Fix merge conflit in printer

This commit is contained in:
Matthew Honnibal 2017-07-22 13:35:15 +02:00
commit 94267ec50f
55 changed files with 526 additions and 203 deletions

1
.appveyor.yml Normal file
View File

@ -0,0 +1 @@
build: off

96
.gitignore vendored
View File

@ -1,50 +1,45 @@
# Vim
*.swp
*.sw*
Profile.prof
tmp/
.dev
.denv
.pypyenv
.eggs
*.tgz
.sass-cache
.python-version
MANIFEST
# spaCy
spacy/data/
corpora/
models/
keys/
spacy/syntax/*.cpp
spacy/syntax/*.html
spacy/en/*.cpp
spacy/tokens/*.cpp
spacy/serialize/*.cpp
spacy/en/data/*
spacy/*.cpp
spacy/ner/*.cpp
spacy/orthography/*.cpp
ext/murmurhash.cpp
ext/sparsehash.cpp
# Website
website/www/
website/_deploy.sh
website/package.json
website/announcement.jade
website/.gitignore
/spacy/data/
_build/
.env/
tmp/
# Cython / C extensions
cythonize.json
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
# C extensions
spacy/*.html
*.cpp
*.so
# Distribution / packaging
# Vim / VSCode / editors
*.swp
*.sw*
Profile.prof
.vscode
.sass-cache
# Python
.Python
.python-version
__pycache__/
*.py[cod]
.env/
.env2/
.env3/
.~env/
.venv
venv/
.dev
.denv
.pypyenv
# Distribution / packaging
env/
bin/
build/
@ -59,6 +54,12 @@ var/
*.egg-info/
.installed.cfg
*.egg
.eggs
MANIFEST
# Temporary files
*.~*
tmp/
# Installer logs
pip-log.txt
@ -87,25 +88,16 @@ coverage.xml
*.log
*.pot
# Windows local helper files
# Windows
*.bat
Thumbs.db
Desktop.ini
# Mac OS X
*.DS_Store
# Temporary files / Dropbox hack
*.~*
# Komodo project files
*.komodoproject
# Website
website/_deploy.sh
website/package.json
website/announcement.jade
website/www/
website/.gitignore
# Python virtualenv
venv
venv/*
# Other
*.tgz

View File

@ -16,6 +16,7 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Daniel Vila Suero, [@dvsrepo](https://github.com/dvsrepo)
* Dmytro Sadovnychyi, [@sadovnychyi](https://github.com/sadovnychyi)
* Eric Zhao, [@ericzhao28](https://github.com/ericzhao28)
* Francisco Aranda, [@frascuchon](https://github.com/frascuchon)
* Greg Baker, [@solresol](https://github.com/solresol)
* Grégory Howard, [@Gregory-Howard](https://github.com/Gregory-Howard)
* György Orosz, [@oroszgy](https://github.com/oroszgy)
@ -24,6 +25,7 @@ This is a list of everyone who has made significant contributions to spaCy, in a
* Ines Montani, [@ines](https://github.com/ines)
* J Nicolas Schrading, [@NSchrading](https://github.com/NSchrading)
* Janneke van der Zwaan, [@jvdzwaan](https://github.com/jvdzwaan)
* Jim Regan, [@jimregan](https://github.com/jimregan)
* Jordan Suchow, [@suchow](https://github.com/suchow)
* Josh Reeter, [@jreeter](https://github.com/jreeter)
* Juan Miguel Cejuela, [@juanmirocks](https://github.com/juanmirocks)

View File

@ -4,18 +4,22 @@ spaCy: Industrial-strength NLP
spaCy is a library for advanced natural language processing in Python and
Cython. spaCy is built on the very latest research, but it isn't researchware.
It was designed from day one to be used in real products. spaCy currently supports
English, German and French, as well as tokenization for Spanish, Italian,
English, German, French and Spanish, as well as tokenization for Italian,
Portuguese, Dutch, Swedish, Finnish, Norwegian, Hungarian, Bengali, Hebrew,
Chinese and Japanese. It's commercial open-source software, released under the
MIT license.
📊 **Help us improve the library!** `Take the spaCy user survey <https://survey.spacy.io>`_.
⭐️ **Test spaCy v2.0.0 alpha and the new models!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/tag/v2.0.0-alpha>`_
💫 **Version 1.8 out now!** `Read the release notes here. <https://github.com/explosion/spaCy/releases/>`_
.. image:: https://img.shields.io/travis/explosion/spaCy/master.svg?style=flat-square
:target: https://travis-ci.org/explosion/spaCy
:alt: Build Status
:alt: Travis Build Status
.. image:: https://img.shields.io/appveyor/ci/explosion/spacy/master.svg?style=flat-square
:target: https://ci.appveyor.com/project/explosion/spacy
:alt: Appveyor Build Status
.. image:: https://img.shields.io/github/release/explosion/spacy.svg?style=flat-square
:target: https://github.com/explosion/spaCy/releases
@ -85,7 +89,7 @@ Features
* GIL-free **multi-threading**
* Efficient binary serialization
* Easy **deep learning** integration
* Statistical models for **English** and **German**
* Statistical models for **English**, **German**, **French** and **Spanish**
* State-of-the-art speed
* Robust, rigorously evaluated accuracy

View File

@ -52,6 +52,7 @@ def train_ner(nlp, train_data, output_dir):
random.shuffle(train_data)
loss = 0.
for raw_text, entity_offsets in train_data:
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
# By default, the GoldParse class assumes that the entities
# described by offset are complete, and all other words should
@ -63,7 +64,6 @@ def train_ner(nlp, train_data, output_dir):
#for i in range(len(gold.ner)):
#if not gold.ner[i].endswith('ANIMAL'):
# gold.ner[i] = '-'
doc = nlp.make_doc(raw_text)
nlp.tagger(doc)
# As of 1.9, spaCy's parser now lets you supply a dropout probability
# This might help the model generalize better from only a few

View File

@ -7,9 +7,11 @@ thinc>=6.5.0,<6.6.0
murmurhash>=0.26,<0.27
plac<1.0.0,>=0.9.6
six
html5lib==1.0b8
ujson>=1.35
dill>=0.2,<0.3
requests>=2.13.0,<3.0.0
regex==2017.4.5
ftfy>=4.4.2,<5.0.0
pytest>=3.0.6,<4.0.0
pip>=9.0.0,<10.0.0

View File

@ -197,6 +197,7 @@ def setup_package():
'preshed>=1.0.0,<2.0.0',
'thinc>=6.5.0,<6.6.0',
'plac<1.0.0,>=0.9.6',
'pip>=9.0.0,<10.0.0',
'six',
'pathlib',
'ujson>=1.35',

View File

@ -10,7 +10,7 @@ __author__ = 'Matthew Honnibal'
__email__ = 'matt@explosion.ai'
__license__ = 'MIT'
__docs__ = 'https://spacy.io/docs/usage'
__docs_models__ = 'https://spacy.io/docs/usage'
__download_url__ = 'https://github.com/explosion/spacy-models/releases/download'
__compatibility__ = 'https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json'
__shortcuts__ = 'https://raw.githubusercontent.com/explosion/spacy-models/master/shortcuts.json'

