mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-05 21:00:19 +03:00
Add ConsoleLogger.v3
This addition expands the progress bar feature to count up the training/distillation steps to either the next evaluation pass or the maximum number of steps.
This commit is contained in:
parent
e5c7f3b077
commit
93ba4e72fa
|
@ -962,6 +962,7 @@ class Errors(metaclass=ErrorsWithCodes):
|
||||||
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
|
E1046 = ("{cls_name} is an abstract class and cannot be instantiated. If you are looking for spaCy's default "
|
||||||
"knowledge base, use `InMemoryLookupKB`.")
|
"knowledge base, use `InMemoryLookupKB`.")
|
||||||
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
|
E1047 = ("`find_threshold()` only supports components with a `scorer` attribute.")
|
||||||
|
E1048 = ("Got '{unexpected}' as console progress bar type, but expected one of the following: {expected}")
|
||||||
|
|
||||||
|
|
||||||
# Deprecated model shortcuts, only used in errors and warnings
|
# Deprecated model shortcuts, only used in errors and warnings
|
||||||
|
|
|
@ -26,6 +26,8 @@ def setup_table(
|
||||||
return final_cols, final_widths, ["r" for _ in final_widths]
|
return final_cols, final_widths, ["r" for _ in final_widths]
|
||||||
|
|
||||||
|
|
||||||
|
# We cannot rename this method as it's directly imported
|
||||||
|
# and used by external packages such as spacy-loggers.
|
||||||
@registry.loggers("spacy.ConsoleLogger.v2")
|
@registry.loggers("spacy.ConsoleLogger.v2")
|
||||||
def console_logger(
|
def console_logger(
|
||||||
progress_bar: bool = False,
|
progress_bar: bool = False,
|
||||||
|
@ -33,7 +35,27 @@ def console_logger(
|
||||||
output_file: Optional[Union[str, Path]] = None,
|
output_file: Optional[Union[str, Path]] = None,
|
||||||
):
|
):
|
||||||
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
|
"""The ConsoleLogger.v2 prints out training logs in the console and/or saves them to a jsonl file.
|
||||||
progress_bar (bool): Whether the logger should print the progress bar.
|
progress_bar (bool): Whether the logger should print a progress bar tracking the steps till the next evaluation pass.
|
||||||
|
console_output (bool): Whether the logger should print the logs on the console.
|
||||||
|
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
|
||||||
|
"""
|
||||||
|
return console_logger_v3(
|
||||||
|
progress_bar=None if progress_bar is False else "eval_steps",
|
||||||
|
console_output=console_output,
|
||||||
|
output_file=output_file,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@registry.loggers("spacy.ConsoleLogger.v3")
|
||||||
|
def console_logger_v3(
|
||||||
|
progress_bar: Optional[str] = None,
|
||||||
|
console_output: bool = True,
|
||||||
|
output_file: Optional[Union[str, Path]] = None,
|
||||||
|
):
|
||||||
|
"""The ConsoleLogger.v3 prints out training logs in the console and/or saves them to a jsonl file.
|
||||||
|
progress_bar (Optional[str]): Type of progress bar to show in the console. Allowed values:
|
||||||
|
all_steps - Tracks the number of steps until `training.max_steps` is reached.
|
||||||
|
eval_steps - Tracks the number of steps until `training.eval_frequency` is reached.
|
||||||
console_output (bool): Whether the logger should print the logs on the console.
|
console_output (bool): Whether the logger should print the logs on the console.
|
||||||
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
|
output_file (Optional[Union[str, Path]]): The file to save the training logs to.
