mirror of
https://github.com/explosion/spaCy.git
synced 2024-11-10 19:57:17 +03:00
textcat scoring fix and multi_label docs (#6974)
* add multi-label textcat to menu * add infobox on textcat API * add info to v3 migration guide * small edits * further fixes in doc strings * add infobox to textcat architectures * add textcat_multilabel to overview of built-in components * spelling * fix unrelated warn msg * Add textcat_multilabel to quickstart [ci skip] * remove separate documentation page for multilabel_textcategorizer * small edits * positive label clarification * avoid duplicating information in self.cfg and fix textcat.score * fix multilabel textcat too * revert threshold to storage in cfg * revert threshold stuff for multi-textcat Co-authored-by: Ines Montani <ines@ines.io>
This commit is contained in:
parent
39de3602e0
commit
932887b950
|
@ -60,7 +60,7 @@ def download(model: str, direct: bool = False, sdist: bool = False, *pip_args) -
|
|||
model_name = model
|
||||
if model in OLD_MODEL_SHORTCUTS:
|
||||
msg.warn(
|
||||
f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please"
|
||||
f"As of spaCy v3.0, shortcuts like '{model}' are deprecated. Please "
|
||||
f"use the full pipeline package name '{OLD_MODEL_SHORTCUTS[model]}' instead."
|
||||
)
|
||||
model_name = OLD_MODEL_SHORTCUTS[model]
|
||||
|
|
|
@ -88,11 +88,9 @@ subword_features = true
|
|||
def make_textcat(
|
||||
nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], threshold: float
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer compoment. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels can
|
||||
be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive
|
||||
(i.e. zero or more labels may be true per doc). The multi-label setting is
|
||||
controlled by the model instance that's provided.
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
to be mutually exclusive (i.e. one true label per doc).
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
scores for each category.
|
||||
|
@ -317,9 +315,11 @@ class TextCategorizer(TrainablePipe):
|
|||
get_examples (Callable[[], Iterable[Example]]): Function that
|
||||
returns a representative sample of gold-standard Example objects.
|
||||
nlp (Language): The current nlp object the component is part of.
|
||||
labels: The labels to add to the component, typically generated by the
|
||||
labels (Optional[Iterable[str]]): The labels to add to the component, typically generated by the
|
||||
`init labels` command. If no labels are provided, the get_examples
|
||||
callback is used to extract the labels from the data.
|
||||
positive_label (Optional[str]): The positive label for a binary task with exclusive classes,
|
||||
`None` otherwise and by default.
|
||||
|
||||
DOCS: https://spacy.io/api/textcategorizer#initialize
|
||||
"""
|
||||
|
@ -358,13 +358,13 @@ class TextCategorizer(TrainablePipe):
|
|||
"""
|
||||
validate_examples(examples, "TextCategorizer.score")
|
||||
self._validate_categories(examples)
|
||||
kwargs.setdefault("threshold", self.cfg["threshold"])
|
||||
kwargs.setdefault("positive_label", self.cfg["positive_label"])
|
||||
return Scorer.score_cats(
|
||||
examples,
|
||||
"cats",
|
||||
labels=self.labels,
|
||||
multi_label=False,
|
||||
positive_label=self.cfg["positive_label"],
|
||||
threshold=self.cfg["threshold"],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
|
@ -88,11 +88,10 @@ subword_features = true
|
|||
def make_multilabel_textcat(
|
||||
nlp: Language, name: str, model: Model[List[Doc], List[Floats2d]], threshold: float
|
||||
) -> "TextCategorizer":
|
||||
"""Create a TextCategorizer compoment. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels can
|
||||
be mutually exclusive (i.e. one true label per doc) or non-mutually exclusive
|
||||
(i.e. zero or more labels may be true per doc). The multi-label setting is
|
||||
controlled by the model instance that's provided.
|
||||
"""Create a TextCategorizer component. The text categorizer predicts categories
|
||||
over a whole document. It can learn one or more labels, and the labels are considered
|
||||
to be non-mutually exclusive, which means that there can be zero or more labels
|
||||
per doc).
|
||||
|
||||
model (Model[List[Doc], List[Floats2d]]): A model instance that predicts
|
||||
scores for each category.
|
||||
|
@ -104,7 +103,7 @@ def make_multilabel_textcat(
|
|||
class MultiLabel_TextCategorizer(TextCategorizer):
|
||||
"""Pipeline component for multi-label text classification.
|
||||
|
||||
DOCS: https://spacy.io/api/multilabel_textcategorizer
|
||||
DOCS: https://spacy.io/api/textcategorizer
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
|
@ -123,7 +122,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
losses during training.
|
||||
threshold (float): Cutoff to consider a prediction "positive".
|
||||
|
||||
DOCS: https://spacy.io/api/multilabel_textcategorizer#init
|
||||
DOCS: https://spacy.io/api/textcategorizer#init
|
||||
"""
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
|
@ -149,7 +148,7 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
`init labels` command. If no labels are provided, the get_examples
|
||||
callback is used to extract the labels from the data.