View File

@ -79,5 +79,5 @@ def check_error_depr(model):
"As of v1.7.0, the download all command is deprecated. Please "
"download the models individually via spacy.download [model name] "
"or pip install. For more info on this, see the documentation: "
"{d}".format(d=about.__docs__),
"{d}".format(d=about.__docs_models__),
title="Deprecated command")

View File

@ -47,7 +47,7 @@ def package(input_dir, output_dir, meta_path, force):
def check_dirs(input_path, output_path, meta_path):
if not input_path.exists():
util.sys_exit(unicode_(input_path.as_poisx), title="Model directory not found")
util.sys_exit(unicode_(input_path.as_posix()), title="Model directory not found")
if not output_path.exists():
util.sys_exit(unicode_(output_path), title="Output directory not found")
if meta_path and not meta_path.exists():

View File

@ -146,7 +146,7 @@ class ModelDownload():
"The spacy.{l}.download command is now deprecated. Please use "
"python -m spacy download [model name or shortcut] instead. For more "
"info and available models, see the documentation: {d}. "
"Downloading default '{l}' model now...".format(d=about.__docs__, l=lang),
"Downloading default '{l}' model now...".format(d=about.__docs_models__, l=lang),
title="Warning: deprecated command")
download(lang)

View File

@ -178,7 +178,7 @@ for word in ["who", "what", "when", "where", "why", "how", "there", "that"]:
EXC[orth + "ve"] = [
{ORTH: orth, LEMMA: word},
{ORTH: "'ve", LEMMA: "have", TAG: "VB"}
{ORTH: "ve", LEMMA: "have", TAG: "VB"}
]
EXC[orth + "'d"] = [

View File

@ -6,36 +6,6 @@ from ..language_data import PRON_LEMMA, DET_LEMMA
TOKENIZER_EXCEPTIONS = {
"al": [
{ORTH: "a", LEMMA: "a", TAG: ADP},
{ORTH: "el", LEMMA: "el", TAG: DET}
],
"consigo": [
{ORTH: "con", LEMMA: "con"},
{ORTH: "sigo", LEMMA: PRON_LEMMA, NORM: ""}
],
"conmigo": [
{ORTH: "con", LEMMA: "con"},
{ORTH: "migo", LEMMA: PRON_LEMMA, NORM: ""}
],
"contigo": [
{ORTH: "con", LEMMA: "con"},
{ORTH: "tigo", LEMMA: PRON_LEMMA, NORM: "ti"}
],
"del": [
{ORTH: "de", LEMMA: "de", TAG: ADP},
{ORTH: "l", LEMMA: "el", TAG: DET}
],
"pel": [
{ORTH: "pe", LEMMA: "per", TAG: ADP},
{ORTH: "l", LEMMA: "el", TAG: DET}
],
"pal": [
{ORTH: "pa", LEMMA: "para"},
{ORTH: "l", LEMMA: DET_LEMMA, NORM: "el"}
@ -43,7 +13,7 @@ TOKENIZER_EXCEPTIONS = {
"pala": [
{ORTH: "pa", LEMMA: "para"},
{ORTH: "la", LEMMA: DET_LEMMA}
{ORTH: "la", LEMMA: DET_LEMMA, NORM: "la"}
],
"aprox.": [

View File

@ -3,21 +3,39 @@ from __future__ import unicode_literals, print_function
from os import path
from ..language import Language
from ..language import Language, BaseDefaults
from ..tokenizer import Tokenizer
from ..attrs import LANG
from ..tokens import Doc
from .language_data import *
class Japanese(Language):
lang = 'ja'
def make_doc(self, text):
class JapaneseTokenizer(object):
def __init__(self, cls, nlp=None):
self.vocab = nlp.vocab if nlp is not None else cls.create_vocab(nlp)
try:
from janome.tokenizer import Tokenizer
except ImportError:
raise ImportError("The Japanese tokenizer requires the Janome library: "
"https://github.com/mocobeta/janome")
words = [x.surface for x in Tokenizer().tokenize(text)]
self.tokenizer = Tokenizer()
def __call__(self, text):
words = [x.surface for x in self.tokenizer.tokenize(text)]
return Doc(self.vocab, words=words, spaces=[False]*len(words))
class JapaneseDefaults(BaseDefaults):
@classmethod
def create_tokenizer(cls, nlp=None):
return JapaneseTokenizer(cls, nlp)
class Japanese(Language):
lang = 'ja'
Defaults = JapaneseDefaults
def make_doc(self, text):
words = self.tokenizer(text)
return Doc(self.vocab, words=words, spaces=[False]*len(words))

View File

@ -24,6 +24,7 @@ from .attrs cimport IS_QUOTE
from .attrs cimport IS_LEFT_PUNCT
from .attrs cimport IS_RIGHT_PUNCT
from .attrs cimport IS_OOV
from . import about
memset(&EMPTY_LEXEME, 0, sizeof(LexemeC))
@ -137,11 +138,10 @@ cdef class Lexeme:
cdef int length = self.vocab.vectors_length
if length == 0:
raise ValueError(
"Word vectors set to length 0. This may be because the "
"data is not installed. If you haven't already, run"
"\npython -m spacy download %s\n"
"to install the data." % self.vocab.lang
)
"Word vectors set to length 0. This may be because you "
"don't have a model installed or loaded, or because your "
"model doesn't include word vectors. For more info, see "
"the documentation: \n%s\n" % about.__docs_models__)
vector_view = <float[:length,]>self.c.vector
return numpy.asarray(vector_view)

View File

@ -1,7 +1,7 @@
# coding: utf-8
from __future__ import unicode_literals
from ..parts_of_speech cimport NOUN, PROPN, PRON
from ..parts_of_speech cimport NOUN, PROPN, PRON, VERB, AUX
def english_noun_chunks(obj):
@ -66,4 +66,55 @@ def german_noun_chunks(obj):
yield word.left_edge.i, rbracket, np_label
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks}
def es_noun_chunks(obj):
doc = obj.doc
np_label = doc.vocab.strings['NP']
left_labels = ['det', 'fixed', 'neg'] #['nunmod', 'det', 'appos', 'fixed']
right_labels = ['flat', 'fixed', 'compound', 'neg']
stop_labels = ['punct']
np_left_deps = [doc.vocab.strings[label] for label in left_labels]
np_right_deps = [doc.vocab.strings[label] for label in right_labels]
stop_deps = [doc.vocab.strings[label] for label in stop_labels]
def next_token(token):
try:
return token.nbor()
except:
return None
def noun_bounds(root):
def is_verb_token(token):
return token.pos in [VERB, AUX]
left_bound = root
for token in reversed(list(root.lefts)):
if token.dep in np_left_deps:
left_bound = token
right_bound = root
for token in root.rights:
if (token.dep in np_right_deps):
left, right = noun_bounds(token)
if list(filter(lambda t: is_verb_token(t) or t.dep in stop_deps, doc[left_bound.i: right.i])):
break
else:
right_bound = right
return left_bound, right_bound
token = doc[0]
while token and token.i < len(doc):
if token.pos in [PROPN, NOUN, PRON]:
left, right = noun_bounds(token)
yield left.i, right.i+1, np_label
token = right
token = next_token(token)
CHUNKERS = {'en': english_noun_chunks, 'de': german_noun_chunks, 'es': es_noun_chunks}

