
'try to fix it with "pip install pymorphy2"'
) from None
if RussianLemmatizer._morph is None:
RussianLemmatizer._morph = MorphAnalyzer()

View File

@ -22,8 +22,8 @@ class UkrainianLemmatizer(RussianLemmatizer):
except ImportError:
raise ImportError(
"The Ukrainian lemmatizer requires the pymorphy2 library and "
'dictionaries: try to fix it with "pip uninstall pymorphy2" and'
'"pip install git+https://github.com/kmike/pymorphy2.git pymorphy2-dicts-uk"'
"dictionaries: try to fix it with "
'"pip install pymorphy2 pymorphy2-dicts-uk"'
) from None
if UkrainianLemmatizer._morph is None:
UkrainianLemmatizer._morph = MorphAnalyzer(lang="uk")

View File

@ -1,5 +1,7 @@
from libc.stdint cimport uint8_t, uint32_t, int32_t, uint64_t
from libcpp.vector cimport vector
from libcpp.unordered_set cimport unordered_set
from libcpp.unordered_map cimport unordered_map
from libc.stdint cimport int32_t, int64_t
from .typedefs cimport flags_t, attr_t, hash_t
@ -91,3 +93,22 @@ cdef struct AliasC:
# Prior probability P(entity|alias) - should sum up to (at most) 1.
vector[float] probs
cdef struct EdgeC:
hash_t label
int32_t head
int32_t tail
cdef struct GraphC:
vector[vector[int32_t]] nodes
vector[EdgeC] edges
vector[float] weights
vector[int] n_heads
vector[int] n_tails
vector[int] first_head
vector[int] first_tail
unordered_set[int]* roots
unordered_map[hash_t, int]* node_map
unordered_map[hash_t, int]* edge_map

View File

@ -631,3 +631,24 @@ def test_doc_set_ents_invalid_spans(en_tokenizer):
retokenizer.merge(span)
with pytest.raises(IndexError):
doc.ents = spans
def test_span_groups(en_tokenizer):
doc = en_tokenizer("Some text about Colombia and the Czech Republic")
doc.spans["hi"] = [Span(doc, 3, 4, label="bye")]
assert "hi" in doc.spans
assert "bye" not in doc.spans
assert len(doc.spans["hi"]) == 1
assert doc.spans["hi"][0].label_ == "bye"
doc.spans["hi"].append(doc[0:3])
assert len(doc.spans["hi"]) == 2
assert doc.spans["hi"][1].text == "Some text about"
assert [span.text for span in doc.spans["hi"]] == ["Colombia", "Some text about"]
assert not doc.spans["hi"].has_overlap
doc.ents = [Span(doc, 3, 4, label="GPE"), Span(doc, 6, 8, label="GPE")]
doc.spans["hi"].extend(doc.ents)
assert len(doc.spans["hi"]) == 4
assert [span.label_ for span in doc.spans["hi"]] == ["bye", "", "GPE", "GPE"]
assert doc.spans["hi"].has_overlap
del doc.spans["hi"]
assert "hi" not in doc.spans

View File

@ -0,0 +1,57 @@
from spacy.vocab import Vocab
from spacy.tokens.doc import Doc
from spacy.tokens.graph import Graph
def test_graph_init():
doc = Doc(Vocab(), words=["a", "b", "c", "d"])
graph = Graph(doc, name="hello")
assert graph.name == "hello"
assert graph.doc is doc
def test_graph_edges_and_nodes():
doc = Doc(Vocab(), words=["a", "b", "c", "d"])
graph = Graph(doc, name="hello")
node1 = graph.add_node((0,))
assert graph.get_node((0,)) == node1
node2 = graph.add_node((1, 3))
assert list(node2) == [1, 3]
graph.add_edge(
node1,
node2,
label="one",
weight=-10.5
)
assert graph.has_edge(
node1,
node2,
label="one"
)
assert node1.heads() == []
assert [tuple(h) for h in node2.heads()] == [(0,)]
assert [tuple(t) for t in node1.tails()] == [(1, 3)]
assert [tuple(t) for t in node2.tails()] == []
def test_graph_walk():
doc = Doc(Vocab(), words=["a", "b", "c", "d"])
graph = Graph(
doc,
name="hello",
nodes=[(0,), (1,), (2,), (3,)],
edges=[(0, 1), (0, 2), (0, 3), (3, 0)],
labels=None,
weights=None
)
node0, node1, node2, node3 = list(graph.nodes)
assert [tuple(h) for h in node0.heads()] == [(3,)]
assert [tuple(h) for h in node1.heads()] == [(0,)]
assert [tuple(h) for h in node0.walk_heads()] == [(3,), (0,)]
assert [tuple(h) for h in node1.walk_heads()] == [(0,), (3,), (0,)]
assert [tuple(h) for h in node2.walk_heads()] == [(0,), (3,), (0,)]
assert [tuple(h) for h in node3.walk_heads()] == [(0,), (3,)]
assert [tuple(t) for t in node0.walk_tails()] == [(1,), (2,), (3,), (0,)]
assert [tuple(t) for t in node1.walk_tails()] == []
assert [tuple(t) for t in node2.walk_tails()] == []
assert [tuple(t) for t in node3.walk_tails()] == [(0,), (1,), (2,), (3,)]

View File

@ -56,6 +56,13 @@ def test_serialize_doc_exclude(en_vocab):
assert not new_doc.user_data
def test_serialize_doc_span_groups(en_vocab):
doc = Doc(en_vocab, words=["hello", "world", "!"])
doc.spans["content"] = [doc[0:2]]
new_doc = Doc(en_vocab).from_bytes(doc.to_bytes())
assert len(new_doc.spans["content"]) == 1
def test_serialize_doc_bin():
doc_bin = DocBin(attrs=["LEMMA", "ENT_IOB", "ENT_TYPE"], store_user_data=True)
texts = ["Some text", "Lots of texts...", "..."]
@ -63,6 +70,7 @@ def test_serialize_doc_bin():
nlp = English()
for doc in nlp.pipe(texts):
doc.cats = cats
doc.spans["start"] = [doc[0:2]]
doc_bin.add(doc)
bytes_data = doc_bin.to_bytes()
@ -73,6 +81,7 @@ def test_serialize_doc_bin():
for i, doc in enumerate(reloaded_docs):
assert doc.text == texts[i]
assert doc.cats == cats
assert len(doc.spans) == 1
def test_serialize_doc_bin_unknown_spaces(en_vocab):

View File

@ -0,0 +1,49 @@
from typing import Iterable, Tuple, Union, TYPE_CHECKING
import weakref
from collections import UserDict
import srsly
from .span_group import SpanGroup
if TYPE_CHECKING:
# This lets us add type hints for mypy etc. without causing circular imports
from .doc import Doc # noqa: F401
from .span import Span # noqa: F401
# Why inherit from UserDict instead of dict here?
# Well, the 'dict' class doesn't necessarily delegate everything nicely,
# for performance reasons. The UserDict is slower by better behaved.
# See https://treyhunner.com/2019/04/why-you-shouldnt-inherit-from-list-and-dict-in-python/0ww
class SpanGroups(UserDict):
"""A dict-like proxy held by the Doc, to control access to span groups."""
def __init__(
self, doc: "Doc", items: Iterable[Tuple[str, SpanGroup]] = tuple()
) -> None:
self.doc_ref = weakref.ref(doc)
UserDict.__init__(self, items)
def __setitem__(self, key: str, value: Union[SpanGroup, Iterable["Span"]]) -> None:
if not isinstance(value, SpanGroup):
value = self._make_span_group(key, value)
assert value.doc is self.doc_ref()
UserDict.__setitem__(self, key, value)
def _make_span_group(self, name: str, spans: Iterable["Span"]) -> SpanGroup:
return SpanGroup(self.doc_ref(), name=name, spans=spans)
def to_bytes(self) -> bytes:
# We don't need to serialize this as a dict, because the groups
# know their names.
msg = [value.to_bytes() for value in self.values()]
return srsly.msgpack_dumps(msg)
def from_bytes(self, bytes_data: bytes) -> "SpanGroups":
msg = srsly.msgpack_loads(bytes_data)
self.clear()
doc = self.doc_ref()
for value_bytes in msg:
group = SpanGroup(doc).from_bytes(value_bytes)
self[group.name] = group
return self