|
||||
|
||||
DOCS: https://spacy.io/api/multilabel_textcategorizer#initialize
|
||||
DOCS: https://spacy.io/api/textcategorizer#initialize
|
||||
"""
|
||||
validate_get_examples(get_examples, "MultiLabel_TextCategorizer.initialize")
|
||||
if labels is None:
|
||||
|
@ -173,15 +172,15 @@ class MultiLabel_TextCategorizer(TextCategorizer):
|
|||
examples (Iterable[Example]): The examples to score.
|
||||
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_cats.
|
||||
|
||||
DOCS: https://spacy.io/api/multilabel_textcategorizer#score
|
||||
DOCS: https://spacy.io/api/textcategorizer#score
|
||||
"""
|
||||
validate_examples(examples, "MultiLabel_TextCategorizer.score")
|
||||
kwargs.setdefault("threshold", self.cfg["threshold"])
|
||||
return Scorer.score_cats(
|
||||
examples,
|
||||
"cats",
|
||||
labels=self.labels,
|
||||
multi_label=True,
|
||||
threshold=self.cfg["threshold"],
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
|
|
@ -370,3 +370,51 @@ def test_textcat_evaluation():
|
|||
|
||||
assert scores["cats_micro_p"] == 4 / 5
|
||||
assert scores["cats_micro_r"] == 4 / 6
|
||||
|
||||
|
||||
def test_textcat_threshold():
|
||||
# Ensure the scorer can be called with a different threshold
|
||||
nlp = English()
|
||||
nlp.add_pipe("textcat")
|
||||
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
# score the model (it's not actually trained but that doesn't matter)
|
||||
scores = nlp.evaluate(train_examples)
|
||||
assert 0 <= scores["cats_score"] <= 1
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
|
||||
macro_f = scores["cats_score"]
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0, "positive_label": "POSITIVE"})
|
||||
pos_f = scores["cats_score"]
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
assert pos_f > macro_f
|
||||
|
||||
|
||||
def test_textcat_multi_threshold():
|
||||
# Ensure the scorer can be called with a different threshold
|
||||
nlp = English()
|
||||
nlp.add_pipe("textcat_multilabel")
|
||||
|
||||
train_examples = []
|
||||
for text, annotations in TRAIN_DATA_SINGLE_LABEL:
|
||||
train_examples.append(Example.from_dict(nlp.make_doc(text), annotations))
|
||||
nlp.initialize(get_examples=lambda: train_examples)
|
||||
|
||||
# score the model (it's not actually trained but that doesn't matter)
|
||||
scores = nlp.evaluate(train_examples)
|
||||
assert 0 <= scores["cats_score"] <= 1
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 1.0})
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 0
|
||||
|
||||
scores = nlp.evaluate(train_examples, scorer_cfg={"threshold": 0})
|
||||
assert scores["cats_f_per_type"]["POSITIVE"]["r"] == 1.0
|
||||
|
|
|
@ -589,6 +589,17 @@ several different built-in architectures. It is recommended to experiment with
|
|||
different architectures and settings to determine what works best on your
|
||||
specific data and challenge.
|
||||
|
||||
<Infobox title="Single-label vs. multi-label classification" variant="warning">
|
||||
|
||||
When the architecture for a text classification challenge contains a setting for
|
||||
`exclusive_classes`, it is important to use the correct value for the correct
|
||||
pipeline component. The `textcat` component should always be used for
|
||||
single-label use-cases where `exclusive_classes = true`, while the
|
||||
`textcat_multilabel` should be used for multi-label settings with
|
||||
`exclusive_classes = false`.
|
||||
|
||||
</Infobox>
|
||||
|
||||
### spacy.TextCatEnsemble.v2 {#TextCatEnsemble}
|
||||
|
||||
> #### Example Config
|
||||
|
|
|
@ -1,453 +0,0 @@
|
|||
---
|
||||
title: Multi-label TextCategorizer
|
||||
tag: class
|
||||
source: spacy/pipeline/textcat_multilabel.py
|
||||
new: 3
|
||||
teaser: 'Pipeline component for multi-label text classification'
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: textcat_multilabel
|
||||
api_trainable: true
|
||||
---
|
||||
|
||||
The text categorizer predicts **categories over a whole document**. It
|
||||
learns non-mutually exclusive labels, which means that zero or more labels
|
||||
may be true per document.