View File

@ -5,6 +5,7 @@ from ..en import English
from ..de import German
from ..es import Spanish
from ..it import Italian
from ..ja import Japanese
from ..fr import French
from ..pt import Portuguese
from ..nl import Dutch
@ -26,7 +27,7 @@ from pathlib import Path
import os
import pytest
# These languages get run through generic tokenizer tests
LANGUAGES = [English, German, Spanish, Italian, French, Portuguese, Dutch,
Swedish, Hungarian, Finnish, Bengali, Norwegian]
@ -76,6 +77,12 @@ def fi_tokenizer():
return Finnish.Defaults.create_tokenizer()
@pytest.fixture
def ja_tokenizer():
janome = pytest.importorskip("janome")
return Japanese.Defaults.create_tokenizer()
@pytest.fixture
def sv_tokenizer():
return Swedish.Defaults.create_tokenizer()

View File

@ -217,10 +217,13 @@ def test_doc_api_has_vector(en_tokenizer, text_file, text, vectors):
assert doc.has_vector
def test_parse_tree(EN):
def test_parse_tree(en_tokenizer):
"""Tests doc.print_tree() method."""
text = 'I like New York in Autumn.'
doc = EN(text, tag=True)
doc.from_array([HEAD], numpy.asarray([[1, 0, 1, -2, -3, -1, -5]], dtype='int32').T)
heads = [1, 0, 1, -2, -3, -1, -5]
tags = ['PRP', 'IN', 'NNP', 'NNP', 'IN', 'NNP', '.']
tokens = en_tokenizer(text)
doc = get_doc(tokens.vocab, [t.text for t in tokens], heads=heads, tags=tags)
# full method parse_tree(text) is a trivial composition
trees = doc.print_tree()
assert len(trees) > 0

View File

View File

@ -0,0 +1,17 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
TOKENIZER_TESTS = [
("日本語だよ", ['日本語', '', '']),
("東京タワーの近くに住んでいます。", ['東京', 'タワー', '', '近く', '', '住ん', '', '', 'ます', '']),
("吾輩は猫である。", ['吾輩', '', '', '', 'ある', '']),
("月に代わって、お仕置きよ!", ['', '', '代わっ', '', '', 'お仕置き', '', '!']),
("すもももももももものうち", ['すもも', '', 'もも', '', 'もも', '', 'うち'])
]
@pytest.mark.parametrize('text,expected_tokens', TOKENIZER_TESTS)
def test_japanese_tokenizer(ja_tokenizer, text, expected_tokens):
tokens = [token.text for token in ja_tokenizer(text)]
assert tokens == expected_tokens

View File

@ -29,6 +29,7 @@ from ..serialize.bits cimport BitArray
from ..util import normalize_slice
from ..syntax.iterators import CHUNKERS
from ..compat import is_config
from .. import about
DEF PADDING = 5
@ -403,9 +404,8 @@ cdef class Doc:
if not self.is_parsed:
raise ValueError(
"noun_chunks requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy download %s\n"
"to install the data" % self.vocab.lang)
"requires data to be installed. For more info, see the "
"documentation: \n%s\n" % about.__docs_models__)
# Accumulate the result before beginning to iterate over it. This prevents
# the tokenisation from being changed out from under us during the iteration.
# The tricky thing here is that Span accepts its tokenisation changing,
@ -431,14 +431,14 @@ cdef class Doc:
"""
def __get__(self):
if 'sents' in self.user_hooks:
return self.user_hooks['sents'](self)
yield from self.user_hooks['sents'](self)
return
if not self.is_parsed:
raise ValueError(
"sentence boundary detection requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy download %s\n"
"to install the data" % self.vocab.lang)
"Sentence boundary detection requires the dependency parse, which "
"requires data to be installed. For more info, see the "
"documentation: \n%s\n" % about.__docs_models__)
cdef int i
start = 0
for i in range(1, self.length):

View File

@ -1,13 +1,23 @@
from copy import deepcopy
# coding: utf8
from __future__ import unicode_literals
from .doc import Doc
from ..symbols import HEAD, TAG, DEP, ENT_IOB, ENT_TYPE
def merge_ents(doc):
'''Helper: merge adjacent entities into single tokens; modifies the doc.'''
"""
Helper: merge adjacent entities into single tokens; modifies the doc.
"""
for ent in doc.ents:
ent.merge(ent.root.tag_, ent.text, ent.label_)
return doc
def format_POS(token, light, flat):
'''helper: form the POS output for a token'''
"""
Helper: form the POS output for a token.
"""
subtree = dict([
("word", token.text),
("lemma", token.lemma_), # trigger
@ -25,17 +35,22 @@ def format_POS(token, light, flat):
subtree.pop("modifiers")
return subtree
def POS_tree(root, light, flat):
'''Helper: generate a POS tree for a root token.
The doc must have merge_ents(doc) ran on it.
'''
def POS_tree(root, light=False, flat=False):
"""
Helper: generate a POS tree for a root token. The doc must have
merge_ents(doc) ran on it.
"""
subtree = format_POS(root, light=light, flat=flat)
for c in root.children:
subtree["modifiers"].append(POS_tree(c))
return subtree
def parse_tree(doc, light=False, flat=False):
"""Makes a copy of the doc, then construct a syntactic parse tree, similar to the one used in displaCy. Generates the POS tree for all sentences in a doc
"""
Makes a copy of the doc, then construct a syntactic parse tree, similar to
the one used in displaCy. Generates the POS tree for all sentences in a doc.
Args:
doc: The doc for parsing.
@ -50,6 +65,8 @@ def parse_tree(doc, light=False, flat=False):
[{'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Bob', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Bob'}, {'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'dobj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'brought', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'bring'}, {'modifiers': [{'modifiers': [], 'NE': 'PERSON', 'word': 'Alice', 'arc': 'nsubj', 'POS_coarse': 'PROPN', 'POS_fine': 'NNP', 'lemma': 'Alice'}, {'modifiers': [{'modifiers': [], 'NE': '', 'word': 'the', 'arc': 'det', 'POS_coarse': 'DET', 'POS_fine': 'DT', 'lemma': 'the'}], 'NE': '', 'word': 'pizza', 'arc': 'dobj', 'POS_coarse': 'NOUN', 'POS_fine': 'NN', 'lemma': 'pizza'}, {'modifiers': [], 'NE': '', 'word': '.', 'arc': 'punct', 'POS_coarse': 'PUNCT', 'POS_fine': '.', 'lemma': '.'}], 'NE': '', 'word': 'ate', 'arc': 'ROOT', 'POS_coarse': 'VERB', 'POS_fine': 'VBD', 'lemma': 'eat'}]
"""
doc_clone = Doc(doc.vocab, words=[w.text for w in doc])
doc_clone.from_array(doc.to_array([HEAD, DEP, TAG, ENT_IOB, ENT_TYPE])
doc_clone = Doc(doc.vocab, words=[w.text for w in doc])
doc_clone.from_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE],
doc.to_array([HEAD, TAG, DEP, ENT_IOB, ENT_TYPE]))
merge_ents(doc_clone) # merge the entities into single tokens first
return [POS_tree(sent.root, light=light, flat=flat) for sent in doc_clone.sents]