View File

@ -33,6 +33,7 @@ class DocBin:
{
"attrs": List[uint64], # e.g. [TAG, HEAD, ENT_IOB, ENT_TYPE]
"tokens": bytes, # Serialized numpy uint64 array with the token data
"spans": List[Dict[str, bytes]], # SpanGroups data for each doc
"spaces": bytes, # Serialized numpy boolean array with spaces data
"lengths": bytes, # Serialized numpy int32 array with the doc lengths
"strings": List[unicode] # List of unique strings in the token data
@ -70,6 +71,7 @@ class DocBin:
self.tokens = []
self.spaces = []
self.cats = []
self.span_groups = []
self.user_data = []
self.flags = []
self.strings = set()
@ -107,6 +109,10 @@ class DocBin:
self.strings.add(token.ent_kb_id_)
self.cats.append(doc.cats)
self.user_data.append(srsly.msgpack_dumps(doc.user_data))
self.span_groups.append(doc.spans.to_bytes())
for key, group in doc.spans.items():
for span in group:
self.strings.add(span.label_)
def get_docs(self, vocab: Vocab) -> Iterator[Doc]:
"""Recover Doc objects from the annotations, using the given vocab.
@ -130,6 +136,10 @@ class DocBin:
doc = Doc(vocab, words=tokens[:, orth_col], spaces=spaces)
doc = doc.from_array(self.attrs, tokens)
doc.cats = self.cats[i]
if self.span_groups[i]:
doc.spans.from_bytes(self.span_groups[i])
else:
doc.spans.clear()
if i < len(self.user_data) and self.user_data[i] is not None:
user_data = srsly.msgpack_loads(self.user_data[i], use_list=False)
doc.user_data.update(user_data)
@ -161,6 +171,7 @@ class DocBin:
self.spaces.extend(other.spaces)
self.strings.update(other.strings)
self.cats.extend(other.cats)
self.span_groups.extend(other.span_groups)
self.flags.extend(other.flags)
self.user_data.extend(other.user_data)
@ -185,6 +196,7 @@ class DocBin:
"strings": list(sorted(self.strings)),
"cats": self.cats,
"flags": self.flags,
"span_groups": self.span_groups,
}
if self.store_user_data:
msg["user_data"] = self.user_data
@ -213,6 +225,7 @@ class DocBin:
self.tokens = NumpyOps().unflatten(flat_tokens, lengths)
self.spaces = NumpyOps().unflatten(flat_spaces, lengths)
self.cats = msg["cats"]
self.span_groups = msg.get("span_groups", [b"" for _ in lengths])
self.flags = msg.get("flags", [{} for _ in lengths])
if "user_data" in msg:
self.user_data = list(msg["user_data"])

View File

@ -2,7 +2,7 @@ from cymem.cymem cimport Pool
cimport numpy as np
from ..vocab cimport Vocab
from ..structs cimport TokenC, LexemeC
from ..structs cimport TokenC, LexemeC, SpanC
from ..typedefs cimport attr_t
from ..attrs cimport attr_id_t
@ -33,6 +33,7 @@ cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2
cdef int [:,:] _get_lca_matrix(Doc, int start, int end)
cdef class Doc:
cdef readonly Pool mem
cdef readonly Vocab vocab
@ -43,6 +44,7 @@ cdef class Doc:
cdef public object tensor
cdef public object cats
cdef public object user_data
cdef readonly object spans
cdef TokenC* c

View File

@ -17,6 +17,7 @@ import warnings
from .span cimport Span
from .token cimport MISSING_DEP
from ._dict_proxies import SpanGroups
from .token cimport Token
from ..lexeme cimport Lexeme, EMPTY_LEXEME
from ..typedefs cimport attr_t, flags_t
@ -223,6 +224,7 @@ cdef class Doc:
self.vocab = vocab
size = max(20, (len(words) if words is not None else 0))
self.mem = Pool()
self.spans = SpanGroups(self)
# Guarantee self.lex[i-x], for any i >= 0 and x < padding is in bounds
# However, we need to remember the true starting places, so that we can
# realloc.
@ -1260,6 +1262,9 @@ cdef class Doc:
strings.add(token.ent_kb_id_)
strings.add(token.ent_id_)
strings.add(token.norm_)
for group in self.spans.values():
for span in group:
strings.add(span.label_)
# Msgpack doesn't distinguish between lists and tuples, which is
# vexing for user data. As a best guess, we *know* that within
# keys, we must have tuples. In values we just have to hope
@ -1271,6 +1276,7 @@ cdef class Doc:
"sentiment": lambda: self.sentiment,
"tensor": lambda: self.tensor,
"cats": lambda: self.cats,
"spans": lambda: self.spans.to_bytes(),
"strings": lambda: list(strings),
"has_unknown_spaces": lambda: self.has_unknown_spaces
}
@ -1295,18 +1301,6 @@ cdef class Doc:
"""
if self.length != 0:
raise ValueError(Errors.E033.format(length=self.length))
deserializers = {
"text": lambda b: None,
"array_head": lambda b: None,
"array_body": lambda b: None,
"sentiment": lambda b: None,
"tensor": lambda b: None,
"cats": lambda b: None,
"strings": lambda b: None,
"user_data_keys": lambda b: None,
"user_data_values": lambda b: None,
"has_unknown_spaces": lambda b: None
}
# Msgpack doesn't distinguish between lists and tuples, which is
# vexing for user data. As a best guess, we *know* that within
# keys, we must have tuples. In values we just have to hope
@ -1341,9 +1335,12 @@ cdef class Doc:
self.push_back(lex, has_space)
start = end + has_space
self.from_array(msg["array_head"][2:], attrs[:, 2:])
if "spans" in msg:
self.spans.from_bytes(msg["spans"])
else:
self.spans.clear()
return self
def extend_tensor(self, tensor):
"""Concatenate a new tensor onto the doc.tensor object.