|
||||
|
||||
## Config and implementation {#config}
|
||||
|
||||
The default config is defined by the pipeline component factory and describes
|
||||
how the component should be configured. You can override its settings via the
|
||||
`config` argument on [`nlp.add_pipe`](/api/language#add_pipe) or in your
|
||||
[`config.cfg` for training](/usage/training#config). See the
|
||||
[model architectures](/api/architectures) documentation for details on the
|
||||
architectures and their arguments and hyperparameters.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
||||
> config = {
|
||||
> "threshold": 0.5,
|
||||
> "model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
> }
|
||||
> nlp.add_pipe("textcat_multilabel", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
|
||||
| `model` | A model instance that predicts scores for each category. Defaults to [TextCatEnsemble](/api/architectures#TextCatEnsemble). ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
|
||||
```python
|
||||
%%GITHUB_SPACY/spacy/pipeline/textcat_multilabel.py
|
||||
```
|
||||
|
||||
## MultiLabel_TextCategorizer.\_\_init\_\_ {#init tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
>
|
||||
> # Construction via add_pipe with custom model
|
||||
> config = {"model": {"@architectures": "my_textcat"}}
|
||||
> parser = nlp.add_pipe("textcat_multilabel", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> from spacy.pipeline import MultiLabel_TextCategorizer
|
||||
> textcat = MultiLabel_TextCategorizer(nlp.vocab, model, threshold=0.5)
|
||||
> ```
|
||||
|
||||
Create a new pipeline instance. In your application, you would normally use a
|
||||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | The shared vocabulary. ~~Vocab~~ |
|
||||
| `model` | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. ~~Model[List[Doc], List[Floats2d]]~~ |
|
||||
| `name` | String name of the component instance. Used to add entries to the `losses` during training. ~~str~~ |
|
||||
| _keyword-only_ | |
|
||||
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
Apply the pipe to one document. The document is modified in place, and returned.
|
||||
This usually happens under the hood when the `nlp` object is called on a text
|
||||
and all pipeline components are applied to the `Doc` in order. Both
|
||||
[`__call__`](/api/multilabel_textcategorizer#call) and [`pipe`](/api/multilabel_textcategorizer#pipe)
|
||||
delegate to the [`predict`](/api/multilabel_textcategorizer#predict) and
|
||||
[`set_annotations`](/api/multilabel_textcategorizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> doc = nlp("This is a sentence.")
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> # This usually happens under the hood
|
||||
> processed = textcat(doc)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | -------------------------------- |
|
||||
| `doc` | The document to process. ~~Doc~~ |
|
||||
| **RETURNS** | The processed document. ~~Doc~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.pipe {#pipe tag="method"}
|
||||
|
||||
Apply the pipe to a stream of documents. This usually happens under the hood
|
||||
when the `nlp` object is called on a text and all pipeline components are
|
||||
applied to the `Doc` in order. Both [`__call__`](/api/multilabel_textcategorizer#call) and
|
||||
[`pipe`](/api/multilabel_textcategorizer#pipe) delegate to the
|
||||
[`predict`](/api/multilabel_textcategorizer#predict) and
|
||||
[`set_annotations`](/api/multilabel_textcategorizer#set_annotations) methods.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> for doc in textcat.pipe(docs, batch_size=50):
|
||||
> pass
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------- |
|
||||
| `stream` | A stream of documents. ~~Iterable[Doc]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `batch_size` | The number of documents to buffer. Defaults to `128`. ~~int~~ |
|
||||
| **YIELDS** | The processed documents in order. ~~Doc~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.initialize {#initialize tag="method" new="3"}
|
||||
|
||||
Initialize the component for training. `get_examples` should be a function that
|
||||
returns an iterable of [`Example`](/api/example) objects. The data examples are
|
||||
used to **initialize the model** of the component and can either be the full
|
||||
training data or a representative sample. Initialization includes validating the
|
||||
network,
|
||||
[inferring missing shapes](https://thinc.ai/docs/usage-models#validation) and
|
||||
setting up the label scheme based on the data. This method is typically called
|
||||
by [`Language.initialize`](/api/language#initialize) and lets you customize
|
||||
arguments it receives via the
|
||||
[`[initialize.components]`](/api/data-formats#config-initialize) block in the
|
||||
config.
|
||||
|
||||
<Infobox variant="warning" title="Changed in v3.0" id="begin_training">
|
||||
|
||||
This method was previously called `begin_training`.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> textcat.initialize(lambda: [], nlp=nlp)
|
||||
> ```
|
||||
>
|
||||
> ```ini
|
||||
> ### config.cfg
|
||||
> [initialize.components.textcat_multilabel]
|
||||
>
|
||||
> [initialize.components.textcat_multilabel.labels]
|
||||
> @readers = "spacy.read_labels.v1"
|
||||
> path = "corpus/labels/textcat.json
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `get_examples` | Function that returns gold-standard annotations in the form of [`Example`](/api/example) objects. ~~Callable[[], Iterable[Example]]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.predict {#predict tag="method"}
|
||||
|
||||
Apply the component's model to a batch of [`Doc`](/api/doc) objects without
|
||||
modifying them.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> scores = textcat.predict([doc1, doc2])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------- |
|
||||
| `docs` | The documents to predict. ~~Iterable[Doc]~~ |
|
||||
| **RETURNS** | The model's prediction for each document. |
|
||||
|
||||
## MultiLabel_TextCategorizer.set_annotations {#set_annotations tag="method"}
|
||||
|
||||
Modify a batch of [`Doc`](/api/doc) objects using pre-computed scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> scores = textcat.predict(docs)
|
||||
> textcat.set_annotations(docs, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | --------------------------------------------------------- |
|
||||
| `docs` | The documents to modify. ~~Iterable[Doc]~~ |
|
||||
| `scores` | The scores to set, produced by `MultiLabel_TextCategorizer.predict`. |
|
||||
|
||||
## MultiLabel_TextCategorizer.update {#update tag="method"}
|
||||
|
||||
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||
predictions and gold-standard annotations, and update the component's model.