View File

@ -16,6 +16,7 @@ from ..util import normalize_slice
from ..attrs cimport IS_PUNCT, IS_SPACE
from ..lexeme cimport Lexeme
from ..compat import is_config
from .. import about
cdef class Span:
@ -221,9 +222,8 @@ cdef class Span:
if not self.doc.is_parsed:
raise ValueError(
"noun_chunks requires the dependency parse, which "
"requires data to be installed. If you haven't done so, run: "
"\npython -m spacy download %s\n"
"to install the data" % self.vocab.lang)
"requires data to be installed. For more info, see the "
"documentation: \n%s\n" % about.__docs_models__)
# Accumulate the result before beginning to iterate over it. This prevents
# the tokenisation from being changed out from under us during the iteration.
# The tricky thing here is that Span accepts its tokenisation changing,

View File

@ -26,6 +26,7 @@ from ..attrs cimport IS_TITLE, IS_UPPER, LIKE_URL, LIKE_NUM, LIKE_EMAIL, IS_STOP
from ..attrs cimport IS_OOV
from ..lexeme cimport Lexeme
from ..compat import is_config
from .. import about
cdef class Token:
@ -237,11 +238,10 @@ cdef class Token:
cdef int length = self.vocab.vectors_length
if length == 0:
raise ValueError(
"Word vectors set to length 0. This may be because the "
"data is not installed. If you haven't already, run"
"\npython -m spacy download %s\n"
"to install the data." % self.vocab.lang
)
"Word vectors set to length 0. This may be because you "
"don't have a model installed or loaded, or because your "
"model doesn't include word vectors. For more info, see "
"the documentation: \n%s\n" % about.__docs_models__)
vector_view = <float[:length,]>self.c.lex.vector
return numpy.asarray(vector_view)

View File

@ -8,4 +8,5 @@ class Chinese(Language):
def make_doc(self, text):
import jieba
words = list(jieba.cut(text, cut_all=True))
words=[x for x in words if x]
return Doc(self.vocab, words=words, spaces=[False]*len(words))

View File

@ -14,8 +14,8 @@
"SPACY_VERSION": "1.8",
"LATEST_NEWS": {
"url": "https://survey.spacy.io/",
"title": "Take the spaCy user survey and help us improve the library!"
"url": "/docs/usage/models",
"title": "The first official Spanish model is here!"
},
"SOCIAL": {
@ -55,7 +55,33 @@
}
},
"V_CSS": "1.6",
"QUICKSTART": [
{ "id": "os", "title": "Operating system", "options": [
{ "id": "mac", "title": "macOS / OSX", "checked": true },
{ "id": "windows", "title": "Windows" },
{ "id": "linux", "title": "Linux" }]
},
{ "id": "package", "title": "Package manager", "options": [
{ "id": "pip", "title": "pip", "checked": true },
{ "id": "conda", "title": "conda" },
{ "id": "source", "title": "from source" }]
},
{ "id": "python", "title": "Python version", "options": [
{ "id": 2, "title": "2.x" },
{ "id": 3, "title": "3.x", "checked": true }]
},
{ "id": "config", "title": "Configuration", "multiple": true, "options": [
{"id": "venv", "title": "virtualenv", "help": "Use a virtual environment and install spaCy into a user directory" }]
},
{ "id": "model", "title": "Models", "multiple": true, "options": [
{ "id": "en", "title": "English", "meta": "50MB" },
{ "id": "de", "title": "German", "meta": "645MB" },
{ "id": "fr", "title": "French", "meta": "1.33GB" },
{ "id": "es", "title": "Spanish", "meta": "377MB"}]
}
],
"V_CSS": "1.7",
"V_JS": "1.2",
"DEFAULT_SYNTAX": "python",
"ANALYTICS": "UA-58931649-1",

View File

@ -121,6 +121,47 @@ mixin badge(name)
img(src=site.badge alt="{name} version" height="20")
//- Quickstart widget
quickstart.js with manual markup, inspired by PyTorch's "Getting started"
groups - [object] option groups, uses global variable QUICKSTART
headline - [string] optional text to be rendered as widget headline
mixin quickstart(groups, headline)
.c-quickstart.o-block-small#qs
.c-quickstart__content
if headline
+h(2)=headline
for group in groups
.c-quickstart__group.u-text-small(data-qs-group=group.id)
.c-quickstart__legend=group.title
.c-quickstart__fields
for option in group.options
input.c-quickstart__input(class="c-quickstart__input--" + (group.multiple ? "check" : "radio") type=group.multiple ? "checkbox" : "radio" name=group.id id="qs-#{option.id}" value=option.id checked=option.checked)
label.c-quickstart__label(for="qs-#{option.id}")=option.title
if option.meta
| #[span.c-quickstart__label__meta (#{option.meta})]
if option.help
| #[+help(option.help).c-quickstart__label__meta]
pre.c-code-block
code.c-code-block__content.c-quickstart__code(data-qs-results="")
block
.c-quickstart__info.u-text-tiny.o-block.u-text-right
| Like this widget? Check out #[+a("https://github.com/ines/quickstart").u-link quickstart.js]!
//- Quickstart code item
data [object] - Rendering conditions (keyed by option group ID, value: option)
mixin qs(data)
- args = {}
for value, setting in data
- args['data-qs-' + setting] = value
span.c-quickstart__line&attributes(args)
block
//- Logo
mixin logo()

View File

@ -47,6 +47,14 @@ mixin api(path)
| #[+icon("book", 18).o-icon--inline.u-color-subtle]
//- Help icon with tooltip
tooltip - [string] Tooltip text
mixin help(tooltip)
span(data-tooltip=tooltip)&attributes(attributes)
+icon("help", 16).i-icon--inline
//- Aside for text
label - [string] aside title (optional)

View File

@ -1,9 +1,13 @@
//- 💫 INCLUDES > SCRIPTS
script(src="/assets/js/main.js?v#{V_JS}", type="text/javascript")
script(src="/assets/js/prism.js", type="text/javascript")
script(src="/assets/js/main.js?v#{V_JS}")
script(src="/assets/js/prism.js")
if SECTION == "docs"
if quickstart
script(src="/assets/js/quickstart.js")
script var qs = new Quickstart("#qs");
script.
((window.gitter = {}).chat = {}).options = {
useStyles: false,