13
spacy/tokens/graph.pxd Normal file
View File

@ -0,0 +1,13 @@
from libcpp.vector cimport vector
from cymem.cymem cimport Pool
from preshed.maps cimport PreshMap
from ..structs cimport GraphC, EdgeC
cdef class Graph:
cdef GraphC c
cdef Pool mem
cdef PreshMap node_map
cdef PreshMap edge_map
cdef object doc_ref
cdef public str name

709
spacy/tokens/graph.pyx Normal file
View File

@ -0,0 +1,709 @@
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
from typing import List, Tuple, Generator
from libc.stdint cimport int32_t, int64_t
from libcpp.pair cimport pair
from libcpp.unordered_map cimport unordered_map
from libcpp.unordered_set cimport unordered_set
from cython.operator cimport dereference
cimport cython
import weakref
from preshed.maps cimport map_get_unless_missing
from murmurhash.mrmr cimport hash64
from ..typedefs cimport hash_t
from ..strings import get_string_id
from ..structs cimport EdgeC, GraphC
from .token import Token
@cython.freelist(8)
cdef class Edge:
cdef readonly Graph graph
cdef readonly int i
def __init__(self, Graph graph, int i):
self.graph = graph
self.i = i
@property
def is_none(self) -> bool:
return False
@property
def doc(self) -> "Doc":
return self.graph.doc
@property
def head(self) -> "Node":
return Node(self.graph, self.graph.c.edges[self.i].head)
@property
def tail(self) -> "Tail":
return Node(self.graph, self.graph.c.edges[self.i].tail)
@property
def label(self) -> int:
return self.graph.c.edges[self.i].label
@property
def weight(self) -> float:
return self.graph.c.weights[self.i]
@property
def label_(self) -> str:
return self.doc.vocab.strings[self.label]
@cython.freelist(8)
cdef class Node:
cdef readonly Graph graph
cdef readonly int i
def __init__(self, Graph graph, int i):
"""A reference to a node of an annotation graph. Each node is made up of
an ordered set of zero or more token indices.
Node references are usually created by the Graph object itself, or from
the Node or Edge objects. You usually won't need to instantiate this
class yourself.
"""
cdef int length = graph.c.nodes.size()
if i >= length or -i >= length:
raise IndexError(f"Node index {i} out of bounds ({length})")
if i < 0:
i += length
self.graph = graph
self.i = i
def __eq__(self, other):
if self.graph is not other.graph:
return False
else:
return self.i == other.i
def __iter__(self) -> Generator[int]:
for i in self.graph.c.nodes[self.i]:
yield i
def __getitem__(self, int i) -> int:
"""Get a token index from the node's set of tokens."""
length = self.graph.c.nodes[self.i].size()
if i >= length or -i >= length:
raise IndexError(f"Token index {i} out of bounds ({length})")
if i < 0:
i += length
return self.graph.c.nodes[self.i][i]
def __len__(self) -> int:
"""The number of tokens that make up the node."""
return self.graph.c.nodes[self.i].size()
@property
def is_none(self) -> bool:
"""Whether the node is a special value, indicating 'none'.
The NoneNode type is returned by the Graph, Edge and Node objects when
there is no match to a query. It has the same API as Node, but it always
returns NoneNode, NoneEdge or empty lists for its queries.
"""
return False
@property
def doc(self) -> "Doc":
"""The Doc object that the graph refers to."""
return self.graph.doc
@property
def tokens(self) -> Tuple[Token]:
"""A tuple of Token objects that make up the node."""
doc = self.doc
return tuple([doc[i] for i in self])
def head(self, i=None, label=None) -> "Node":
"""Get the head of the first matching edge, searching by index, label,
both or neither.
For instance, `node.head(i=1)` will get the head of the second edge that
this node is a tail of. `node.head(i=1, label="ARG0")` will further
check that the second edge has the label `"ARG0"`.
If no matching node can be found, the graph's NoneNode is returned.
"""
return self.headed(i=i, label=label)
def tail(self, i=None, label=None) -> "Node":
"""Get the tail of the first matching edge, searching by index, label,
both or neither.
If no matching node can be found, the graph's NoneNode is returned.
"""
return self.tailed(i=i, label=label).tail
def sibling(self, i=None, label=None):
"""Get the first matching sibling node. Two nodes are siblings if they
are both tails of the same head.
If no matching node can be found, the graph's NoneNode is returned.
"""
if i is None:
siblings = self.siblings(label=label)
return siblings[0] if siblings else NoneNode(self)
else:
edges = []
for h in self.headed():
edges.extend([e for e in h.tailed() if e.tail.i != self.i])
if i >= len(edges):
return NoneNode(self)
elif label is not None and edges[i].label != label:
return NoneNode(self)
else:
return edges[i].tail
def heads(self, label=None) -> List["Node"]:
"""Find all matching heads of this node."""
cdef vector[int] edge_indices
self._find_edges(edge_indices, "head", label)
return [Node(self.graph, self.graph.c.edges[i].head) for i in edge_indices]
def tails(self, label=None) -> List["Node"]:
"""Find all matching tails of this node."""
cdef vector[int] edge_indices
self._find_edges(edge_indices, "tail", label)
return [Node(self.graph, self.graph.c.edges[i].tail) for i in edge_indices]
def siblings(self, label=None) -> List["Node"]:
"""Find all maching siblings of this node. Two nodes are siblings if they
are tails of the same head.
"""
edges = []
for h in self.headed():
edges.extend([e for e in h.tailed() if e.tail.i != self.i])
if label is None:
return [e.tail for e in edges]
else:
return [e.tail for e in edges if e.label == label]
def headed(self, i=None, label=None) -> Edge:
"""Find the first matching edge headed by this node.
If no matching edge can be found, the graph's NoneEdge is returned.
"""
start, end = self._find_range(i, self.c.n_head[self.i])
idx = self._find_edge("head", start, end, label)
if idx == -1:
return NoneEdge(self.graph)
else:
return Edge(self.graph, idx)
def tailed(self, i=None, label=None) -> Edge:
"""Find the first matching edge tailed by this node.
If no matching edge can be found, the graph's NoneEdge is returned.
"""
start, end = self._find_range(i, self.c.n_tail[self.i])
idx = self._find_edge("tail", start, end, label)
if idx == -1:
return NoneEdge(self.graph)
else:
return Edge(self.graph, idx)
def headeds(self, label=None) -> List[Edge]:
"""Find all matching edges headed by this node."""
cdef vector[int] edge_indices
self._find_edges(edge_indices, "head", label)