|
||||
Delegates to [`predict`](/api/multilabel_textcategorizer#predict) and
|
||||
[`get_loss`](/api/multilabel_textcategorizer#get_loss).
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> optimizer = nlp.initialize()
|
||||
> losses = textcat.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.rehearse {#rehearse tag="method,experimental" new="3"}
|
||||
|
||||
Perform a "rehearsal" update from a batch of data. Rehearsal updates teach the
|
||||
current model to make predictions similar to an initial model to try to address
|
||||
the "catastrophic forgetting" problem. This feature is experimental.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> optimizer = nlp.resume_training()
|
||||
> losses = textcat.rehearse(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.get_loss {#get_loss tag="method"}
|
||||
|
||||
Find the loss and gradient of loss for the batch of documents and their
|
||||
predicted scores.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat_multilabel")
|
||||
> scores = textcat.predict([eg.predicted for eg in examples])
|
||||
> loss, d_loss = textcat.get_loss(examples, scores)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | --------------------------------------------------------------------------- |
|
||||
| `examples` | The batch of examples. ~~Iterable[Example]~~ |
|
||||
| `scores` | Scores representing the model's predictions. |
|
||||
| **RETURNS** | The loss and the gradient, i.e. `(loss, gradient)`. ~~Tuple[float, float]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.score {#score tag="method" new="3"}
|
||||
|
||||
Score a batch of examples.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> scores = textcat.score(examples)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The examples to score. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| **RETURNS** | The scores, produced by [`Scorer.score_cats`](/api/scorer#score_cats). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
Create an optimizer for the pipeline component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> optimizer = textcat.create_optimizer()
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------- |
|
||||
| **RETURNS** | The optimizer. ~~Optimizer~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.use_params {#use_params tag="method, contextmanager"}
|
||||
|
||||
Modify the pipe's model to use the given parameter values.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> with textcat.use_params(optimizer.averages):
|
||||
> textcat.to_disk("/best_model")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------- | -------------------------------------------------- |
|
||||
| `params` | The parameter values to use in the model. ~~dict~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.add_label {#add_label tag="method"}
|
||||
|
||||
Add a new label to the pipe. Raises an error if the output dimension is already
|
||||
set, or if the model has already been fully [initialized](#initialize). Note
|
||||
that you don't have to call this method if you provide a **representative data
|
||||
sample** to the [`initialize`](#initialize) method. In this case, all labels
|
||||
found in the sample will be automatically added to the model, and the output
|
||||
dimension will be [inferred](/usage/layers-architectures#thinc-shape-inference)
|
||||
automatically.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> textcat.add_label("MY_LABEL")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ----------------------------------------------------------- |
|
||||
| `label` | The label to add. ~~str~~ |
|
||||
| **RETURNS** | `0` if the label is already present, otherwise `1`. ~~int~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.to_disk {#to_disk tag="method"}
|
||||
|
||||
Serialize the pipe to disk.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> textcat.to_disk("/path/to/textcat")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `path` | A path to a directory, which will be created if it doesn't exist. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.from_disk {#from_disk tag="method"}
|
||||
|
||||
Load the pipe from disk. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> textcat.from_disk("/path/to/textcat")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ----------------------------------------------------------------------------------------------- |
|
||||
| `path` | A path to a directory. Paths may be either strings or `Path`-like objects. ~~Union[str, Path]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The modified `MultiLabel_TextCategorizer` object. ~~MultiLabel_TextCategorizer~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.to_bytes {#to_bytes tag="method"}
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> textcat_bytes = textcat.to_bytes()
|
||||
> ```
|
||||
|
||||
Serialize the pipe to a bytestring.
