diff --git a/spacy/syntax/nn_parser.pyx b/spacy/syntax/nn_parser.pyx index d5c6bf2a8..fafa492c6 100644 --- a/spacy/syntax/nn_parser.pyx +++ b/spacy/syntax/nn_parser.pyx @@ -9,7 +9,6 @@ import numpy cimport cython.parallel import numpy.random cimport numpy as np -from itertools import islice from cpython.ref cimport PyObject, Py_XDECREF from cpython.exc cimport PyErr_CheckSignals, PyErr_SetFromErrno from libc.math cimport exp @@ -621,15 +620,15 @@ cdef class Parser: self.model, cfg = self.Model(self.moves.n_moves, **cfg) if sgd is None: sgd = self.create_optimizer() - doc_sample = [] - gold_sample = [] - for raw_text, annots_brackets in islice(get_gold_tuples(), 1000): + docs = [] + golds = [] + for raw_text, annots_brackets in get_gold_tuples(): for annots, brackets in annots_brackets: ids, words, tags, heads, deps, ents = annots - doc_sample.append(Doc(self.vocab, words=words)) - gold_sample.append(GoldParse(doc_sample[-1], words=words, tags=tags, - heads=heads, deps=deps, entities=ents)) - self.model.begin_training(doc_sample, gold_sample) + docs.append(Doc(self.vocab, words=words)) + golds.append(GoldParse(docs[-1], words=words, tags=tags, + heads=heads, deps=deps, entities=ents)) + self.model.begin_training(docs, golds) if pipeline is not None: self.init_multitask_objectives(get_gold_tuples, pipeline, sgd=sgd, **cfg) link_vectors_to_models(self.vocab)