View File

@ -18,7 +18,7 @@
.c-code-block__content
display: block
font: normal normal 1.1rem/#{2} $font-code
font: normal 600 1.1rem/#{2} $font-code
padding: 1em 2em

View File

@ -0,0 +1,90 @@
//- 💫 CSS > COMPONENTS > QUICKSTART
.c-quickstart
border: 1px solid $color-subtle
border-radius: 2px
display: none
background: $color-subtle-light
&:not([style]) + .c-quickstart__info
display: none
.c-quickstart__content
padding: 2rem 3rem
.c-quickstart__input
@include size(0)
opacity: 0
position: absolute
left: -9999px
.c-quickstart__label
cursor: pointer
background: $color-back
border: 1px solid $color-subtle
border-radius: 2px
display: inline-block
padding: 0.75rem 1.25rem
margin: 0 0.5rem 0.5rem 0
font-weight: bold
&:hover
background: lighten($color-theme-light, 5)
.c-quickstart__input:focus + &
border: 1px solid $color-theme
.c-quickstart__input--radio:checked + &
color: $color-back
border-color: $color-theme
background: $color-theme
.c-quickstart__input--check + &:before
content: ""
background: $color-back
display: inline-block
width: 20px
height: 20px
border: 1px solid $color-subtle
vertical-align: middle
margin-right: 1rem
cursor: pointer
border-radius: 50%
.c-quickstart__input--check:checked + &:before
background: $color-theme url()
background-size: contain
border-color: $color-theme
.c-quickstart__label__meta
font-weight: normal
color: $color-subtle-dark
.c-quickstart__group
@include breakpoint(min, md)
display: flex
flex-flow: row nowrap
&:not(:last-child)
margin-bottom: 1rem
.c-quickstart__fields
flex: 100%
.c-quickstart__legend
color: $color-subtle-dark
margin-right: 2rem
padding-top: 0.75rem
flex: 1 1 35%
font-weight: bold
.c-quickstart__line
display: block
&:before
color: $color-theme
margin-right: 1em
content: "$"
.c-quickstart__code
font-size: 1.6rem

View File

@ -0,0 +1,29 @@
//- 💫 CSS > COMPONENTS > TOOLTIPS
[data-tooltip]
position: relative
@include breakpoint(min, sm)
&:before
@include position(absolute, top, left, 125%, 50%)
display: inline-block
content: attr(data-tooltip)
background: $color-front
border-radius: 2px
color: $color-back
font-family: inherit
font-size: 1.3rem
line-height: 1.25
opacity: 0
padding: 0.5em 0.75em
transform: translateX(-50%) translateY(-2px)
transition: opacity 0.1s ease-out, transform 0.1s ease-out
visibility: hidden
min-width: 200px
max-width: 300px
z-index: 200
&:hover:before
opacity: 1
transform: translateX(-50%) translateY(0)
visibility: visible

View File

@ -27,6 +27,7 @@ $font-code: 'Source Code Pro', Consolas, 'Andale Mono', Menlo, Monaco, Courier,
// Colors
$colors: ( blue: #09a3d5, red: #d9515d )
$colors-light: (blue: #cceaf4, red: #f9d7da)
$color-back: #fff !default
$color-front: #1a1e23 !default
@ -34,7 +35,7 @@ $color-dark: lighten($color-front, 20) !default
$color-theme: map-get($colors, $theme)
$color-theme-dark: darken(map-get($colors, $theme), 5)
$color-theme-light: saturate(lighten(map-get($colors, $theme), 35), 5)
$color-theme-light: map-get($colors-light, $theme)
$color-subtle: #ddd !default
$color-subtle-light: #f6f6f6 !default

View File

@ -32,3 +32,5 @@ $theme: blue !default
@import _components/navigation
@import _components/sidebar
@import _components/tables
@import _components/tooltips
@import _components/quickstart