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The serialized form of the `MultiLabel_TextCategorizer` object. ~~bytes~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.from_bytes {#from_bytes tag="method"}
|
||||
|
||||
Load the pipe from a bytestring. Modifies the object in place and returns it.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat_bytes = textcat.to_bytes()
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
> textcat.from_bytes(textcat_bytes)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------- |
|
||||
| `bytes_data` | The data to load from. ~~bytes~~ |
|
||||
| _keyword-only_ | |
|
||||
| `exclude` | String names of [serialization fields](#serialization-fields) to exclude. ~~Iterable[str]~~ |
|
||||
| **RETURNS** | The `MultiLabel_TextCategorizer` object. ~~MultiLabel_TextCategorizer~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.labels {#labels tag="property"}
|
||||
|
||||
The labels currently added to the component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> textcat.add_label("MY_LABEL")
|
||||
> assert "MY_LABEL" in textcat.labels
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ------------------------------------------------------ |
|
||||
| **RETURNS** | The labels added to the component. ~~Tuple[str, ...]~~ |
|
||||
|
||||
## MultiLabel_TextCategorizer.label_data {#label_data tag="property" new="3"}
|
||||
|
||||
The labels currently added to the component and their internal meta information.
|
||||
This is the data generated by [`init labels`](/api/cli#init-labels) and used by
|
||||
[`MultiLabel_TextCategorizer.initialize`](/api/multilabel_textcategorizer#initialize) to initialize
|
||||
the model with a pre-defined label set.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> labels = textcat.label_data
|
||||
> textcat.initialize(lambda: [], nlp=nlp, labels=labels)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------- | ---------------------------------------------------------- |
|
||||
| **RETURNS** | The label data added to the component. ~~Tuple[str, ...]~~ |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
different aspects of the object. If needed, you can exclude them from
|
||||
serialization by passing in the string names via the `exclude` argument.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> data = textcat.to_disk("/path", exclude=["vocab"])
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ------- | -------------------------------------------------------------- |
|
||||
| `vocab` | The shared [`Vocab`](/api/vocab). |
|
||||
| `cfg` | The config file. You usually don't want to exclude this. |
|
||||
| `model` | The binary model data. You usually don't want to exclude this. |
|
|
@ -3,15 +3,30 @@ title: TextCategorizer
|
|||
tag: class
|
||||
source: spacy/pipeline/textcat.py
|
||||
new: 2
|
||||
teaser: 'Pipeline component for single-label text classification'
|
||||
teaser: 'Pipeline component for text classification'
|
||||
api_base_class: /api/pipe
|
||||
api_string_name: textcat
|
||||
api_trainable: true
|
||||
---
|
||||
|
||||
The text categorizer predicts **categories over a whole document**. It can learn
|
||||
one or more labels, and the labels are mutually exclusive - there is exactly one
|
||||
true label per document.
|
||||
The text categorizer predicts **categories over a whole document**. and comes in
|
||||
two flavours: `textcat` and `textcat_multilabel`. When you need to predict
|
||||
exactly one true label per document, use the `textcat` which has mutually
|
||||
exclusive labels. If you want to perform multi-label classification and predict
|
||||
zero, one or more labels per document, use the `textcat_multilabel` component
|
||||
instead.
|
||||
|
||||
Both components are documented on this page.
|
||||
|
||||
<Infobox title="Migration from v2" variant="warning">
|
||||
|
||||
In spaCy v2, the `textcat` component could also perform **multi-label
|
||||
classification**, and even used this setting by default. Since v3.0, the
|
||||
component `textcat_multilabel` should be used for multi-label classification
|
||||
instead. The `textcat` component is now used for mutually exclusive classes
|
||||
only.
|
||||
|
||||
</Infobox>
|
||||
|
||||
## Config and implementation {#config}
|
||||
|
||||
|
@ -22,7 +37,7 @@ how the component should be configured. You can override its settings via the
|
|||
[model architectures](/api/architectures) documentation for details on the
|
||||
architectures and their arguments and hyperparameters.
|
||||
|
||||
> #### Example
|
||||
> #### Example (textcat)
|
||||
>
|
||||
> ```python
|
||||
> from spacy.pipeline.textcat import DEFAULT_SINGLE_TEXTCAT_MODEL
|
||||
|
@ -33,6 +48,17 @@ architectures and their arguments and hyperparameters.
|
|||
> nlp.add_pipe("textcat", config=config)
|
||||
> ```
|
||||
|
||||
> #### Example (textcat_multilabel)
|
||||
>
|
||||
> ```python
|
||||
> from spacy.pipeline.textcat_multilabel import DEFAULT_MULTI_TEXTCAT_MODEL
|
||||
> config = {
|
||||
> "threshold": 0.5,
|
||||
> "model": DEFAULT_MULTI_TEXTCAT_MODEL,
|
||||
> }
|
||||
> nlp.add_pipe("textcat_multilabel", config=config)
|
||||
> ```
|
||||
|
||||
| Setting | Description |
|
||||
| ----------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `threshold` | Cutoff to consider a prediction "positive", relevant when printing accuracy results. ~~float~~ |
|
||||
|
@ -48,6 +74,7 @@ architectures and their arguments and hyperparameters.