return [Edge(self.graph, i) for i in edge_indices]
def taileds(self, label=None) -> List["Edge"]:
"""Find all matching edges headed by this node."""
cdef vector[int] edge_indices
self._find_edges(edge_indices, "tail", label)
return [Edge(self.graph, i) for i in edge_indices]
def walk_heads(self):
cdef vector[int] node_indices
walk_head_nodes(node_indices, &self.graph.c, self.i)
for i in node_indices:
yield Node(self.graph, i)
def walk_tails(self):
cdef vector[int] node_indices
walk_tail_nodes(node_indices, &self.graph.c, self.i)
for i in node_indices:
yield Node(self.graph, i)
cdef (int, int) _get_range(self, i, n):
if i is None:
return (0, n)
elif i < n:
return (i, i+1)
else:
return (0, 0)
cdef int _find_edge(self, str direction, int start, int end, label) except -2:
if direction == "head":
get_edges = get_head_edges
else:
get_edges = get_tail_edges
cdef vector[int] edge_indices
get_edges(edge_indices, &self.graph.c, self.i)
if label is None:
return edge_indices[start]
for edge_index in edge_indices[start:end]:
if self.graph.c.edges[edge_index].label == label:
return edge_index
else:
return -1
cdef int _find_edges(self, vector[int]& edge_indices, str direction, label):
if direction == "head":
get_edges = get_head_edges
else:
get_edges = get_tail_edges
if label is None:
get_edges(edge_indices, &self.graph.c, self.i)
return edge_indices.size()
cdef vector[int] unfiltered
get_edges(unfiltered, &self.graph.c, self.i)
for edge_index in unfiltered:
if self.graph.c.edges[edge_index].label == label:
edge_indices.push_back(edge_index)
return edge_indices.size()
cdef class NoneEdge(Edge):
"""An Edge subclass, representing a non-result. The NoneEdge has the same
API as other Edge instances, but always returns NoneEdge, NoneNode, or empty
lists.
"""
def __init__(self, graph):
self.graph = graph
self.i = -1
@property
def doc(self) -> "Doc":
return self.graph.doc
@property
def head(self) -> "NoneNode":
return NoneNode(self.graph)
@property
def tail(self) -> "NoneNode":
return NoneNode(self.graph)
@property
def label(self) -> int:
return 0
@property
def weight(self) -> float:
return 0.0
@property
def label_(self) -> str:
return ""
cdef class NoneNode(Node):
def __init__(self, graph):
self.graph = graph
self.i = -1
def __getitem__(self, int i):
raise IndexError("Cannot index into NoneNode.")
def __len__(self):
return 0
@property
def is_none(self):
return -1
@property
def doc(self):
return self.graph.doc
@property
def tokens(self):
return tuple()
def head(self, i=None, label=None):
return self
def tail(self, i=None, label=None):
return self
def walk_heads(self):
yield from []
def walk_tails(self):
yield from []
cdef class Graph:
"""A set of directed labelled relationships between sets of tokens.
EXAMPLE:
Construction 1
>>> graph = Graph(doc, name="srl")
Construction 2
>>> graph = Graph(
doc,
name="srl",
nodes=[(0,), (1, 3), (,)],
edges=[(0, 2), (2, 1)]
)
Construction 3
>>> graph = Graph(
doc,
name="srl",
nodes=[(0,), (1, 3), (,)],
edges=[(2, 0), (0, 1)],
labels=["word sense ID 1675", "agent"],
weights=[-42.6, -1.7]
)
>>> assert graph.has_node((0,))
>>> assert graph.has_edge((0,), (1,3), label="agent")
"""
def __init__(self, doc, *, name="", nodes=[], edges=[], labels=None, weights=None):
"""Create a Graph object.
doc (Doc): The Doc object the graph will refer to.
name (str): A string name to help identify the graph. Defaults to "".
nodes (List[Tuple[int]]): A list of token-index tuples to add to the graph
as nodes. Defaults to [].
edges (List[Tuple[int, int]]): A list of edges between the provided nodes.
Each edge should be a (head, tail) tuple, where `head` and `tail`
are integers pointing into the `nodes` list. Defaults to [].
labels (Optional[List[str]]): A list of labels for the provided edges.
If None, all of the edges specified by the edges argument will have
be labelled with the empty string (""). If `labels` is not `None`,
it must have the same length as the `edges` argument.
weights (Optional[List[float]]): A list of weights for the provided edges.
If None, all of the edges specified by the edges argument will
have the weight 0.0. If `weights` is not `None`, it must have the
same length as the `edges` argument.
"""
if weights is not None:
assert len(weights) == len(edges)
else:
weights = [0.0] * len(edges)
if labels is not None:
assert len(labels) == len(edges)
else:
labels = [""] * len(edges)
self.c.node_map = new unordered_map[hash_t, int]()
self.c.edge_map = new unordered_map[hash_t, int]()
self.c.roots = new unordered_set[int]()
self.name = name
self.doc_ref = weakref.ref(doc)
for node in nodes:
self.add_node(node)
for (head, tail), label, weight in zip(edges, labels, weights):
self.add_edge(
Node(self, head),
Node(self, tail),
label=label,
weight=weight
)
def __dealloc__(self):
del self.c.node_map
del self.c.edge_map
del self.c.roots
@property
def doc(self) -> "Doc":
"""The Doc object the graph refers to."""
return self.doc_ref()
@property
def edges(self) -> Generator[Edge]:
"""Iterate over the edges in the graph."""
for i in range(self.c.edges.size()):
yield Edge(self, i)
@property
def nodes(self) -> Generator[Node]:
"""Iterate over the nodes in the graph."""
for i in range(self.c.nodes.size()):
yield Node(self, i)
def add_edge(self, head, tail, *, label="", weight=None) -> Edge:
"""Add an edge to the graph, connecting two groups of tokens.
If there is already an edge for the (head, tail, label) triple, it will
be returned, and no new edge will be created. The weight of the edge
will be updated if a weight is specified.
"""
label_hash = self.doc.vocab.strings.as_int(label)
weight_float = weight if weight is not None else 0.0
edge_index = add_edge(
&self.c,
EdgeC(
head=self.add_node(head).i,
tail=self.add_node(tail).i,
label=self.doc.vocab.strings.as_int(label),
),
weight=weight if weight is not None else 0.0
)
return Edge(self, edge_index)
def get_edge(self, head, tail, *, label="") -> Edge:
"""Look up an edge in the graph. If the graph has no matching edge,
the NoneEdge object is returned.
"""
head_node = self.get_node(head)
if head_node.is_none:
return NoneEdge(self)
tail_node = self.get_node(tail)
if tail_node.is_none:
return NoneEdge(self)
edge_index = get_edge(
&self.c,
EdgeC(head=head_node.i, tail=tail_node.i, label=get_string_id(label))
)
if edge_index < 0:
return NoneEdge(self)
else:
return Edge(self, edge_index)
def has_edge(self, head, tail, label) -> bool:
"""Check whether a (head, tail, label) triple is an edge in the graph."""
return not self.get_edge(head, tail, label=label).is_none
def add_node(self, indices) -> Node:
"""Add a node to the graph and return it. Nodes refer to ordered sets
of token indices.
This method is idempotent: if there is already a node for the given
indices, it is returned without a new node being created.
"""
if isinstance(indices, Node):
return indices
cdef vector[int32_t] node
node.reserve(len(indices))
for idx in indices:
node.push_back(idx)
i = add_node(&self.c, node)
print("Add node", indices, i)
return Node(self, i)
def get_node(self, indices) -> Node:
"""Get a node from the graph, or the NoneNode if there is no node for
the given indices.
"""
if isinstance(indices, Node):
return indices
cdef vector[int32_t] node
node.reserve(len(indices))
for idx in indices:
node.push_back(idx)
node_index = get_node(&self.c, node)
if node_index < 0:
return NoneNode(self)
else:
print("Get node", indices, node_index)
return Node(self, node_index)
def has_node(self, tuple indices) -> bool:
"""Check whether the graph has a node for the given indices."""
return not self.get_node(indices).is_none
cdef int add_edge(GraphC* graph, EdgeC edge, float weight) nogil:
key = hash64(&edge, sizeof(edge), 0)
it = graph.edge_map.find(key)
if it != graph.edge_map.end():
edge_index = dereference(it).second
graph.weights[edge_index] = weight
return edge_index
else:
edge_index = graph.edges.size()
graph.edge_map.insert(pair[hash_t, int](key, edge_index))
graph.edges.push_back(edge)
if graph.n_tails[edge.head] == 0:
graph.first_tail[edge.head] = edge_index
if graph.n_heads[edge.tail] == 0:
graph.first_head[edge.tail] = edge_index
graph.n_tails[edge.head] += 1
graph.n_heads[edge.tail] += 1
graph.weights.push_back(weight)
# If we had the tail marked as a root, remove it.
tail_root_index = graph.roots.find(edge.tail)
if tail_root_index != graph.roots.end():
graph.roots.erase(tail_root_index)
return edge_index
cdef int get_edge(const GraphC* graph, EdgeC edge) nogil:
key = hash64(&edge, sizeof(edge), 0)
it = graph.edge_map.find(key)
if it == graph.edge_map.end():
return -1
else:
return dereference(it).second
cdef int has_edge(const GraphC* graph, EdgeC edge) nogil:
return get_edge(graph, edge) >= 0
cdef int add_node(GraphC* graph, vector[int32_t]& node) nogil:
key = hash64(&node[0], node.size() * sizeof(node[0]), 0)
it = graph.node_map.find(key)
if it != graph.node_map.end():
# Item found. Convert the iterator to an index value.
return dereference(it).second
else:
index = graph.nodes.size()
graph.nodes.push_back(node)
graph.n_heads.push_back(0)
graph.n_tails.push_back(0)
graph.first_head.push_back(0)
graph.first_tail.push_back(0)
graph.roots.insert(index)
graph.node_map.insert(pair[hash_t, int](key, index))
return index
cdef int get_node(const GraphC* graph, vector[int32_t] node) nogil:
key = hash64(&node[0], node.size() * sizeof(node[0]), 0)
it = graph.node_map.find(key)
if it == graph.node_map.end():
return -1
else:
return dereference(it).second
cdef int has_node(const GraphC* graph, vector[int32_t] node) nogil:
return get_node(graph, node) >= 0
cdef int get_head_nodes(vector[int]& output, const GraphC* graph, int node) nogil:
todo = graph.n_heads[node]
if todo == 0:
return 0
output.reserve(output.size() + todo)
start = graph.first_head[node]
end = graph.edges.size()
for i in range(start, end):
if todo <= 0:
break
elif graph.edges[i].tail == node:
output.push_back(graph.edges[i].head)
todo -= 1
return todo
cdef int get_tail_nodes(vector[int]& output, const GraphC* graph, int node) nogil:
todo = graph.n_tails[node]
if todo == 0:
return 0
output.reserve(output.size() + todo)
start = graph.first_tail[node]
end = graph.edges.size()
for i in range(start, end):
if todo <= 0:
break
elif graph.edges[i].head == node:
output.push_back(graph.edges[i].tail)
todo -= 1
return todo
cdef int get_sibling_nodes(vector[int]& output, const GraphC* graph, int node) nogil:
cdef vector[int] heads
cdef vector[int] tails
get_head_nodes(heads, graph, node)
for i in range(heads.size()):
get_tail_nodes(tails, graph, heads[i])
for j in range(tails.size()):
if tails[j] != node:
output.push_back(tails[j])
tails.clear()
return output.size()
cdef int get_head_edges(vector[int]& output, const GraphC* graph, int node) nogil:
todo = graph.n_heads[node]
if todo == 0:
return 0
output.reserve(output.size() + todo)
start = graph.first_head[node]
end = graph.edges.size()
for i in range(start, end):
if todo <= 0:
break
elif graph.edges[i].tail == node:
output.push_back(i)
todo -= 1
return todo
cdef int get_tail_edges(vector[int]& output, const GraphC* graph, int node) nogil:
todo = graph.n_tails[node]
if todo == 0:
return 0
output.reserve(output.size() + todo)
start = graph.first_tail[node]
end = graph.edges.size()
for i in range(start, end):
if todo <= 0:
break
elif graph.edges[i].head == node:
output.push_back(i)
todo -= 1
return todo
cdef int walk_head_nodes(vector[int]& output, const GraphC* graph, int node) nogil:
cdef unordered_set[int] seen = unordered_set[int]()
get_head_nodes(output, graph, node)
seen.insert(node)
i = 0
while i < output.size():
with gil:
print("Walk up from", output[i])
if seen.find(output[i]) == seen.end():
seen.insert(output[i])
get_head_nodes(output, graph, output[i])
i += 1
return i
cdef int walk_tail_nodes(vector[int]& output, const GraphC* graph, int node) nogil:
cdef unordered_set[int] seen = unordered_set[int]()
get_tail_nodes(output, graph, node)
seen.insert(node)
i = 0
while i < output.size():
if seen.find(output[i]) == seen.end():
seen.insert(output[i])
get_tail_nodes(output, graph, output[i])
i += 1
return i
cdef int walk_head_edges(vector[int]& output, const GraphC* graph, int node) nogil:
cdef unordered_set[int] seen = unordered_set[int]()
get_head_edges(output, graph, node)
seen.insert(node)
i = 0
while i < output.size():
if seen.find(output[i]) == seen.end():
seen.insert(output[i])
get_head_edges(output, graph, output[i])
i += 1
return i
cdef int walk_tail_edges(vector[int]& output, const GraphC* graph, int node) nogil:
cdef unordered_set[int] seen = unordered_set[int]()
get_tail_edges(output, graph, node)
seen.insert(node)
i = 0
while i < output.size():
if seen.find(output[i]) == seen.end():
seen.insert(output[i])
get_tail_edges(output, graph, output[i])
i += 1
return i

