mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-10 09:16:31 +03:00
* Try new CoNLL tagger method
This commit is contained in:
parent
3f12fb4191
commit
92e9134603
|
@ -116,37 +116,42 @@ def train(Language, train_sents, dev_sents, model_dir, n_iter=15, seed=0,
|
||||||
random.shuffle(train_sents)
|
random.shuffle(train_sents)
|
||||||
heldout_sents = train_sents[:int(nr_train * 0.1)]
|
heldout_sents = train_sents[:int(nr_train * 0.1)]
|
||||||
train_sents = train_sents[len(heldout_sents):]
|
train_sents = train_sents[len(heldout_sents):]
|
||||||
assert len(heldout_sents) < len(train_sents)
|
#train_sents = train_sents[:500]
|
||||||
|
#assert len(heldout_sents) < len(train_sents)
|
||||||
prev_score = 0.0
|
prev_score = 0.0
|
||||||
variance = 0.001
|
variance = 0.001
|
||||||
last_good_learn_rate = nlp.tagger.model.eta
|
last_good_learn_rate = nlp.tagger.model.eta
|
||||||
for itn in range(n_iter):
|
n = 0
|
||||||
random.shuffle(train_sents)
|
total = 0
|
||||||
acc = 0
|
acc = 0
|
||||||
total = 0
|
while True:
|
||||||
for words, gold_tags in train_sents:
|
words, gold_tags = random.choice(train_sents)
|
||||||
tokens = nlp.tokenizer.tokens_from_list(words)
|
tokens = nlp.tokenizer.tokens_from_list(words)
|
||||||
acc += nlp.tagger.train(tokens, gold_tags)
|
acc += nlp.tagger.train(tokens, gold_tags)
|
||||||
total += len(tokens)
|
total += len(tokens)
|
||||||
dev_score = score_model(nlp, heldout_sents)
|
n += 1
|
||||||
eval_score = score_model(nlp, dev_sents)
|
if n and n % 10000 == 0:
|
||||||
if dev_score >= prev_score:
|
dev_score = score_model(nlp, heldout_sents)
|
||||||
nlp.tagger.model.keep_update()
|
eval_score = score_model(nlp, dev_sents)
|
||||||
prev_score = dev_score
|
if dev_score > prev_score:
|
||||||
variance = 0.001
|
nlp.tagger.model.keep_update()
|
||||||
last_good_learn_rate = nlp.tagger.model.eta
|
prev_score = dev_score
|
||||||
nlp.tagger.model.eta *= 1.05
|
variance = 0.001
|
||||||
print('%d:\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
last_good_learn_rate = nlp.tagger.model.eta
|
||||||
else:
|
nlp.tagger.model.eta *= 1.05
|
||||||
nlp.tagger.model.backtrack()
|
print('%d:\t%.3f\t%.3f\t%.3f\t%.4f' % (n, acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
||||||
new_eta = numpy.random.normal(loc=last_good_learn_rate, scale=variance)
|
|
||||||
if new_eta >= 0.00001:
|
|
||||||
nlp.tagger.model.eta = new_eta
|
|
||||||
else:
|
else:
|
||||||
nlp.tagger.model.eta = 0.00001
|
nlp.tagger.model.backtrack()
|
||||||
print('X:\t%.3f\t%.3f\t%.3f\t%.4f' % (acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
new_eta = numpy.random.normal(loc=last_good_learn_rate, scale=variance)
|
||||||
variance *= 1.1
|
if new_eta >= 0.0001:
|
||||||
prev_score *= 0.9999
|
nlp.tagger.model.eta = new_eta
|
||||||
|
else:
|
||||||
|
nlp.tagger.model.eta = 0.0001
|
||||||
|
print('X:\t%.3f\t%.3f\t%.3f\t%.4f' % (acc/total, dev_score, eval_score, nlp.tagger.model.eta))
|
||||||
|
variance *= 1.1
|
||||||
|
prev_score *= 0.9999
|
||||||
|
acc = 0.0
|
||||||
|
total = 0.0
|
||||||
nlp.end_training(data_dir=model_dir)
|
nlp.end_training(data_dir=model_dir)
|
||||||
return nlp
|
return nlp
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user