mirror of
				https://github.com/explosion/spaCy.git
				synced 2025-10-31 16:07:41 +03:00 
			
		
		
		
	Merge branch 'develop' into spacy.io
This commit is contained in:
		
						commit
						948ca2bb3e
					
				|  | @ -54,9 +54,9 @@ valuable if it's shared publicly, so that more people can benefit from it. | |||
| 
 | ||||
| | Type                     | Platforms                                              | | ||||
| | ------------------------ | ------------------------------------------------------ | | ||||
| | 🚨**Bug Reports**        | [GitHub Issue Tracker]                                 | | ||||
| | 🚨 **Bug Reports**       | [GitHub Issue Tracker]                                 | | ||||
| | 🎁 **Feature Requests**  | [GitHub Issue Tracker]                                 | | ||||
| | 👩💻**Usage Questions**    | [Stack Overflow] · [Gitter Chat] · [Reddit User Group] | | ||||
| | 👩💻 **Usage Questions**   | [Stack Overflow] · [Gitter Chat] · [Reddit User Group] | | ||||
| | 🗯 **General Discussion** | [Gitter Chat] · [Reddit User Group]                    | | ||||
| 
 | ||||
| [github issue tracker]: https://github.com/explosion/spaCy/issues | ||||
|  |  | |||
|  | @ -4,7 +4,7 @@ import random | |||
| import srsly | ||||
| import spacy | ||||
| from spacy.gold import GoldParse | ||||
| from spacy.util import minibatch | ||||
| from spacy.util import minibatch, compounding | ||||
| 
 | ||||
| 
 | ||||
| LABEL = "ANIMAL" | ||||
|  | @ -54,9 +54,17 @@ def main(model_name, unlabelled_loc): | |||
|     nlp.get_pipe("ner").add_label(LABEL) | ||||
|     raw_docs = list(read_raw_data(nlp, unlabelled_loc)) | ||||
|     optimizer = nlp.resume_training() | ||||
|     # Avoid use of Adam when resuming training. I don't understand this well | ||||
|     # yet, but I'm getting weird results from Adam. Try commenting out the | ||||
|     # nlp.update(), and using Adam -- you'll find the models drift apart. | ||||
|     # I guess Adam is losing precision, introducing gradient noise? | ||||
|     optimizer.alpha = 0.1 | ||||
|     optimizer.b1 = 0.0 | ||||
|     optimizer.b2 = 0.0 | ||||
| 
 | ||||
|     # get names of other pipes to disable them during training | ||||
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] | ||||
|     sizes = compounding(1.0, 4.0, 1.001) | ||||
|     with nlp.disable_pipes(*other_pipes): | ||||
|         for itn in range(n_iter): | ||||
|             random.shuffle(TRAIN_DATA) | ||||
|  | @ -64,13 +72,22 @@ def main(model_name, unlabelled_loc): | |||
|             losses = {} | ||||
|             r_losses = {} | ||||
|             # batch up the examples using spaCy's minibatch | ||||
|             raw_batches = minibatch(raw_docs, size=batch_size) | ||||
|             for doc, gold in TRAIN_DATA: | ||||
|                 nlp.update([doc], [gold], sgd=optimizer, drop=dropout, losses=losses) | ||||
|             raw_batches = minibatch(raw_docs, size=4) | ||||
|             for batch in minibatch(TRAIN_DATA, size=sizes): | ||||
|                 docs, golds = zip(*batch) | ||||
|                 nlp.update(docs, golds, sgd=optimizer, drop=dropout, losses=losses) | ||||
|                 raw_batch = list(next(raw_batches)) | ||||