View File

@ -1,5 +1,16 @@
<svg style="position: absolute; width: 0; height: 0;" width="0" height="0" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<defs>
<symbol id="v2alpha" viewBox="0 0 200 111">
<title>spaCy v2.0.0 alpha</title>
<path fill="#ddd" d="M183.3 89.2l-164.6-40-1-29.2 164.6 40M3.8 106.8l41.6-1.4-1-29.2-41.6 1.4L13.2 92"/>
<path fill="#a3cad3" d="M45.4 105.4L19.6 94.6l25.4-1"/>
<path fill="#ddd" d="M196.6 2L155 3.4l1 29.2 41.6-1.4L187.2 17"/>
<path fill="#a3cad3" d="M155 3.4l25.8 10.8-25.4 1"/>
<path fill="#fff" d="M17.6 19.4l163-5.6 1 29.2-163 5.6zM19.2 65.6l163-5.6 1 29.2-163 5.6z"/>
<path fill="#008EBC" d="M45.8 29h-3.6v-2.4l10-.4.2 2.5h-3.6l.4 10.8h-3L45.8 29zM62 39L59 34.5h-1.6l.2 5h-3l-.5-13.2L59 26c3 0 5.2.8 5.3 4 0 1.8-.8 3-2.2 3.8l3.3 5.2H62zm-4.5-6.8H59c1.6-.2 2.4-.8 2.3-2 0-1.4-1-1.8-2.5-1.8h-1.5l.2 3.8zM69 34.2l-4.3-8.4H68l1.2 3 1.2 2.8c.4-1 .8-2 1-3l1.2-3 3-.2L72 34l.2 4.7h-3l-.2-4.5zM79.5 25.3h3.2l1.8 6 1.2 4.2c.5-1.5.7-2.8 1-4.3L88 25h3L87.7 38H84l-4.5-13zM92.4 25l8.3-.4V27l-5.2.3V30l4.6-.3.2 2.5-4.5.2v3l5.6-.2v2.5L93 38l-.6-13zM111 37.4l-2.6-4.7h-1.6l.2 5h-3l-.5-13.2 4.8-.2c2.8 0 5 .8 5.2 4 0 1.8-.8 3-2.2 3.8l3.2 5.3H111zm-4.3-7h1.5c1.6 0 2.4-.7 2.3-2 0-1.3-1-1.7-2.5-1.7h-1.5l.2 3.8zM116.8 33.5c1 .8 2.2 1.3 3.3 1.3 1.3 0 2-.5 2-1.3s-1-1-2-1.5l-1.8-.7c-1.4-.5-2.7-1.6-2.8-3.5 0-2.2 1.8-4 4.6-4 1.5-.2 3 .4 4.3 1.5l-1.4 2c-1-.7-1.8-1-3-1-1 0-1.6.4-1.5 1.2 0 .8 1 1 2 1.5l1.8.6c1.6.6 2.7 1.6 2.7 3.5 0 2.3-1.7 4.2-4.8 4.4-1.7 0-3.6-.5-5-1.7l1.6-2.2zM126.8 23.7h3l.5 13-3 .2-.5-13.3zM132.5 30c0-4.3 2.2-7 5.8-7 3.6 0 6 2.3 6.2 6.6 0 4.3-2.2 7-5.8 7-3.5.3-6-2.3-6.2-6.6zm9-.3c-.2-2.6-1.4-4.2-3.2-4-1.8 0-3 1.6-2.8 4.2 0 2.5 1.3 4.2 3 4 2 0 3-1.6 3-4.3zM146.7 23h3l3.8 6.3 1.4 3c-.2-1.5-.5-3.3-.5-5l-.2-4.6h2.8l.6 13-3 .2-3.8-6.6-1.4-2.8c0 1.5.4 3.2.4 4.8l.2 4.7-3 .2-.3-13.2z"/>
<path fill="#1A1E23" d="M50.2 84.7c3.2-3.2 5.4-5.5 5.3-7.3 0-1.3-.8-2-2-2-.8 0-1.5.8-2 1.5l-1.8-1.6c1.2-1.4 2.4-2 4.2-2.2 2.4 0 4.2 1.5 4.3 4 0 2-2 4.4-4 6.7.7-.2 1.6-.3 2.2-.3H59l.2 2.4-9 .4v-1.7zM63 82.4c1 0 2 .7 2 1.8 0 1-.7 2-1.7 2s-1.8-.8-2-2c0-1 .7-1.8 1.8-1.8zM66.7 79.3c-.2-4.4 1.6-6.7 4.4-6.8 3 0 4.8 2 5 6.5s-1.7 6.8-4.5 7c-2.7 0-4.6-2.3-4.8-6.7zM73 79c0-3.4-.8-4.2-1.8-4-1 0-1.8.7-1.6 4.3 0 3.5 1 4.4 2 4.3 1 0 1.6-1 1.5-4.5zM79.8 81.8c1 0 1.8.7 2 1.8 0 1-.8 2-1.8 2s-1.8-.8-2-2c0-1 .8-1.7 1.8-1.8zM83.5 78.7C83.3 74.3 85 72 88 72c2.7-.2 4.6 2 4.7 6.4s-1.6 6.8-4.4 7c-2.8 0-4.7-2.3-4.8-6.7zm6.3-.2c0-3.5-1-4.3-2-4.2-1 0-1.7.8-1.5 4.4 0 3.5 1 4.4 2 4.3 1 0 1.7-1 1.5-4.5zM105.5 81.3h-4l-.7 3.3h-3l3.7-13.2h3.6l4.7 13h-3.2l-1-3zm-.7-2.3l-.4-1.2-1.2-4.2-1 4.3-.3 1h2.8zM110.5 71h3l.4 10.7 5-.2.2 2.5-8.2.3-.5-13.2zM121 70.7l4.7-.2c3 0 5.2 1 5.3 4 0 3.2-2.2 4.7-5 4.7h-1.8l.2 4.6h-3l-.5-13zm4.7 6.2c1.6-.2 2.4-1 2.4-2.3 0-1.4-.8-2-2.4-1.8H124v4h1.7zM133 70.3h3l.3 5 4.5-.2-.2-5h3l.5 13-3 .2v-5.5l-4.6.2.2 5.4h-3l-.5-13zM153.3 79.7h-4l-.7 3.3h-3l3.7-13.2h3.6l4.5 13h-3.2l-1-3zm-.7-2.3l-.4-1.2L151 72l-1 4.3-.3 1.2h3z"/>
</symbol>
<symbol id="usersurvey" viewBox="0 0 200 111">
<title>spaCy user survey 2017</title>
<path fill="#ddd" d="M183.3 89.2l-164.6-40-1-29.2 164.6 40M3.8 106.8l41.6-1.4-1-29.2-41.6 1.4L13.2 92"/>

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 21 KiB

View File

@ -27,5 +27,8 @@
<symbol id="star" viewBox="0 0 24 24">
<path d="M12 17.25l-6.188 3.75 1.641-7.031-5.438-4.734 7.172-0.609 2.813-6.609 2.813 6.609 7.172 0.609-5.438 4.734 1.641 7.031z"></path>
</symbol>
<symbol id="help" viewBox="0 0 24 24">
<path d="M12 6c2.203 0 3.984 1.781 3.984 3.984 0 2.484-3 2.766-3 5.016h-1.969c0-3.234 3-3 3-5.016 0-1.078-0.938-1.969-2.016-1.969s-2.016 0.891-2.016 1.969h-1.969c0-2.203 1.781-3.984 3.984-3.984zM12 20.016c4.406 0 8.016-3.609 8.016-8.016s-3.609-8.016-8.016-8.016-8.016 3.609-8.016 8.016 3.609 8.016 8.016 8.016zM12 2.016c5.531 0 9.984 4.453 9.984 9.984s-4.453 9.984-9.984 9.984-9.984-4.453-9.984-9.984 4.453-9.984 9.984-9.984zM11.016 18v-2.016h1.969v2.016h-1.969z"/>
</symbol>
</defs>
</svg>