|
||||||
"""
|
"""
|
||||||
|
@ -70,6 +92,7 @@ def console_logger(
|
||||||
for name, proc in nlp.pipeline
|
for name, proc in nlp.pipeline
|
||||||
if hasattr(proc, "is_trainable") and proc.is_trainable
|
if hasattr(proc, "is_trainable") and proc.is_trainable
|
||||||
]
|
]
|
||||||
|
max_steps = nlp.config["training"]["max_steps"]
|
||||||
eval_frequency = nlp.config["training"]["eval_frequency"]
|
eval_frequency = nlp.config["training"]["eval_frequency"]
|
||||||
score_weights = nlp.config["training"]["score_weights"]
|
score_weights = nlp.config["training"]["score_weights"]
|
||||||
score_cols = [col for col, value in score_weights.items() if value is not None]
|
score_cols = [col for col, value in score_weights.items() if value is not None]
|
||||||
|
@ -84,6 +107,13 @@ def console_logger(
|
||||||
write(msg.row(table_header, widths=table_widths, spacing=spacing))
|
write(msg.row(table_header, widths=table_widths, spacing=spacing))
|
||||||
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
|
write(msg.row(["-" * width for width in table_widths], spacing=spacing))
|
||||||
progress = None
|
progress = None
|
||||||
|
expected_progress_types = ("all_steps", "eval_steps", None)
|
||||||
|
if progress_bar not in expected_progress_types:
|
||||||
|
raise ValueError(
|
||||||
|
Errors.E1048.format(
|
||||||
|
unexpected=progress_bar, expected=expected_progress_types
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
def log_step(info: Optional[Dict[str, Any]]) -> None:
|
def log_step(info: Optional[Dict[str, Any]]) -> None:
|
||||||
nonlocal progress
|
nonlocal progress
|
||||||
|
@ -142,10 +172,22 @@ def console_logger(
|
||||||
)
|
)
|
||||||
if progress_bar:
|
if progress_bar:
|
||||||
# Set disable=None, so that it disables on non-TTY
|
# Set disable=None, so that it disables on non-TTY
|
||||||
|
if progress_bar == "all_steps":
|
||||||
|
total = max_steps
|
||||||
|
desc = f"Last Eval Epoch: {info['epoch']}"
|
||||||
|
initial = info["step"]
|
||||||
|
else:
|
||||||
|
total = eval_frequency
|
||||||
|
desc = f"Epoch {info['epoch']+1}"
|
||||||
|
initial = 0
|
||||||
progress = tqdm.tqdm(
|
progress = tqdm.tqdm(
|
||||||
total=eval_frequency, disable=None, leave=False, file=stderr
|
total=total,
|
||||||
|
disable=None,
|
||||||
|
leave=False,
|
||||||
|
file=stderr,
|
||||||
|
initial=initial,
|
||||||
)
|
)
|
||||||
progress.set_description(f"Epoch {info['epoch']+1}")
|
progress.set_description(desc)
|
||||||
|
|
||||||
def finalize() -> None:
|
def finalize() -> None:
|
||||||
if output_stream:
|
if output_stream:
|
||||||
|
|
|
@ -564,11 +564,33 @@ start decreasing across epochs.
|
||||||
|
|
||||||
</Accordion>
|
</Accordion>
|
||||||
|
|
||||||
| Name | Description |
|
| Name | Description |
|
||||||
| ---------------- | --------------------------------------------------------------------- |
|
| ---------------- | -------------------------------------------------------------------------------------------------------- |
|
||||||
| `progress_bar` | Whether the logger should print the progress bar ~~bool~~ |
|
| `progress_bar` | Whether the logger should print a progress bar tracking the steps till the next evaluation pass.~~bool~~ |
|
||||||
| `console_output` | Whether the logger should print the logs on the console. ~~bool~~ |
|
| `console_output` | Whether the logger should print the logs in the console. ~~bool~~ |
|
||||||
| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ |
|
| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ |
|
||||||
|
|
||||||
|
#### spacy.ConsoleLogger.v3 {#ConsoleLogger tag="registered function"}
|
||||||
|
|
||||||
|
> #### Example config
|
||||||
|
>
|
||||||
|
> ```ini
|
||||||
|
> [training.logger]
|
||||||
|
> @loggers = "spacy.ConsoleLogger.v3"
|
||||||
|
> progress_bar = "all_steps"
|
||||||
|
> console_output = true
|
||||||
|
> output_file = "training_log.jsonl"
|
||||||
|
> ```
|
||||||
|
|
||||||
|
Writes the results of a training step to the console in a tabular format and
|
||||||
|
saves them to a `jsonl` file.
|
||||||
|
|
||||||
|
| Name | Description |
|
||||||
|
| ---------------- | ---------------------------------------------------------------------------------------------------------------------------------- |
|
||||||
|
| `progress_bar` | Type of progress bar to show in the console: `all_steps` or `eval_steps` |
|
||||||
|
| | They track the number of steps until `training.max_steps` and `training.eval_frequency` are reached respectively.~~Optional[str]~~ |
|
||||||
|
| `console_output` | Whether the logger should print the logs in the console.~~bool~~ |
|
||||||
|
| `output_file` | The file to save the training logs to. ~~Optional[Union[str, Path]]~~ |
|
||||||
|
|
||||||
## Readers {#readers}
|
## Readers {#readers}
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user