|                 nlp.rehearse(raw_batch, sgd=optimizer, losses=r_losses) | ||||
|             print("Losses", losses) | ||||
|             print("R. Losses", r_losses) | ||||
|     print(nlp.get_pipe('ner').model.unseen_classes) | ||||
|     test_text = "Do you like horses?" | ||||
|     doc = nlp(test_text) | ||||
|     print("Entities in '%s'" % test_text) | ||||
|     for ent in doc.ents: | ||||
|         print(ent.label_, ent.text) | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == "__main__": | ||||
|  |  | |||
|  | @ -45,19 +45,19 @@ LABEL = "ANIMAL" | |||
| TRAIN_DATA = [ | ||||
|     ( | ||||
|         "Horses are too tall and they pretend to care about your feelings", | ||||
|         {"entities": [(0, 6, "ANIMAL")]}, | ||||
|         {"entities": [(0, 6, LABEL)]}, | ||||
|     ), | ||||
|     ("Do they bite?", {"entities": []}), | ||||
|     ( | ||||
|         "horses are too tall and they pretend to care about your feelings", | ||||
|         {"entities": [(0, 6, "ANIMAL")]}, | ||||
|         {"entities": [(0, 6, LABEL)]}, | ||||
|     ), | ||||
|     ("horses pretend to care about your feelings", {"entities": [(0, 6, "ANIMAL")]}), | ||||
|     ("horses pretend to care about your feelings", {"entities": [(0, 6, LABEL)]}), | ||||
|     ( | ||||
|         "they pretend to care about your feelings, those horses", | ||||
|         {"entities": [(48, 54, "ANIMAL")]}, | ||||
|         {"entities": [(48, 54, LABEL)]}, | ||||
|     ), | ||||
|     ("horses?", {"entities": [(0, 6, "ANIMAL")]}), | ||||
|     ("horses?", {"entities": [(0, 6, LABEL)]}), | ||||
| ] | ||||
| 
 | ||||
| 
 | ||||
|  | @ -67,8 +67,9 @@ TRAIN_DATA = [ | |||
|     output_dir=("Optional output directory", "option", "o", Path), | ||||
|     n_iter=("Number of training iterations", "option", "n", int), | ||||
| ) | ||||
| def main(model=None, new_model_name="animal", output_dir=None, n_iter=10): | ||||
| def main(model=None, new_model_name="animal", output_dir=None, n_iter=30): | ||||
|     """Set up the pipeline and entity recognizer, and train the new entity.""" | ||||
|     random.seed(0) | ||||
|     if model is not None: | ||||
|         nlp = spacy.load(model)  # load existing spaCy model | ||||
|         print("Loaded model '%s'" % model) | ||||
|  | @ -85,21 +86,22 @@ def main(model=None, new_model_name="animal", output_dir=None, n_iter=10): | |||
|         ner = nlp.get_pipe("ner") | ||||
| 
 | ||||
|     ner.add_label(LABEL)  # add new entity label to entity recognizer | ||||
|     # Adding extraneous labels shouldn't mess anything up | ||||
|     ner.add_label('VEGETABLE') | ||||
|     if model is None: | ||||
|         optimizer = nlp.begin_training() | ||||
|     else: | ||||
|         # Note that 'begin_training' initializes the models, so it'll zero out | ||||
|         # existing entity types. | ||||
|         optimizer = nlp.entity.create_optimizer() | ||||
| 
 | ||||
|         optimizer = nlp.resume_training() | ||||
|     move_names = list(ner.move_names) | ||||
|     # get names of other pipes to disable them during training | ||||
|     other_pipes = [pipe for pipe in nlp.pipe_names if pipe != "ner"] | ||||
|     with nlp.disable_pipes(*other_pipes):  # only train NER | ||||