|
|||
>
|
||||
> ```python
|
||||
> # Construction via add_pipe with default model
|
||||
> # Use 'textcat_multilabel' for multi-label classification
|
||||
> textcat = nlp.add_pipe("textcat")
|
||||
>
|
||||
> # Construction via add_pipe with custom model
|
||||
|
@ -55,6 +82,7 @@ architectures and their arguments and hyperparameters.
|
|||
> parser = nlp.add_pipe("textcat", config=config)
|
||||
>
|
||||
> # Construction from class
|
||||
> # Use 'MultiLabel_TextCategorizer' for multi-label classification
|
||||
> from spacy.pipeline import TextCategorizer
|
||||
> textcat = TextCategorizer(nlp.vocab, model, threshold=0.5)
|
||||
> ```
|
||||
|
@ -161,7 +189,7 @@ This method was previously called `begin_training`.
|
|||
| _keyword-only_ | |
|
||||
| `nlp` | The current `nlp` object. Defaults to `None`. ~~Optional[Language]~~ |
|
||||
| `labels` | The label information to add to the component, as provided by the [`label_data`](#label_data) property after initialization. To generate a reusable JSON file from your data, you should run the [`init labels`](/api/cli#init-labels) command. If no labels are provided, the `get_examples` callback is used to extract the labels from the data, which may be a lot slower. ~~Optional[Iterable[str]]~~ |
|
||||
| `positive_label` | The positive label for a binary task with exclusive classes, None otherwise and by default. ~~Optional[str]~~ |
|
||||
| `positive_label` | The positive label for a binary task with exclusive classes, `None` otherwise and by default. This parameter is not available when using the `textcat_multilabel` component. ~~Optional[str]~~ |
|
||||
|
||||
## TextCategorizer.predict {#predict tag="method"}
|
||||
|
||||
|
@ -212,14 +240,14 @@ Delegates to [`predict`](/api/textcategorizer#predict) and
|
|||
> losses = textcat.update(examples, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | ------------------------------------------------------------------------------------------------------------------------ |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects to learn from. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
| `sgd` | An optimizer. Will be created via [`create_optimizer`](#create_optimizer) if not set. ~~Optional[Optimizer]~~ |
|
||||
| `losses` | Optional record of the loss during training. Updated using the component name as the key. ~~Optional[Dict[str, float]]~~ |
|
||||
| **RETURNS** | The updated `losses` dictionary. ~~Dict[str, float]~~ |
|
||||
|
||||
## TextCategorizer.rehearse {#rehearse tag="method,experimental" new="3"}
|
||||
|
||||
|
@ -273,11 +301,11 @@ Score a batch of examples.
|
|||
> scores = textcat.score(examples)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The examples to score. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| **RETURNS** | The scores, produced by [`Scorer.score_cats`](/api/scorer#score_cats). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
||||
| Name | Description |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | The examples to score. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| **RETURNS** | The scores, produced by [`Scorer.score_cats`](/api/scorer#score_cats). ~~Dict[str, Union[float, Dict[str, float]]]~~ |
|
||||
|
||||
## TextCategorizer.create_optimizer {#create_optimizer tag="method"}
|
||||
|
||||
|
|
|
@ -223,21 +223,22 @@ available pipeline components and component functions.
|
|||
> ruler = nlp.add_pipe("entity_ruler")
|
||||
> ```
|
||||
|
||||
| String name | Component | Description |
|
||||
| ----------------- | ----------------------------------------------- | ----------------------------------------------------------------------------------------- |
|
||||
| `tagger` | [`Tagger`](/api/tagger) | Assign part-of-speech-tags. |
|
||||
| `parser` | [`DependencyParser`](/api/dependencyparser) | Assign dependency labels. |
|
||||
| `ner` | [`EntityRecognizer`](/api/entityrecognizer) | Assign named entities. |
|
||||
| `entity_linker` | [`EntityLinker`](/api/entitylinker) | Assign knowledge base IDs to named entities. Should be added after the entity recognizer. |
|
||||
| `entity_ruler` | [`EntityRuler`](/api/entityruler) | Assign named entities based on pattern rules and dictionaries. |
|
||||
| `textcat` | [`TextCategorizer`](/api/textcategorizer) | Assign text categories. |
|
||||
| `lemmatizer` | [`Lemmatizer`](/api/lemmatizer) | Assign base forms to words. |
|
||||
| `morphologizer` | [`Morphologizer`](/api/morphologizer) | Assign morphological features and coarse-grained POS tags. |
|
||||
| `attribute_ruler` | [`AttributeRuler`](/api/attributeruler) | Assign token attribute mappings and rule-based exceptions. |
|
||||
| `senter` | [`SentenceRecognizer`](/api/sentencerecognizer) | Assign sentence boundaries. |
|
||||
| `sentencizer` | [`Sentencizer`](/api/sentencizer) | Add rule-based sentence segmentation without the dependency parse. |
|
||||
| `tok2vec` | [`Tok2Vec`](/api/tok2vec) | Assign token-to-vector embeddings. |