View File

@ -2,18 +2,24 @@ cimport numpy as np
from .doc cimport Doc
from ..typedefs cimport attr_t
from ..structs cimport SpanC
cdef class Span:
cdef readonly Doc doc
cdef readonly int start
cdef readonly int end
cdef readonly int start_char
cdef readonly int end_char
cdef readonly attr_t label
cdef readonly attr_t kb_id
cdef SpanC c
cdef public _vector
cdef public _vector_norm
@staticmethod
cdef inline Span cinit(Doc doc, SpanC span):
cdef Span self = Span.__new__(
Span,
doc,
start=span.start,
end=span.end
)
self.c = span
return self
cpdef np.ndarray to_array(self, object features)

View File

@ -97,23 +97,23 @@ cdef class Span:
if not (0 <= start <= end <= len(doc)):
raise IndexError(Errors.E035.format(start=start, end=end, length=len(doc)))
self.doc = doc
self.start = start
self.start_char = self.doc[start].idx if start < self.doc.length else 0
self.end = end
if end >= 1:
self.end_char = self.doc[end - 1].idx + len(self.doc[end - 1])
else:
self.end_char = 0
if isinstance(label, str):
label = doc.vocab.strings.add(label)
if isinstance(kb_id, str):
kb_id = doc.vocab.strings.add(kb_id)
if label not in doc.vocab.strings:
raise ValueError(Errors.E084.format(label=label))
self.label = label
self.c = SpanC(
label=label,
kb_id=kb_id,
start=start,
end=end,
start_char=doc[start].idx if start < doc.length else 0,
end_char=doc[end - 1].idx + len(doc[end - 1]) if end >= 1 else 0,
)
self._vector = vector
self._vector_norm = vector_norm
self.kb_id = kb_id
def __richcmp__(self, Span other, int op):
if other is None:
@ -123,25 +123,39 @@ cdef class Span:
return True
# <
if op == 0:
return self.start_char < other.start_char
return self.c.start_char < other.c.start_char
# <=
elif op == 1:
return self.start_char <= other.start_char
return self.c.start_char <= other.c.start_char
# ==
elif op == 2:
return (self.doc, self.start_char, self.end_char, self.label, self.kb_id) == (other.doc, other.start_char, other.end_char, other.label, other.kb_id)
# Do the cheap comparisons first
return (
(self.c.start_char == other.c.start_char) and \
(self.c.end_char == other.c.end_char) and \
(self.c.label == other.c.label) and \
(self.c.kb_id == other.c.kb_id) and \
(self.doc == other.doc)
)
# !=
elif op == 3:
return (self.doc, self.start_char, self.end_char, self.label, self.kb_id) != (other.doc, other.start_char, other.end_char, other.label, other.kb_id)
# Do the cheap comparisons first
return not (
(self.c.start_char == other.c.start_char) and \
(self.c.end_char == other.c.end_char) and \
(self.c.label == other.c.label) and \
(self.c.kb_id == other.c.kb_id) and \
(self.doc == other.doc)
)
# >
elif op == 4:
return self.start_char > other.start_char
return self.c.start_char > other.c.start_char
# >=
elif op == 5:
return self.start_char >= other.start_char
return self.c.start_char >= other.c.start_char
def __hash__(self):
return hash((self.doc, self.start_char, self.end_char, self.label, self.kb_id))
return hash((self.doc, self.c.start_char, self.c.end_char, self.c.label, self.c.kb_id))
def __len__(self):
"""Get the number of tokens in the span.
@ -150,9 +164,9 @@ cdef class Span:
DOCS: https://nightly.spacy.io/api/span#len
"""
if self.end < self.start:
if self.c.end < self.c.start:
return 0
return self.end - self.start
return self.c.end - self.c.start
def __repr__(self):
return self.text
@ -171,10 +185,10 @@ cdef class Span:
return Span(self.doc, start + self.start, end + self.start)
else:
if i < 0:
token_i = self.end + i
token_i = self.c.end + i
else:
token_i = self.start + i
if self.start <= token_i < self.end:
token_i = self.c.start + i
if self.c.start <= token_i < self.c.end:
return self.doc[token_i]
else:
raise IndexError(Errors.E1002)
@ -186,7 +200,7 @@ cdef class Span:
DOCS: https://nightly.spacy.io/api/span#iter
"""
for i in range(self.start, self.end):
for i in range(self.c.start, self.c.end):
yield self.doc[i]
def __reduce__(self):
@ -196,7 +210,7 @@ cdef class Span:
def _(self):
"""Custom extension attributes registered via `set_extension`."""
return Underscore(Underscore.span_extensions, self,
start=self.start_char, end=self.end_char)
start=self.c.start_char, end=self.c.end_char)
def as_doc(self, *, bint copy_user_data=False):
"""Create a `Doc` object with a copy of the `Span`'s data.
@ -242,7 +256,7 @@ cdef class Span:
for i in range(length):
# if the HEAD refers to a token outside this span, find a more appropriate ancestor
token = self[i]
ancestor_i = token.head.i - self.start # span offset
ancestor_i = token.head.i - self.c.start # span offset
if ancestor_i not in range(length):
if DEP in attrs:
array[i, attrs.index(DEP)] = dep
@ -250,7 +264,7 @@ cdef class Span:
# try finding an ancestor within this span
ancestors = token.ancestors
for ancestor in ancestors:
ancestor_i = ancestor.i - self.start
ancestor_i = ancestor.i - self.c.start
if ancestor_i in range(length):
array[i, head_col] = ancestor_i - i
@ -279,7 +293,7 @@ cdef class Span:
DOCS: https://nightly.spacy.io/api/span#get_lca_matrix
"""
return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end))
return numpy.asarray(_get_lca_matrix(self.doc, self.c.start, self.c.end))
def similarity(self, other):
"""Make a semantic similarity estimate. The default estimate is cosine
@ -373,10 +387,14 @@ cdef class Span:
DOCS: https://nightly.spacy.io/api/span#ents
"""
cdef Span ent
ents = []
for ent in self.doc.ents:
if ent.start >= self.start and ent.end <= self.end:
ents.append(ent)
if ent.c.start >= self.c.start:
if ent.c.end <= self.c.end:
ents.append(ent)
else:
break
return ents
@property
@ -513,7 +531,7 @@ cdef class Span:
# with head==0, i.e. a sentence root. If so, we can return it. The
# longer the span, the more likely it contains a sentence root, and
# in this case we return in linear time.
for i in range(self.start, self.end):
for i in range(self.c.start, self.c.end):
if self.doc.c[i].head == 0:
return self.doc[i]
# If we don't have a sentence root, we do something that's not so
@ -524,15 +542,15 @@ cdef class Span:
# think this should be okay.
cdef int current_best = self.doc.length
cdef int root = -1
for i in range(self.start, self.end):
if self.start <= (i+self.doc.c[i].head) < self.end:
for i in range(self.c.start, self.c.end):
if self.c.start <= (i+self.doc.c[i].head) < self.c.end:
continue
words_to_root = _count_words_to_root(&self.doc.c[i], self.doc.length)
if words_to_root < current_best:
current_best = words_to_root
root = i
if root == -1:
return self.doc[self.start]
return self.doc[self.c.start]
else:
return self.doc[root]
@ -548,8 +566,8 @@ cdef class Span:
the span.
RETURNS (Span): The newly constructed object.
"""
start_idx += self.start_char
end_idx += self.start_char
start_idx += self.c.start_char
end_idx += self.c.start_char
return self.doc.char_span(start_idx, end_idx)
@property
@ -628,6 +646,56 @@ cdef class Span:
for word in self.rights:
yield from word.subtree
property start:
def __get__(self):
return self.c.start
def __set__(self, int start):
if start < 0:
raise IndexError("TODO")
self.c.start = start
property end:
def __get__(self):
return self.c.end
def __set__(self, int end):
if end < 0:
raise IndexError("TODO")
self.c.end = end
property start_char:
def __get__(self):
return self.c.start_char
def __set__(self, int start_char):
if start_char < 0:
raise IndexError("TODO")
self.c.start_char = start_char
property end_char:
def __get__(self):
return self.c.end_char
def __set__(self, int end_char):
if end_char < 0:
raise IndexError("TODO")
self.c.end_char = end_char
property label:
def __get__(self):
return self.c.label
def __set__(self, attr_t label):
self.c.label = label
property kb_id:
def __get__(self):
return self.c.kb_id
def __set__(self, attr_t kb_id):
self.c.kb_id = kb_id
property ent_id:
"""RETURNS (uint64): The entity ID."""
def __get__(self):

View File

@ -0,0 +1,10 @@
from libcpp.vector cimport vector
from ..structs cimport SpanC
cdef class SpanGroup:
cdef public object _doc_ref
cdef public str name
cdef public dict attrs
cdef vector[SpanC] c
cdef void push_back(self, SpanC span) nogil