|         sizes = compounding(1.0, 4.0, 1.001) | ||||
|         # batch up the examples using spaCy's minibatch | ||||
|         for itn in range(n_iter): | ||||
|             random.shuffle(TRAIN_DATA) | ||||
|             batches = minibatch(TRAIN_DATA, size=sizes) | ||||
|             losses = {} | ||||
|             # batch up the examples using spaCy's minibatch | ||||
|             batches = minibatch(TRAIN_DATA, size=compounding(4.0, 32.0, 1.001)) | ||||
|             for batch in batches: | ||||
|                 texts, annotations = zip(*batch) | ||||
|                 nlp.update(texts, annotations, sgd=optimizer, drop=0.35, losses=losses) | ||||
|  | @ -124,6 +126,8 @@ def main(model=None, new_model_name="animal", output_dir=None, n_iter=10): | |||
|         # test the saved model | ||||
|         print("Loading from", output_dir) | ||||
|         nlp2 = spacy.load(output_dir) | ||||
|         # Check the classes have loaded back consistently | ||||
|         assert nlp2.get_pipe('ner').move_names == move_names | ||||
|         doc2 = nlp2(test_text) | ||||
|         for ent in doc2.ents: | ||||
|             print(ent.label_, ent.text) | ||||
|  |  | |||
|  | @ -571,8 +571,6 @@ def build_text_classifier(nr_class, width=64, **cfg): | |||
|                 zero_init(Affine(nr_class, nr_class * 2, drop_factor=0.0)) | ||||
|                 >> logistic | ||||
|             ) | ||||
| 
 | ||||
| 
 | ||||
|         model = ( | ||||
|             (linear_model | cnn_model) | ||||
|             >> output_layer | ||||
|  |  | |||
|  | @ -4,7 +4,7 @@ | |||
| # fmt: off | ||||
| 
 | ||||
| __title__ = "spacy-nightly" | ||||
| __version__ = "2.1.0a9.dev1" | ||||
| __version__ = "2.1.0a9.dev2" | ||||
| __summary__ = "Industrial-strength Natural Language Processing (NLP) with Python and Cython" | ||||
| __uri__ = "https://spacy.io" | ||||
| __author__ = "Explosion AI" | ||||
|  |  | |||
|  | @ -290,7 +290,8 @@ class Errors(object): | |||
|             "NBOR_RELOP.") | ||||
|     E101 = ("NODE_NAME should be a new node and NBOR_NAME should already have " | ||||
|             "have been declared in previous edges.") | ||||
|     E102 = ("Can't merge non-disjoint spans. '{token}' is already part of tokens to merge") | ||||
|     E102 = ("Can't merge non-disjoint spans. '{token}' is already part of " | ||||
|             "tokens to merge.") | ||||
|     E103 = ("Trying to set conflicting doc.ents: '{span1}' and '{span2}'. A token" | ||||
|             " can only be part of one entity, so make sure the entities you're " | ||||
|             "setting don't overlap.") | ||||
|  | @ -318,12 +319,12 @@ class Errors(object): | |||
|             "So instead of pickling the span, pickle the Doc it belongs to or " | ||||
|             "use Span.as_doc to convert the span to a standalone Doc object.") | ||||
|     E113 = ("The newly split token can only have one root (head = 0).") | ||||
|     E114 = ("The newly split token needs to have a root (head = 0)") | ||||
|     E115 = ("All subtokens must have associated heads") | ||||
|     E114 = ("The newly split token needs to have a root (head = 0).") | ||||
|     E115 = ("All subtokens must have associated heads.") | ||||