|
||||
| `transformer` | [`Transformer`](/api/transformer) | Assign the tokens and outputs of a transformer model. |
|
||||
| String name | Component | Description |
|
||||
| -------------------- | ---------------------------------------------------- | ----------------------------------------------------------------------------------------- |
|
||||
| `tagger` | [`Tagger`](/api/tagger) | Assign part-of-speech-tags. |
|
||||
| `parser` | [`DependencyParser`](/api/dependencyparser) | Assign dependency labels. |
|
||||
| `ner` | [`EntityRecognizer`](/api/entityrecognizer) | Assign named entities. |
|
||||
| `entity_linker` | [`EntityLinker`](/api/entitylinker) | Assign knowledge base IDs to named entities. Should be added after the entity recognizer. |
|
||||
| `entity_ruler` | [`EntityRuler`](/api/entityruler) | Assign named entities based on pattern rules and dictionaries. |
|
||||
| `textcat` | [`TextCategorizer`](/api/textcategorizer) | Assign text categories: exactly one category is predicted per document. |
|
||||
| `textcat_multilabel` | [`MultiLabel_TextCategorizer`](/api/textcategorizer) | Assign text categories in a multi-label setting: zero, one or more labels per document. |
|
||||
| `lemmatizer` | [`Lemmatizer`](/api/lemmatizer) | Assign base forms to words. |
|
||||
| `morphologizer` | [`Morphologizer`](/api/morphologizer) | Assign morphological features and coarse-grained POS tags. |
|
||||
| `attribute_ruler` | [`AttributeRuler`](/api/attributeruler) | Assign token attribute mappings and rule-based exceptions. |
|
||||
| `senter` | [`SentenceRecognizer`](/api/sentencerecognizer) | Assign sentence boundaries. |
|
||||
| `sentencizer` | [`Sentencizer`](/api/sentencizer) | Add rule-based sentence segmentation without the dependency parse. |
|
||||
| `tok2vec` | [`Tok2Vec`](/api/tok2vec) | Assign token-to-vector embeddings. |
|
||||
| `transformer` | [`Transformer`](/api/transformer) | Assign the tokens and outputs of a transformer model. |
|
||||
|
||||
### Disabling, excluding and modifying components {#disabling}
|
||||
|
||||
|
@ -400,8 +401,8 @@ vectors available – otherwise, it won't be able to make the same predictions.
|
|||
> ```
|
||||
>
|
||||
> By default, sourced components will be updated with your data during training.
|
||||
> If you want to preserve the component as-is, you can "freeze" it if the pipeline
|
||||
> is not using a shared `Tok2Vec` layer:
|
||||
> If you want to preserve the component as-is, you can "freeze" it if the
|
||||
> pipeline is not using a shared `Tok2Vec` layer:
|
||||
>
|
||||
> ```ini
|
||||
> [training]
|
||||
|
@ -1244,7 +1245,7 @@ labels = []
|
|||
# the argument "model"
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatBOW.v1"
|
||||
exclusive_classes = false
|
||||
exclusive_classes = true
|
||||
ngram_size = 1
|
||||
no_output_layer = false
|
||||
|
||||
|
|
|
@ -320,14 +320,15 @@ add to your pipeline and customize for your use case:
|
|||
> nlp.add_pipe("lemmatizer")
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`SentenceRecognizer`](/api/sentencerecognizer) | Trainable component for sentence segmentation. |
|
||||
| [`Morphologizer`](/api/morphologizer) | Trainable component to predict morphological features. |
|
||||
| [`Lemmatizer`](/api/lemmatizer) | Standalone component for rule-based and lookup lemmatization. |
|
||||
| [`AttributeRuler`](/api/attributeruler) | Component for setting token attributes using match patterns. |
|
||||
| [`Transformer`](/api/transformer) | Component for using [transformer models](/usage/embeddings-transformers) in your pipeline, accessing outputs and aligning tokens. Provided via [`spacy-transformers`](https://github.com/explosion/spacy-transformers). |
|
||||
| [`TrainablePipe`](/api/pipe) | Base class for trainable pipeline components. |
|
||||
| Name | Description |
|
||||
| ----------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`SentenceRecognizer`](/api/sentencerecognizer) | Trainable component for sentence segmentation. |
|
||||
| [`Morphologizer`](/api/morphologizer) | Trainable component to predict morphological features. |
|
||||
| [`Lemmatizer`](/api/lemmatizer) | Standalone component for rule-based and lookup lemmatization. |
|
||||
| [`AttributeRuler`](/api/attributeruler) | Component for setting token attributes using match patterns. |
|
||||
| [`Transformer`](/api/transformer) | Component for using [transformer models](/usage/embeddings-transformers) in your pipeline, accessing outputs and aligning tokens. Provided via [`spacy-transformers`](https://github.com/explosion/spacy-transformers). |
|
||||
| [`TrainablePipe`](/api/pipe) | Base class for trainable pipeline components. |
|
||||
| [`Multi-label TextCategorizer`](/api/textcategorizer) | Trainable component for multi-label text classification. |
|
||||
|
||||
<Infobox title="Details & Documentation" emoji="📖" list>
|
||||
|
||||
|
@ -592,6 +593,10 @@ Note that spaCy v3.0 now requires **Python 3.6+**.
