mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-25 00:34:20 +03:00
Merge pull request #5855 from svlandeg/fix/cli-debug
This commit is contained in:
commit
934447a611
|
@ -6,7 +6,7 @@ requires = [
|
|||
"cymem>=2.0.2,<2.1.0",
|
||||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.0.0a20,<8.0.0a30",
|
||||
"thinc>=8.0.0a21,<8.0.0a30",
|
||||
"blis>=0.4.0,<0.5.0",
|
||||
"pytokenizations",
|
||||
"smart_open>=2.0.0,<3.0.0"
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# Our libraries
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.0a20,<8.0.0a30
|
||||
thinc>=8.0.0a21,<8.0.0a30
|
||||
blis>=0.4.0,<0.5.0
|
||||
ml_datasets>=0.1.1
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
|
|
|
@ -34,13 +34,13 @@ setup_requires =
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
thinc>=8.0.0a20,<8.0.0a30
|
||||
thinc>=8.0.0a21,<8.0.0a30
|
||||
install_requires =
|
||||
# Our libraries
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.0a20,<8.0.0a30
|
||||
thinc>=8.0.0a21,<8.0.0a30
|
||||
blis>=0.4.0,<0.5.0
|
||||
wasabi>=0.7.1,<1.1.0
|
||||
srsly>=2.1.0,<3.0.0
|
||||
|
|
|
@ -2,7 +2,7 @@ from typing import Dict, Any, Optional
|
|||
from pathlib import Path
|
||||
from wasabi import msg
|
||||
from thinc.api import require_gpu, fix_random_seed, set_dropout_rate, Adam, Config
|
||||
from thinc.api import Model
|
||||
from thinc.api import Model, data_validation
|
||||
import typer
|
||||
|
||||
from ._util import Arg, Opt, debug_cli, show_validation_error, parse_config_overrides
|
||||
|
@ -16,7 +16,7 @@ def debug_model_cli(
|
|||
# fmt: off
|
||||
ctx: typer.Context, # This is only used to read additional arguments
|
||||
config_path: Path = Arg(..., help="Path to config file", exists=True),
|
||||
section: str = Arg(..., help="Section that defines the model to be analysed"),
|
||||
component: str = Arg(..., help="Name of the pipeline component of which the model should be analysed"),
|
||||
layers: str = Opt("", "--layers", "-l", help="Comma-separated names of layer IDs to print"),
|
||||
dimensions: bool = Opt(False, "--dimensions", "-DIM", help="Show dimensions"),
|
||||
parameters: bool = Opt(False, "--parameters", "-PAR", help="Show parameters"),
|
||||
|
@ -25,7 +25,7 @@ def debug_model_cli(
|
|||
P0: bool = Opt(False, "--print-step0", "-P0", help="Print model before training"),
|
||||
P1: bool = Opt(False, "--print-step1", "-P1", help="Print model after initialization"),
|
||||
P2: bool = Opt(False, "--print-step2", "-P2", help="Print model after training"),
|
||||
P3: bool = Opt(True, "--print-step3", "-P3", help="Print final predictions"),
|
||||
P3: bool = Opt(False, "--print-step3", "-P3", help="Print final predictions"),
|
||||
use_gpu: int = Opt(-1, "--gpu-id", "-g", help="GPU ID or -1 for CPU")
|
||||
# fmt: on
|
||||
):
|
||||
|
@ -53,20 +53,20 @@ def debug_model_cli(
|
|||
with show_validation_error(config_path):
|
||||
cfg = Config().from_disk(config_path)
|
||||
try:
|
||||
_, config = util.load_model_from_config(cfg, overrides=config_overrides)
|
||||
nlp, config = util.load_model_from_config(cfg, overrides=config_overrides)
|
||||
except ValueError as e:
|
||||
msg.fail(str(e), exits=1)
|
||||
seed = config["pretraining"]["seed"]
|
||||
seed = config.get("training", {}).get("seed", None)
|
||||
if seed is not None:
|
||||
msg.info(f"Fixing random seed: {seed}")
|
||||
fix_random_seed(seed)
|
||||
|
||||
component = dot_to_object(config, section)
|
||||
if hasattr(component, "model"):
|
||||
model = component.model
|
||||
pipe = nlp.get_pipe(component)
|
||||
if hasattr(pipe, "model"):
|
||||
model = pipe.model
|
||||
else:
|
||||
msg.fail(
|
||||
f"The section '{section}' does not specify an object that holds a Model.",
|
||||
f"The component '{component}' does not specify an object that holds a Model.",
|
||||
exits=1,
|
||||
)
|
||||
debug_model(model, print_settings=print_settings)
|
||||
|
@ -84,15 +84,17 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
|||
# STEP 0: Printing before training
|
||||
msg.info(f"Analysing model with ID {model.id}")
|
||||
if print_settings.get("print_before_training"):
|
||||
msg.info(f"Before training:")
|
||||
msg.divider(f"STEP 0 - before training")
|
||||
_print_model(model, print_settings)
|
||||
|
||||
# STEP 1: Initializing the model and printing again
|
||||
Y = _get_output(model.ops.xp)
|
||||
_set_output_dim(nO=Y.shape[-1], model=model)
|
||||
model.initialize(X=_get_docs(), Y=Y)
|
||||
# The output vector might differ from the official type of the output layer
|
||||
with data_validation(False):
|
||||
model.initialize(X=_get_docs(), Y=Y)
|
||||
if print_settings.get("print_after_init"):
|
||||
msg.info(f"After initialization:")
|
||||
msg.divider(f"STEP 1 - after initialization")
|
||||
_print_model(model, print_settings)
|
||||
|
||||
# STEP 2: Updating the model and printing again
|
||||
|
@ -104,13 +106,14 @@ def debug_model(model: Model, *, print_settings: Optional[Dict[str, Any]] = None
|
|||
get_dX(dY)
|
||||
model.finish_update(optimizer)
|
||||
if print_settings.get("print_after_training"):
|
||||
msg.info(f"After training:")
|
||||
msg.divider(f"STEP 2 - after training")
|
||||
_print_model(model, print_settings)
|
||||
|
||||
# STEP 3: the final prediction
|
||||
prediction = model.predict(_get_docs())
|
||||
if print_settings.get("print_prediction"):
|
||||
msg.info(f"Prediction:", str(prediction))
|
||||
msg.divider(f"STEP 3 - prediction")
|
||||
msg.info(str(prediction))
|
||||
|
||||
|
||||
def get_gradient(model, Y):
|
||||
|
|
|
@ -51,7 +51,7 @@ def train_cli(
|
|||
referenced in the config.
|
||||
"""
|
||||
util.set_env_log(verbose)
|
||||
verify_cli_args(train_path, dev_path, config_path)
|
||||
verify_cli_args(train_path, dev_path, config_path, output_path)
|
||||
overrides = parse_config_overrides(ctx.args)
|
||||
import_code(code_path)
|
||||
train(
|
||||
|
@ -174,7 +174,6 @@ def train(
|
|||
progress = tqdm.tqdm(total=training["eval_frequency"], leave=False)
|
||||
except Exception as e:
|
||||
if output_path is not None:
|
||||
raise e
|
||||
msg.warn(
|
||||
f"Aborting and saving the final best model. "
|
||||
f"Encountered exception: {str(e)}",
|
||||
|
|
Loading…
Reference in New Issue
Block a user