Before

Width:  |  Height:  |  Size: 4.9 KiB

After

Width:  |  Height:  |  Size: 5.4 KiB

View File

@ -0,0 +1,8 @@
/**
* quickstart.js
* A micro-form for user-specific installation instructions
*
* @author Ines Montani <ines@ines.io>
* @version 0.0.1
* @license MIT
*/'use strict';var _createClass=function(){function a(b,c){for(var e,d=0;d<c.length;d++)e=c[d],e.enumerable=e.enumerable||!1,e.configurable=!0,'value'in e&&(e.writable=!0),Object.defineProperty(b,e.key,e)}return function(b,c,d){return c&&a(b.prototype,c),d&&a(b,d),b}}();function _toConsumableArray(a){if(Array.isArray(a)){for(var b=0,c=Array(a.length);b<a.length;b++)c[b]=a[b];return c}return Array.from(a)}function _classCallCheck(a,b){if(!(a instanceof b))throw new TypeError('Cannot call a class as a function')}var Quickstart=function(){function a(){var b=0<arguments.length&&void 0!==arguments[0]?arguments[0]:'#quickstart',d=arguments[1],c=2<arguments.length&&void 0!==arguments[2]?arguments[2]:{};_classCallCheck(this,a),this.container='string'==typeof b?this._$(b):b,this.groups=d,this.pfx=c.prefix||'qs',this.dpfx='data-'+this.pfx,this.init=this.init.bind(this),c.noInit||document.addEventListener('DOMContentLoaded',this.init)}return _createClass(a,[{key:'init',value:function init(){this.updateContainer(),this.container.style.display='block',this.container.classList.add(''+this.pfx);var b=this.groups;b instanceof Array?b.reverse().forEach(this.createGroup.bind(this)):this._$$('['+this.dpfx+'-group]').forEach(this.updateGroup.bind(this))}},{key:'initGroup',value:function initGroup(b,c){b.addEventListener('change',this.update.bind(this)),b.dispatchEvent(new CustomEvent('change',{detail:c}))}},{key:'updateGroup',value:function updateGroup(b){var c=b.getAttribute(this.dpfx+'-group'),d=this.createStyles(c);b.insertBefore(d,b.firstChild),this.initGroup(b,c)}},{key:'update',value:function update(b){var f=this,c=b.detail||b.target.name,d=this._$$('[name='+c+']:checked').map(function(h){return h.value}),e=d.map(function(h){return':not(['+f.dpfx+'-'+c+'="'+h+'"])'}).join(''),g='['+this.dpfx+'-results]>['+this.dpfx+'-'+c+']'+e+' {display: none}';this._$('['+this.dpfx+'-style="'+c+'"]').textContent=g}},{key:'updateContainer',value:function updateContainer(){if(!this._$('['+this.dpfx+'-results]')){var b=this.childNodes(this.container,'pre'),c=b?b[0]:this._c('pre',this.pfx+'-code'),d=this.childNodes(c,'code')||this.childNodes(this.container,'code'),e=d?d[0]:this._c('code',this.pfx+'-results');e.setAttribute(this.dpfx+'-results','');var f=this.childNodes(e,'span')||this.childNodes(c,'span')||this.childNodes(this.container,'span');f&&f.forEach(function(g){return e.appendChild(g)}),c.appendChild(e),this.container.appendChild(c)}}},{key:'createGroup',value:function createGroup(b){var d=this,c=this._c('fieldset',this.pfx+'-group');c.setAttribute(this.dpfx+'-group',b.id),c.innerHTML=this.createStyles(b.id).outerHTML,c.innerHTML+='<legend class="'+this.pfx+'-legend">'+b.title+'</legend>',c.innerHTML+=b.options.map(function(e){var f=b.multiple?'checkbox':'radio';return'<input class="'+d.pfx+'-input '+d.pfx+'-input--'+f+'" type="'+f+'" name="'+b.id+'" id="'+e.id+'" value="'+e.id+'" '+(e.checked?'checked':'')+' /><label class="'+d.pfx+'-label" for="'+e.id+'">'+e.title+'</label>'}).join(''),this.container.insertBefore(c,this.container.firstChild),this.initGroup(c,b.id)}},{key:'createStyles',value:function createStyles(b){var c=this._c('style');return c.setAttribute(this.dpfx+'-style',b),c.textContent='['+this.dpfx+'-results]>['+this.dpfx+'-'+b+'] {display: none}',c}},{key:'childNodes',value:function childNodes(b,c){var d=c.toUpperCase();if(!b.hasChildNodes)return!1;var e=[].concat(_toConsumableArray(b.childNodes)).filter(function(f){return f.nodeName===d});return!!e.length&&e}},{key:'_$',value:function _$(b){return document.querySelector(b)}},{key:'_$$',value:function _$$(b){return[].concat(_toConsumableArray(document.querySelectorAll(b)))}},{key:'_c',value:function _c(b,c){var d=document.createElement(b);return c&&(d.className=c),d}}]),a}();

View File

@ -1,10 +1,5 @@
//- 💫 DOCS > API > ANNOTATION > DEPENDENCY LABELS
+infobox("Tip")
| In spaCy v1.8.3+, you can also use #[code spacy.explain()] to get the
| description for the string representation of a label. For example,
| #[code spacy.explain("prt")] will return "particle".
+h(3, "dependency-parsing-english") English dependency labels
p

View File

@ -1,10 +1,5 @@
//- 💫 DOCS > API > ANNOTATION > NAMED ENTITIES
+infobox("Tip")
| In spaCy v1.8.3+, you can also use #[code spacy.explain()] to get the
| description for the string representation of an entity label. For example,
| #[code spacy.explain("LANGUAGE")] will return "any named language".
+table([ "Type", "Description" ])
+row
+cell #[code PERSON]

View File

@ -1,10 +1,5 @@
//- 💫 DOCS > API > ANNOTATION > POS TAGS
+infobox("Tip")
| In spaCy v1.8.3+, you can also use #[code spacy.explain()] to get the
| description for the string representation of a tag. For example,
| #[code spacy.explain("RB")] will return "adverb".
+h(3, "pos-tagging-english") English part-of-speech tag scheme
p

View File

@ -103,7 +103,7 @@ p Get a #[code Token] object.
doc = nlp(u'Give it back! He pleaded.')
assert doc[0].text == 'Give'
assert doc[-1].text == '.'
span = doc[1:1]
span = doc[1:3]
assert span.text == 'it back'
+table(["Name", "Type", "Description"])
@ -272,7 +272,7 @@ p Import the document contents from a binary string.
p
| Retokenize the document, such that the span at
| #[code doc.text[start_idx : end_idx]] is merged into a single token. If
| #[code start_idx] and #[end_idx] do not mark start and end token
| #[code start_idx] and #[code end_idx] do not mark start and end token
| boundaries, the document remains unchanged.
+table(["Name", "Type", "Description"])

View File

@ -67,6 +67,16 @@ p An individual token — i.e. a word, punctuation symbol, whitespace, etc.
+cell unicode
+cell Base form of the word, with no inflectional suffixes.
+row
+cell #[code orth]
+cell int
+cell word's string.
+row
+cell #[code orth_]
+cell unicode
+cell word's string.
+row
+cell #[code lower]
+cell int
@ -238,11 +248,6 @@ p An individual token — i.e. a word, punctuation symbol, whitespace, etc.
+cell #[code text_with_ws]
+cell unicode
+cell Text content, with trailing space character if present.
+row
+cell #[code whitespace]
+cell int
+cell Trailing space character if present.
+row
+cell #[code whitespace_]
+cell unicode

View File

@ -124,7 +124,7 @@ p
+cell #[code Lexeme]
+cell The lexeme indicated by the given ID.
+h(2, "iter") Span.__iter__
+h(2, "iter") Vocab.__iter__
+tag method
p Iterate over the lexemes in the vocabulary.

View File

@ -33,6 +33,7 @@
"index": {
"title": "Install spaCy",
"quickstart": true,
"next": "models"
},

View File

@ -25,3 +25,4 @@ p
+model-row("en_vectors_glove_md", "English", [1, 0, 0, 1], "727 MB", "CC BY-SA")
+model-row("de_core_news_md", "German", [1, 1, 1, 1], "645 MB", "CC BY-SA", true, true)
+model-row("fr_depvec_web_lg", "French", [1, 1, 0, 1], "1.33 GB", "CC BY-NC", true, true)
+model-row("es_core_web_md", "Spanish", [1, 1, 1, 1], "377 MB", "CC BY-SA", true, true)

View File

@ -113,7 +113,7 @@ p
else:
tokens.append(substring)
substring = ''
tokens.extend(suffixes)
tokens.extend(reversed(suffixes))
return tokens
p
@ -214,7 +214,7 @@ p
def __call__(self, text):
words = text.split(' ')
# All tokens 'own' a subsequent space character in this tokenizer
spaces = [True] * len(word)
spaces = [True] * len(words)
return Doc(self.vocab, words=words, spaces=spaces)
p

View File

@ -36,7 +36,7 @@ p
| to #[code spacy.load()]. The function should take a
| #[code spacy.language.Language] object as its only argument, and return
| a sequence of callables. Each callable should accept a
| #[+api("docs") #[code Doc]] object, modify it in place, and return
| #[+api("doc") #[code Doc]] object, modify it in place, and return
| #[code None].
p