|
|||
- Various keyword arguments across functions and methods are now explicitly
|
||||
declared as **keyword-only** arguments. Those arguments are documented
|
||||
accordingly across the API reference using the <Tag>keyword-only</Tag> tag.
|
||||
- The `textcat` pipeline component is now only applicable for classification of
|
||||
mutually exclusives classes - i.e. one predicted class per input sentence or
|
||||
document. To perform multi-label classification, use the new
|
||||
`textcat_multilabel` component instead.
|
||||
|
||||
### Removed or renamed API {#incompat-removed}
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ import { htmlToReact } from '../components/util'
|
|||
const DEFAULT_LANG = 'en'
|
||||
const DEFAULT_HARDWARE = 'cpu'
|
||||
const DEFAULT_OPT = 'efficiency'
|
||||
const DEFAULT_TEXTCAT_EXCLUSIVE = true
|
||||
const COMPONENTS = ['tagger', 'parser', 'ner', 'textcat']
|
||||
const COMMENT = `# This is an auto-generated partial config. To use it with 'spacy train'
|
||||
# you can run spacy init fill-config to auto-fill all default settings:
|
||||
|
@ -27,6 +28,19 @@ const DATA = [
|
|||
options: COMPONENTS.map(id => ({ id, title: id })),
|
||||
multiple: true,
|
||||
},
|
||||
{
|
||||
id: 'textcat',
|
||||
title: 'Text Classification',
|
||||
multiple: true,
|
||||
options: [
|
||||
{
|
||||
id: 'exclusive',
|
||||
title: 'exclusive categories',
|
||||
checked: DEFAULT_TEXTCAT_EXCLUSIVE,
|
||||
help: 'only one label can apply',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
id: 'hardware',
|
||||
title: 'Hardware',
|
||||
|
@ -49,14 +63,28 @@ const DATA = [
|
|||
|
||||
export default function QuickstartTraining({ id, title, download = 'base_config.cfg' }) {
|
||||
const [lang, setLang] = useState(DEFAULT_LANG)
|
||||
const [_components, _setComponents] = useState([])
|
||||
const [components, setComponents] = useState([])
|
||||
const [[hardware], setHardware] = useState([DEFAULT_HARDWARE])
|
||||
const [[optimize], setOptimize] = useState([DEFAULT_OPT])
|
||||
const [textcatExclusive, setTextcatExclusive] = useState(DEFAULT_TEXTCAT_EXCLUSIVE)
|
||||
|
||||
function updateComponents(value, isExclusive) {
|
||||
_setComponents(value)
|
||||
const updated = value.map(c => (c === 'textcat' && !isExclusive ? 'textcat_multilabel' : c))
|
||||
setComponents(updated)
|
||||
}
|
||||
|
||||
const setters = {
|
||||
lang: setLang,
|
||||
components: setComponents,
|
||||
components: v => updateComponents(v, textcatExclusive),
|
||||
hardware: setHardware,
|
||||
optimize: setOptimize,
|
||||
textcat: v => {
|
||||
const isExclusive = v.includes('exclusive')
|
||||
setTextcatExclusive(isExclusive)
|
||||
updateComponents(_components, isExclusive)
|
||||
},
|
||||
}
|
||||
const reco = GENERATOR_DATA[lang] || GENERATOR_DATA.__default__
|
||||
const content = generator({
|
||||
|
@ -78,20 +106,24 @@ export default function QuickstartTraining({ id, title, download = 'base_config.
|
|||
<StaticQuery
|
||||
query={query}
|
||||
render={({ site }) => {
|
||||
let data = DATA
|
||||
const langs = site.siteMetadata.languages
|
||||
DATA[0].dropdown = langs
|
||||
data[0].dropdown = langs
|
||||
.map(({ name, code }) => ({
|
||||
id: code,
|
||||
title: name,
|
||||
}))
|
||||
.sort((a, b) => a.title.localeCompare(b.title))
|
||||
if (!_components.includes('textcat')) {
|
||||
data = data.filter(({ id }) => id !== 'textcat')
|
||||
}
|
||||
return (
|
||||
<Quickstart
|
||||
id="quickstart-widget"
|
||||
Container="div"
|
||||
download={download}
|
||||
rawContent={rawContent}
|
||||
data={DATA}
|
||||
data={data}
|
||||
title={title}
|
||||
id={id}
|
||||
setters={setters}
|
||||
|
|
Loading…
Reference in New Issue
Block a user