|     E116 = ("Cannot currently add labels to pre-trained text classifier. Add " | ||||
|             "labels before training begins. This functionality was available " | ||||
|             "in previous versions, but had significant bugs that led to poor " | ||||
|             "performance") | ||||
|             "performance.") | ||||
|     E117 = ("The newly split tokens must match the text of the original token. " | ||||
|             "New orths: {new}. Old text: {old}.") | ||||
| 
 | ||||
|  |  | |||
|  | @ -24,52 +24,68 @@ _latin_l_supplement = r"\u00DF-\u00F6\u00F8-\u00FF" | |||
| _latin_supplement = r"\u00C0-\u00D6\u00D8-\u00F6\u00F8-\u00FF" | ||||
| 
 | ||||
| # letters with diacritics - Catalan, Czech, Latin, Latvian, Lithuanian, Polish, Slovak, Turkish, Welsh | ||||
| _latin_u_extendedA = r"\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C" \ | ||||
|                          r"\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B" \ | ||||
|                          r"\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158" \ | ||||
|                          r"\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176" \ | ||||
|                          r"\u0178\u0179\u017B\u017D" | ||||
| _latin_l_extendedA = r"\u0101\u0103\u0105\u0107\u0109\u010B\u010D\u010F\u0111\u0113\u0115\u0117\u0119\u011B\u011D" \ | ||||
|                         r"\u011F\u0121\u0123\u0125\u0127\u0129\u012B\u012D\u012F\u0131\u0133\u0135\u0137\u0138\u013A" \ | ||||
|                         r"\u013C\u013E\u0140\u0142\u0144\u0146\u0148\u0149\u014B\u014D\u014F\u0151\u0153\u0155\u0157" \ | ||||
|                         r"\u0159\u015B\u015D\u015F\u0161\u0163\u0165\u0167\u0169\u016B\u016D\u016F\u0171\u0173\u0175" \ | ||||
|                         r"\u0177\u017A\u017C\u017E\u017F" | ||||
| _latin_u_extendedA = ( | ||||
|     r"\u0100\u0102\u0104\u0106\u0108\u010A\u010C\u010E\u0110\u0112\u0114\u0116\u0118\u011A\u011C" | ||||
|     r"\u011E\u0120\u0122\u0124\u0126\u0128\u012A\u012C\u012E\u0130\u0132\u0134\u0136\u0139\u013B" | ||||
|     r"\u013D\u013F\u0141\u0143\u0145\u0147\u014A\u014C\u014E\u0150\u0152\u0154\u0156\u0158" | ||||
|     r"\u015A\u015C\u015E\u0160\u0162\u0164\u0166\u0168\u016A\u016C\u016E\u0170\u0172\u0174\u0176" | ||||
|     r"\u0178\u0179\u017B\u017D" | ||||
| ) | ||||
| _latin_l_extendedA = ( | ||||
|     r"\u0101\u0103\u0105\u0107\u0109\u010B\u010D\u010F\u0111\u0113\u0115\u0117\u0119\u011B\u011D" | ||||
|     r"\u011F\u0121\u0123\u0125\u0127\u0129\u012B\u012D\u012F\u0131\u0133\u0135\u0137\u0138\u013A" | ||||
|     r"\u013C\u013E\u0140\u0142\u0144\u0146\u0148\u0149\u014B\u014D\u014F\u0151\u0153\u0155\u0157" | ||||
|     r"\u0159\u015B\u015D\u015F\u0161\u0163\u0165\u0167\u0169\u016B\u016D\u016F\u0171\u0173\u0175" | ||||
|     r"\u0177\u017A\u017C\u017E\u017F" | ||||
| ) | ||||
| _latin_extendedA = r"\u0100-\u017F" | ||||
| 
 | ||||
| # special characters - Khoisan, Pan-Nigerian, Pinyin, Romanian | ||||
| # those that are a combination of both upper and lower letters are only included in the group _latin_extendedB | ||||
| _latin_u_extendedB = r"\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C" \ | ||||