183
spacy/tokens/span_group.pyx Normal file
View File

@ -0,0 +1,183 @@
import weakref
import struct
import srsly
from .span cimport Span
from libc.stdint cimport uint64_t, uint32_t, int32_t
cdef class SpanGroup:
"""A group of spans that all belong to the same Doc object. The group
can be named, and you can attach additional attributes to it. Span groups
are generally accessed via the `doc.spans` attribute. The `doc.spans`
attribute will convert lists of spans into a `SpanGroup` object for you
automatically on assignment.
Example:
Construction 1
>>> doc = nlp("Their goi ng home")
>>> doc.spans["errors"] = SpanGroup(
doc,
name="errors",
spans=[doc[0:1], doc[2:4]],
attrs={"annotator": "matt"}
)
Construction 2
>>> doc = nlp("Their goi ng home")
>>> doc.spans["errors"] = [doc[0:1], doc[2:4]]
>>> assert isinstance(doc.spans["errors"], SpanGroup)
DOCS: https://nightly.spacy.io/api/spangroup
"""
def __init__(self, doc, *, name="", attrs={}, spans=[]):
"""Create a SpanGroup.
doc (Doc): The reference Doc object.
name (str): The group name.
attrs (Dict[str, Any]): Optional JSON-serializable attributes to attach.
spans (Iterable[Span]): The spans to add to the group.
DOCS: https://nightly.spacy.io/api/spangroup#init
"""
# We need to make this a weak reference, so that the Doc object can
# own the SpanGroup without circular references. We do want to get
# the Doc though, because otherwise the API gets annoying.
self._doc_ref = weakref.ref(doc)
self.name = name
self.attrs = dict(attrs) if attrs is not None else {}
cdef Span span
for span in spans:
self.push_back(span.c)
def __repr__(self):
return str(list(self))
@property
def doc(self):
"""RETURNS (Doc): The reference document.
DOCS: https://nightly.spacy.io/api/spangroup#doc
"""
return self._doc_ref()
@property
def has_overlap(self):
"""RETURNS (bool): Whether the group contains overlapping spans.
DOCS: https://nightly.spacy.io/api/spangroup#has_overlap
"""
if not len(self):
return False
sorted_spans = list(sorted(self))
last_end = sorted_spans[0].end
for span in sorted_spans[1:]:
if span.start < last_end:
return True
last_end = span.end
return False
def __len__(self):
"""RETURNS (int): The number of spans in the group.
DOCS: https://nightly.spacy.io/api/spangroup#len
"""
return self.c.size()
def append(self, Span span):
"""Add a span to the group. The span must refer to the same Doc
object as the span group.
span (Span): The span to append.
DOCS: https://nightly.spacy.io/api/spangroup#append
"""
if span.doc is not self.doc:
raise ValueError("Cannot add span to group: refers to different Doc.")
self.push_back(span.c)
def extend(self, spans):
"""Add multiple spans to the group. All spans must refer to the same
Doc object as the span group.
spans (Iterable[Span]): The spans to add.
DOCS: https://nightly.spacy.io/api/spangroup#extend
"""
cdef Span span
for span in spans:
self.append(span)
def __getitem__(self, int i):
"""Get a span from the group.
i (int): The item index.
RETURNS (Span): The span at the given index.
DOCS: https://nightly.spacy.io/api/spangroup#getitem
"""
cdef int size = self.c.size()
if i < -size or i >= size:
raise IndexError(f"list index {i} out of range")
if i < 0:
i += size
return Span.cinit(self.doc, self.c[i])
def to_bytes(self):
"""Serialize the SpanGroup's contents to a byte string.
RETURNS (bytes): The serialized span group.
DOCS: https://nightly.spacy.io/api/spangroup#to_bytes
"""
output = {"name": self.name, "attrs": self.attrs, "spans": []}
for i in range(self.c.size()):
span = self.c[i]
# The struct.pack here is probably overkill, but it might help if
# you're saving tonnes of spans, and it doesn't really add any
# complexity. We do take care to specify little-endian byte order
# though, to ensure the message can be loaded back on a different
# arch.
# Q: uint64_t
# q: int64_t
# L: uint32_t
# l: int32_t
output["spans"].append(struct.pack(
">QQQllll",
span.id,
span.kb_id,
span.label,
span.start,
span.end,
span.start_char,
span.end_char
))
return srsly.msgpack_dumps(output)
def from_bytes(self, bytes_data):
"""Deserialize the SpanGroup's contents from a byte string.
bytes_data (bytes): The span group to load.
RETURNS (SpanGroup): The deserialized span group.
DOCS: https://nightly.spacy.io/api/spangroup#from_bytes
"""
msg = srsly.msgpack_loads(bytes_data)
self.name = msg["name"]
self.attrs = dict(msg["attrs"])
self.c.clear()
self.c.reserve(len(msg["spans"]))
cdef SpanC span
for span_data in msg["spans"]:
items = struct.unpack(">QQQllll", span_data)
span.id = items[0]
span.kb_id = items[1]
span.label = items[2]
span.start = items[3]
span.end = items[4]
span.start_char = items[5]
span.end_char = items[6]
self.c.push_back(span)
return self
cdef void push_back(self, SpanC span) nogil:
self.c.push_back(span)

View File

@ -575,6 +575,39 @@ objects, if the entity recognizer has been applied.
| ----------- | --------------------------------------------------------------------- |
| **RETURNS** | Entities in the document, one `Span` per entity. ~~Tuple[Span, ...]~~ |
## Doc.spans {#spans tag="property"}
A dictionary of named span groups, to store and access additional span
annotations. You can write to it by assigning a list of [`Span`](/api/span)
objects or a [`SpanGroup`](/api/spangroup) to a given key.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> ```
| Name | Description |
| ----------- | ------------------------------------------------------------------ |
| **RETURNS** | The span groups assigned to the document. ~~Dict[str, SpanGroup]~~ |
## Doc.cats {#cats tag="property" model="text classifier"}
Maps a label to a score for categories applied to the document. Typically set by
the [`TextCategorizer`](/api/textcategorizer).
> #### Example
>
> ```python
> doc = nlp("This is a text about football.")
> print(doc.cats)
> ```
| Name | Description |
| ----------- | ---------------------------------------------------------- |
| **RETURNS** | The text categories mapped to scores. ~~Dict[str, float]~~ |
## Doc.noun_chunks {#noun_chunks tag="property" model="parser"}
Iterate over the base noun phrases in the document. Yields base noun-phrase
@ -668,23 +701,22 @@ The L2 norm of the document's vector representation.
## Attributes {#attributes}
| Name | Description |
| ------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------- |
| `text` | A string representation of the document text. ~~str~~ |
| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
| `vocab` | The store of lexical types. ~~Vocab~~ |
| `tensor` <Tag variant="new">2</Tag> | Container for dense vector representations. ~~numpy.ndarray~~ |
| `cats` <Tag variant="new">2</Tag> | Maps a label to a score for categories applied to the document. The label is a string and the score should be a float. ~~Dict[str, float]~~ |
| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
| `lang` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~int~~ |
| `lang_` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~str~~ |
| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
| Name | Description |
| ------------------------------------ | ----------------------------------------------------------------------------------------------------------------------------------- |
| `text` | A string representation of the document text. ~~str~~ |
| `text_with_ws` | An alias of `Doc.text`, provided for duck-type compatibility with `Span` and `Token`. ~~str~~ |
| `mem` | The document's local memory heap, for all C data it owns. ~~cymem.Pool~~ |
| `vocab` | The store of lexical types. ~~Vocab~~ |
| `tensor` <Tag variant="new">2</Tag> | Container for dense vector representations. ~~numpy.ndarray~~ |
| `user_data` | A generic storage area, for user custom data. ~~Dict[str, Any]~~ |
| `lang` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~int~~ |
| `lang_` <Tag variant="new">2.1</Tag> | Language of the document's vocabulary. ~~str~~ |
| `sentiment` | The document's positivity/negativity score, if available. ~~float~~ |
| `user_hooks` | A dictionary that allows customization of the `Doc`'s properties. ~~Dict[str, Callable]~~ |
| `user_token_hooks` | A dictionary that allows customization of properties of `Token` children. ~~Dict[str, Callable]~~ |
| `user_span_hooks` | A dictionary that allows customization of properties of `Span` children. ~~Dict[str, Callable]~~ |
| `has_unknown_spaces` | Whether the document was constructed without known spacing between tokens (typically when created from gold tokenization). ~~bool~~ |
| `_` | User space for adding custom [attribute extensions](/usage/processing-pipelines#custom-components-attributes). ~~Underscore~~ |
## Serialization fields {#serialization-fields}