View File

@ -12,6 +12,40 @@ p
| #[a(href="#source-ubuntu") Ubuntu], #[a(href="#source-osx") macOS/OS X]
| and #[a(href="#source-windows") Windows] for details.
+quickstart(QUICKSTART, "Quickstart")
+qs({config: 'venv', python: 2}) python -m pip install -U virtualenv
+qs({config: 'venv', python: 3}) python -m pip install -U venv
+qs({config: 'venv', python: 2}) virtualenv .env
+qs({config: 'venv', python: 3}) venv .env
+qs({config: 'venv', os: 'mac'}) source .env/bin/activate
+qs({config: 'venv', os: 'linux'}) source .env/bin/activate
+qs({config: 'venv', os: 'windows'}) .env\Scripts\activate
+qs({package: 'pip'}) pip install -U spacy
+qs({package: 'conda'}) conda config --add channels conda-forge
+qs({package: 'conda'}) conda install spacy
+qs({package: 'source'}) git clone https://github.com/explosion/spaCy
+qs({package: 'source'}) cd spaCy
+qs({package: 'source'}) pip install -r requirements.txt
+qs({package: 'source'}) pip install -e .
+qs({model: 'en'}) python -m spacy download en
+qs({model: 'de'}) python -m spacy download de
+qs({model: 'fr'}) python -m spacy download fr
+qs({model: 'es'}) python -m spacy download es
+h(2, "installation") Installation instructions
+h(3, "pip") pip
+badge("pipy")
p Using pip, spaCy releases are currently only available as source packages.
+code(false, "bash").
pip install -U spacy
+aside("Download models")
| After installation you need to download a language model. For more info
| and available models, see the #[+a("/docs/usage/models") docs on models].
@ -22,14 +56,6 @@ p
&gt;&gt;&gt; import spacy
&gt;&gt;&gt; nlp = spacy.load('en')
+h(2, "pip") pip
+badge("pipy")
p Using pip, spaCy releases are currently only available as source packages.
+code(false, "bash").
pip install -U spacy
p
| When using pip it is generally recommended to install packages in a
| #[code virtualenv] to avoid modifying system state:
@ -39,7 +65,7 @@ p
source .env/bin/activate
pip install spacy
+h(2, "conda") conda
+h(3, "conda") conda
+badge("conda")
p

View File

@ -17,10 +17,10 @@ p
| trying to do.
+code.
import spacy # See "Installing spaCy"
nlp = spacy.load('en') # You are here.
doc = nlp(u'Hello, spacy!') # See "Using the pipeline"
print((w.text, w.pos_) for w in doc) # See "Doc, Span and Token"
import spacy # See "Installing spaCy"
nlp = spacy.load('en') # You are here.
doc = nlp(u'Hello, spacy!') # See "Using the pipeline"
print([(w.text, w.pos_) for w in doc]) # See "Doc, Span and Token"
+aside("Why do we have to preload?")
| Loading the models takes ~200x longer than

View File

@ -83,7 +83,7 @@ p
+h(2, "examples-word-vectors") Word vectors
+code.
doc = nlp("Apples and oranges are similar. Boots and hippos aren't.")
doc = nlp(u"Apples and oranges are similar. Boots and hippos aren't.")
apples = doc[0]
oranges = doc[2]
@ -148,24 +148,20 @@ p
+code.
def put_spans_around_tokens(doc, get_classes):
'''Given some function to compute class names, put each token in a
span element, with the appropriate classes computed.
All whitespace is preserved, outside of the spans. (Yes, I know HTML
won't display it. But the point is no information is lost, so you can
calculate what you need, e.g. <br /> tags, <p> tags, etc.)
'''
"""Given some function to compute class names, put each token in a
span element, with the appropriate classes computed. All whitespace is
preserved, outside of the spans. (Of course, HTML won't display more than
one whitespace character it but the point is, no information is lost
and you can calculate what you need, e.g. &lt;br /&gt;, &lt;p&gt; etc.)
"""
output = []
template = '<span classes="{classes}">{word}</span>{space}'
html = '&lt;span class="{classes}"&gt;{word}&lt;/span&gt;{space}'
for token in doc:
if token.is_space:
output.append(token.orth_)
output.append(token.text)
else:
output.append(
template.format(
classes=' '.join(get_classes(token)),
word=token.orth_,
space=token.whitespace_))
classes = ' '.join(get_classes(token))
output.append(html.format(classes=classes, word=token.text, space=token.whitespace_))
string = ''.join(output)
string = string.replace('\n', '')
string = string.replace('\t', ' ')

View File

@ -203,7 +203,7 @@ p
p
| If you've trained your own model, for example for
| #[+a("/docs/usage/adding-languages") additional languages] or
| #[+a("/docs/usage/train-ner") custom named entities], you can save its
| #[+a("/docs/usage/training-ner") custom named entities], you can save its
| state using the #[code Language.save_to_directory()] method. To make the
| model more convenient to deploy, we recommend wrapping it as a Python
| package.

View File

@ -19,11 +19,11 @@ p Here's a minimal example. We first add a pattern that specifies three tokens:
p
| Once we've added the pattern, we can use the #[code matcher] as a
| callable, to receive a list of #[code (ent_id, start, end)] tuples.
| Note that #[code LOWER] and #[code IS_PUNCT] are data attributes
| of #[code spacy.attrs].
+code.
from spacy.matcher import Matcher
from spacy.attrs import IS_PUNCT, LOWER
matcher = Matcher(nlp.vocab)
matcher.add_pattern("HelloWorld", [{LOWER: "hello"}, {IS_PUNCT: True}, {LOWER: "world"}])

View File

@ -28,7 +28,7 @@ p
| and walk you through generating the meta data. You can also create the
| meta.json manually and place it in the model data directory, or supply a
| path to it using the #[code --meta] flag. For more info on this, see the
| #[+a("/docs/usage/cli/#package") #[code package] command] documentation.
| #[+a("/docs/usage/cli#package") #[code package] command] documentation.
+aside-code("meta.json", "json").
{

View File

@ -150,8 +150,8 @@ p
for itn in range(20):
random.shuffle(train_data)
for raw_text, entity_offsets in train_data:
gold = GoldParse(doc, entities=entity_offsets)
doc = nlp.make_doc(raw_text)
gold = GoldParse(doc, entities=entity_offsets)
nlp.tagger(doc)
loss = nlp.entity.update(doc, gold)
nlp.end_training()

View File

@ -11,7 +11,7 @@ include _includes/_mixins
h2.c-landing__title.o-block.u-heading-1
| in Python
+landing-badge("https://survey.spacy.io", "usersurvey", "Take the user survey!")
+landing-badge(gh("spaCy") + "/releases/tag/v2.0.0-alpha", "v2alpha", "Try spaCy v2.0.0 alpha!")
+grid.o-content
+grid-col("third").o-card