|                          r"\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5" \ | ||||
|                          r"\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB" \ | ||||
|                          r"\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA" \ | ||||
|                          r"\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216" \ | ||||
|                          r"\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232" \ | ||||
|                          r"\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E" | ||||
| _latin_l_extendedB = r"\u0180\u0183\u0185\u0188\u018C\u018D\u0192\u0195\u0199-\u019B\u019E\u01A1\u01A3\u01A5" \ | ||||
|                          r"\u01A8\u01AA\u01AB\u01AD\u01B0\u01B4\u01B6\u01B9\u01BA\u01BD-\u01BF\u01C6\u01C9\u01CC" \ | ||||
|                          r"\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u01DD\u01DF\u01E1\u01E3\u01E5\u01E7" \ | ||||
|                          r"\u01E9\u01EB\u01ED\u01EF\u01F0\u01F3\u01F5\u01F9\u01FB\u01FD\u01FF\u0201\u0203\u0205" \ | ||||
|                          r"\u0207\u0209\u020B\u020D\u020F\u0211\u0213\u0215\u0217\u0219\u021B\u021D\u021F\u0221" \ | ||||
|                          r"\u0223\u0225\u0227\u0229\u022B\u022D\u022F\u0231\u0233-\u0239\u023C\u023F\u0240\u0242" \ | ||||
|                          r"\u0247\u0249\u024B\u024D\u024F" | ||||
| _latin_u_extendedB = ( | ||||
|     r"\u0181\u0182\u0184\u0186\u0187\u0189-\u018B\u018E-\u0191\u0193\u0194\u0196-\u0198\u019C" | ||||
|     r"\u019D\u019F\u01A0\u01A2\u01A4\u01A6\u01A7\u01A9\u01AC\u01AE\u01AF\u01B1-\u01B3\u01B5" | ||||
|     r"\u01B7\u01B8\u01BC\u01C4\u01C7\u01CA\u01CD\u01CF\u01D1\u01D3\u01D5\u01D7\u01D9\u01DB" | ||||
|     r"\u01DE\u01E0\u01E2\u01E4\u01E6\u01E8\u01EA\u01EC\u01EE\u01F1\u01F4\u01F6-\u01F8\u01FA" | ||||
|     r"\u01FC\u01FE\u0200\u0202\u0204\u0206\u0208\u020A\u020C\u020E\u0210\u0212\u0214\u0216" | ||||
|     r"\u0218\u021A\u021C\u021E\u0220\u0222\u0224\u0226\u0228\u022A\u022C\u022E\u0230\u0232" | ||||
|     r"\u023A\u023B\u023D\u023E\u0241\u0243-\u0246\u0248\u024A\u024C\u024E" | ||||
| ) | ||||
| _latin_l_extendedB = ( | ||||
|     r"\u0180\u0183\u0185\u0188\u018C\u018D\u0192\u0195\u0199-\u019B\u019E\u01A1\u01A3\u01A5" | ||||
|     r"\u01A8\u01AA\u01AB\u01AD\u01B0\u01B4\u01B6\u01B9\u01BA\u01BD-\u01BF\u01C6\u01C9\u01CC" | ||||
|     r"\u01CE\u01D0\u01D2\u01D4\u01D6\u01D8\u01DA\u01DC\u01DD\u01DF\u01E1\u01E3\u01E5\u01E7" | ||||
|     r"\u01E9\u01EB\u01ED\u01EF\u01F0\u01F3\u01F5\u01F9\u01FB\u01FD\u01FF\u0201\u0203\u0205" | ||||
|     r"\u0207\u0209\u020B\u020D\u020F\u0211\u0213\u0215\u0217\u0219\u021B\u021D\u021F\u0221" | ||||
|     r"\u0223\u0225\u0227\u0229\u022B\u022D\u022F\u0231\u0233-\u0239\u023C\u023F\u0240\u0242" | ||||
|     r"\u0247\u0249\u024B\u024D\u024F" | ||||
| ) | ||||
| _latin_extendedB = r"\u0180-\u01BF\u01C4-\u024F" | ||||
| 
 | ||||
| # special characters - Uighur, Uralic Phonetic | ||||
| _latin_u_extendedC = r"\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F" | ||||
| _latin_l_extendedC = r"\u2C61\u2C65\u2C66\u2C68\u2C6A\u2C6C\u2C71\u2C73\u2C74\u2C76-\u2C7B" | ||||
| _latin_u_extendedC = ( | ||||
|     r"\u2C60\u2C62-\u2C64\u2C67\u2C69\u2C6B\u2C6D-\u2C70\u2C72\u2C75\u2C7E\u2C7F" | ||||