View File

@ -0,0 +1,185 @@
---
title: SpanGroup
tag: class
source: spacy/tokens/span_group.pyx
new: 3
---
A group of arbitrary, potentially overlapping [`Span`](/api/span) objects that
all belong to the same [`Doc`](/api/doc) object. The group can be named, and you
can attach additional attributes to it. Span groups are generally accessed via
the [`Doc.spans`](/api/doc#spans) attribute, which will convert lists of spans
into a `SpanGroup` object for you automatically on assignment. `SpanGroup`
objects behave similar to `list`s, so you can append `Span` objects to them or
access a member at a given index.
## SpanGroup.\_\_init\_\_ {#init tag="method"}
Create a `SpanGroup`.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> spans = [doc[0:1], doc[2:4]]
>
> # Construction 1
> from spacy.tokens import SpanGroup
>
> group = SpanGroup(doc, name="errors", spans=spans, attrs={"annotator": "matt"})
> doc.spans["errors"] = group
>
> # Construction 2
> doc.spans["errors"] = spans
> assert isinstance(doc.spans["errors"], SpanGroup)
> ```
| Name | Description |
| -------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------- |
| `doc` | The document the span group belongs to. ~~Doc~~ |
| _keyword-only_ | |
| `name` | The name of the span group. If the span group is created automatically on assignment to `doc.spans`, the key name is used. Defaults to `""`. ~~str~~ |
| `attrs` | Optional JSON-serializable attributes to attach to the span group. ~~Dict[str, Any]~~ |
| `spans` | The spans to add to the span group. ~~Iterable[Span]~~ |
## SpanGroup.doc {#doc tag="property"}
The [`Doc`](/api/doc) object the span group is referring to.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> assert doc.spans["errors"].doc == doc
> ```
| Name | Description |
| ----------- | ------------------------------- |
| **RETURNS** | The reference document. ~~Doc~~ |
## SpanGroup.has_overlap {#has_overlap tag="property"}
Check whether the span group contains overlapping spans.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> assert not doc.spans["errors"].has_overlap
> doc.spans["errors"].append(doc[1:2])
> assert doc.spans["errors"].has_overlap
> ```
| Name | Description |
| ----------- | -------------------------------------------------- |
| **RETURNS** | Whether the span group contains overlaps. ~~bool~~ |
## SpanGroup.\_\_len\_\_ {#len tag="method"}
Get the number of spans in the group.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> assert len(doc.spans["errors"]) == 2
> ```
| Name | Description |
| ----------- | ----------------------------------------- |
| **RETURNS** | The number of spans in the group. ~~int~~ |
## SpanGroup.\_\_getitem\_\_ {#getitem tag="method"}
Get a span from the group.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> span = doc.spans["errors"][1]
> assert span.text == "goi ng"
> ```
| Name | Description |
| ----------- | ------------------------------------- |
| `i` | The item index. ~~int~~ |
| **RETURNS** | The span at the given index. ~~Span~~ |
## SpanGroup.append {#append tag="method"}
Add a [`Span`](/api/span) object to the group. The span must refer to the same
[`Doc`](/api/doc) object as the span group.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1]]
> doc.spans["errors"].append(doc[2:4])
> assert len(doc.spans["errors"]) == 2
> ```
| Name | Description |
| ------ | ---------------------------- |
| `span` | The span to append. ~~Span~~ |
## SpanGroup.extend {#extend tag="method"}
Add multiple [`Span`](/api/span) objects to the group. All spans must refer to
the same [`Doc`](/api/doc) object as the span group.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = []
> doc.spans["errors"].extend([doc[2:4], doc[0:1]])
> assert len(doc.spans["errors"]) == 2
> ```
| Name | Description |
| ------- | ------------------------------------ |
| `spans` | The spans to add. ~~Iterable[Span]~~ |
## SpanGroup.to_bytes {#to_bytes tag="method"}
Serialize the span group to a bytestring.
> #### Example
>
> ```python
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> group_bytes = doc.spans["errors"].to_bytes()
> ```
| Name | Description |
| ----------- | ------------------------------------- |
| **RETURNS** | The serialized `SpanGroup`. ~~bytes~~ |
## SpanGroup.from_bytes {#from_bytes tag="method"}
Load the span group from a bytestring. Modifies the object in place and returns
it.
> #### Example
>
> ```python
> from spacy.tokens import SpanGroup
>
> doc = nlp("Their goi ng home")
> doc.spans["errors"] = [doc[0:1], doc[2:4]]
> group_bytes = doc.spans["errors"].to_bytes()
> new_group = SpanGroup()
> new_group.from_bytes(group_bytes)
> ```
| Name | Description |
| ------------ | ------------------------------------- |
| `bytes_data` | The data to load from. ~~bytes~~ |
| **RETURNS** | The `SpanGroup` object. ~~SpanGroup~~ |

View File

@ -18,15 +18,16 @@ It also orchestrates training and serialization.
### Container objects {#architecture-containers}
| Name | Description |
| --------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`Doc`](/api/doc) | A container for accessing linguistic annotations. |
| [`DocBin`](/api/docbin) | A collection of `Doc` objects for efficient binary serialization. Also used for [training data](/api/data-formats#binary-training). |
| [`Example`](/api/example) | A collection of training annotations, containing two `Doc` objects: the reference data and the predictions. |
| [`Language`](/api/language) | Processing class that turns text into `Doc` objects. Different languages implement their own subclasses of it. The variable is typically called `nlp`. |
| [`Lexeme`](/api/lexeme) | An entry in the vocabulary. It's a word type with no context, as opposed to a word token. It therefore has no part-of-speech tag, dependency parse etc. |
| [`Span`](/api/span) | A slice from a `Doc` object. |
| [`Token`](/api/token) | An individual token — i.e. a word, punctuation symbol, whitespace, etc. |
| Name | Description |
| ----------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`Doc`](/api/doc) | A container for accessing linguistic annotations. |
| [`DocBin`](/api/docbin) | A collection of `Doc` objects for efficient binary serialization. Also used for [training data](/api/data-formats#binary-training). |
| [`Example`](/api/example) | A collection of training annotations, containing two `Doc` objects: the reference data and the predictions. |
| [`Language`](/api/language) | Processing class that turns text into `Doc` objects. Different languages implement their own subclasses of it. The variable is typically called `nlp`. |
| [`Lexeme`](/api/lexeme) | An entry in the vocabulary. It's a word type with no context, as opposed to a word token. It therefore has no part-of-speech tag, dependency parse etc. |
| [`Span`](/api/span) | A slice from a `Doc` object. |
| [`SpanGroup`](/api/spangroup) | A named collection of spans belonging to a `Doc`. |
| [`Token`](/api/token) | An individual token — i.e. a word, punctuation symbol, whitespace, etc. |
### Processing pipeline {#architecture-pipeline}

View File

@ -501,7 +501,7 @@ format for documenting argument and return types.
[`AttributeRuler`](/api/attributeruler),
[`SentenceRecognizer`](/api/sentencerecognizer),
[`DependencyMatcher`](/api/dependencymatcher), [`TrainablePipe`](/api/pipe),
[`Corpus`](/api/corpus)
[`Corpus`](/api/corpus), [`SpanGroup`](/api/spangroup),
</Infobox>

View File

@ -77,6 +77,7 @@
{ "text": "Language", "url": "/api/language" },
{ "text": "Lexeme", "url": "/api/lexeme" },
{ "text": "Span", "url": "/api/span" },
{ "text": "SpanGroup", "url": "/api/spangroup" },
{ "text": "Token", "url": "/api/token" }
]
},

View File

@ -2,6 +2,7 @@
"Doc": "/api/doc",
"Token": "/api/token",
"Span": "/api/span",
"SpanGroup": "/api/spangroup",
"Lexeme": "/api/lexeme",
"Example": "/api/example",
"Alignment": "/api/example#alignment-object",