| ) | ||||
| _latin_l_extendedC = ( | ||||
|     r"\u2C61\u2C65\u2C66\u2C68\u2C6A\u2C6C\u2C71\u2C73\u2C74\u2C76-\u2C7B" | ||||
| ) | ||||
| _latin_extendedC = r"\u2C60-\u2C7B\u2C7E\u2C7F" | ||||
| 
 | ||||
| # special characters - phonetic, Mayan, Medieval | ||||
| _latin_u_extendedD = r"\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C" \ | ||||
|                          r"\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758" \ | ||||
|                          r"\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D" \ | ||||
|                          r"\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E" \ | ||||
|                          r"\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8" | ||||
| _latin_l_extendedD = r"\uA723\uA725\uA727\uA729\uA72B\uA72D\uA72F-\uA731\uA733\uA735\uA737\uA739\uA73B\uA73D" \ | ||||
|                          r"\uA73F\uA741\uA743\uA745\uA747\uA749\uA74B\uA74D\uA74F\uA751\uA753\uA755\uA757\uA759" \ | ||||
|                          r"\uA75B\uA75D\uA75F\uA761\uA763\uA765\uA767\uA769\uA76B\uA76D\uA76F\uA771-\uA778\uA77A" \ | ||||
|                          r"\uA77C\uA77F\uA781\uA783\uA785\uA787\uA78C\uA78E\uA791\uA793-\uA795\uA797\uA799\uA79B" \ | ||||
|                          r"\uA79D\uA79F\uA7A1\uA7A3\uA7A5\uA7A7\uA7A9\uA7AF\uA7B5\uA7B7\uA7B9\uA7FA" | ||||
| _latin_u_extendedD = ( | ||||
|     r"\uA722\uA724\uA726\uA728\uA72A\uA72C\uA72E\uA732\uA734\uA736\uA738\uA73A\uA73C" | ||||
|     r"\uA73E\uA740\uA742\uA744\uA746\uA748\uA74A\uA74C\uA74E\uA750\uA752\uA754\uA756\uA758" | ||||
|     r"\uA75A\uA75C\uA75E\uA760\uA762\uA764\uA766\uA768\uA76A\uA76C\uA76E\uA779\uA77B\uA77D" | ||||
|     r"\uA77E\uA780\uA782\uA784\uA786\uA78B\uA78D\uA790\uA792\uA796\uA798\uA79A\uA79C\uA79E" | ||||
|     r"\uA7A0\uA7A2\uA7A4\uA7A6\uA7A8\uA7AA-\uA7AE\uA7B0-\uA7B4\uA7B6\uA7B8" | ||||
| ) | ||||
| _latin_l_extendedD = ( | ||||
|     r"\uA723\uA725\uA727\uA729\uA72B\uA72D\uA72F-\uA731\uA733\uA735\uA737\uA739\uA73B\uA73D" | ||||
|     r"\uA73F\uA741\uA743\uA745\uA747\uA749\uA74B\uA74D\uA74F\uA751\uA753\uA755\uA757\uA759" | ||||
|     r"\uA75B\uA75D\uA75F\uA761\uA763\uA765\uA767\uA769\uA76B\uA76D\uA76F\uA771-\uA778\uA77A" | ||||
|     r"\uA77C\uA77F\uA781\uA783\uA785\uA787\uA78C\uA78E\uA791\uA793-\uA795\uA797\uA799\uA79B" | ||||
|     r"\uA79D\uA79F\uA7A1\uA7A3\uA7A5\uA7A7\uA7A9\uA7AF\uA7B5\uA7B7\uA7B9\uA7FA" | ||||
| ) | ||||
| _latin_extendedD = r"\uA722-\uA76F\uA771-\uA787\uA78B-\uA78E\uA790-\uA7B9\uA7FA" | ||||
| 
 | ||||
| # special characters - phonetic Teuthonista and Sakha | ||||
|  | @ -81,42 +97,80 @@ _latin_l_phonetic = r"\u0250-\u02AF\u1D00-\u1D25\u1D6B-\u1D77\u1D79-\u1D9A" | |||
| _latin_phonetic = _latin_l_phonetic | ||||
| 
 | ||||
| # letters with multiple diacritics - Vietnamese | ||||
| _latin_u_diacritics = r"\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A" \ | ||||
|                           r"\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36" \ | ||||
|                           r"\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52" \ | ||||
|                           r"\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E" \ | ||||
|                           r"\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A" \ | ||||
|                           r"\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE" \ | ||||
|                           r"\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8" \ | ||||
|                           r"\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4" \ | ||||
|                           r"\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFE" | ||||
| _latin_l_diacritics = r"\u1E01\u1E03\u1E05\u1E07\u1E09\u1E0B\u1E0D\u1E0F\u1E11\u1E13\u1E15\u1E17\u1E19\u1E1B" \ | ||||
|                           r"\u1E1D\u1E1F\u1E21\u1E23\u1E25\u1E27\u1E29\u1E2B\u1E2D\u1E2F\u1E31\u1E33\u1E35\u1E37" \ | ||||
|                           r"\u1E39\u1E3B\u1E3D\u1E3F\u1E41\u1E43\u1E45\u1E47\u1E49\u1E4B\u1E4D\u1E4F\u1E51\u1E53" \ | ||||
|                           r"\u1E55\u1E57\u1E59\u1E5B\u1E5D\u1E5F\u1E61\u1E63\u1E65\u1E67\u1E69\u1E6B\u1E6D\u1E6F" \ | ||||
|                           r"\u1E71\u1E73\u1E75\u1E77\u1E79\u1E7B\u1E7D\u1E7F\u1E81\u1E83\u1E85\u1E87\u1E89\u1E8B" \ | ||||
|                           r"\u1E8D\u1E8F\u1E91\u1E93\u1E95-\u1E9D\u1E9F\u1EA1\u1EA3\u1EA5\u1EA7\u1EA9\u1EAB\u1EAD" \ | ||||
|                           r"\u1EAF\u1EB1\u1EB3\u1EB5\u1EB7\u1EB9\u1EBB\u1EBD\u1EBF\u1EC1\u1EC3\u1EC5\u1EC7\u1EC9" \ | ||||
|                           r"\u1ECB\u1ECD\u1ECF\u1ED1\u1ED3\u1ED5\u1ED7\u1ED9\u1EDB\u1EDD\u1EDF\u1EE1\u1EE3\u1EE5" \ | ||||
|                           r"\u1EE7\u1EE9\u1EEB\u1EED\u1EEF\u1EF1\u1EF3\u1EF5\u1EF7\u1EF9\u1EFB\u1EFD\u1EFF" | ||||
| _latin_u_diacritics = ( | ||||
|     r"\u1E00\u1E02\u1E04\u1E06\u1E08\u1E0A\u1E0C\u1E0E\u1E10\u1E12\u1E14\u1E16\u1E18\u1E1A" | ||||
|     r"\u1E1C\u1E1E\u1E20\u1E22\u1E24\u1E26\u1E28\u1E2A\u1E2C\u1E2E\u1E30\u1E32\u1E34\u1E36" | ||||
|     r"\u1E38\u1E3A\u1E3C\u1E3E\u1E40\u1E42\u1E44\u1E46\u1E48\u1E4A\u1E4C\u1E4E\u1E50\u1E52" | ||||
|     r"\u1E54\u1E56\u1E58\u1E5A\u1E5C\u1E5E\u1E60\u1E62\u1E64\u1E66\u1E68\u1E6A\u1E6C\u1E6E" | ||||
|     r"\u1E70\u1E72\u1E74\u1E76\u1E78\u1E7A\u1E7C\u1E7E\u1E80\u1E82\u1E84\u1E86\u1E88\u1E8A" | ||||
|     r"\u1E8C\u1E8E\u1E90\u1E92\u1E94\u1E9E\u1EA0\u1EA2\u1EA4\u1EA6\u1EA8\u1EAA\u1EAC\u1EAE" | ||||
|     r"\u1EB0\u1EB2\u1EB4\u1EB6\u1EB8\u1EBA\u1EBC\u1EBE\u1EC0\u1EC2\u1EC4\u1EC6\u1EC8" | ||||
|     r"\u1ECA\u1ECC\u1ECE\u1ED0\u1ED2\u1ED4\u1ED6\u1ED8\u1EDA\u1EDC\u1EDE\u1EE0\u1EE2\u1EE4" | ||||
|     r"\u1EE6\u1EE8\u1EEA\u1EEC\u1EEE\u1EF0\u1EF2\u1EF4\u1EF6\u1EF8\u1EFA\u1EFC\u1EFE" | ||||
| ) | ||||
| _latin_l_diacritics = ( | ||||
|     r"\u1E01\u1E03\u1E05\u1E07\u1E09\u1E0B\u1E0D\u1E0F\u1E11\u1E13\u1E15\u1E17\u1E19\u1E1B" | ||||
|     r"\u1E1D\u1E1F\u1E21\u1E23\u1E25\u1E27\u1E29\u1E2B\u1E2D\u1E2F\u1E31\u1E33\u1E35\u1E37" | ||||
|     r"\u1E39\u1E3B\u1E3D\u1E3F\u1E41\u1E43\u1E45\u1E47\u1E49\u1E4B\u1E4D\u1E4F\u1E51\u1E53" | ||||
|     r"\u1E55\u1E57\u1E59\u1E5B\u1E5D\u1E5F\u1E61\u1E63\u1E65\u1E67\u1E69\u1E6B\u1E6D\u1E6F" | ||||
|     r"\u1E71\u1E73\u1E75\u1E77\u1E79\u1E7B\u1E7D\u1E7F\u1E81\u1E83\u1E85\u1E87\u1E89\u1E8B" | ||||
|     r"\u1E8D\u1E8F\u1E91\u1E93\u1E95-\u1E9D\u1E9F\u1EA1\u1EA3\u1EA5\u1EA7\u1EA9\u1EAB\u1EAD" | ||||
|     r"\u1EAF\u1EB1\u1EB3\u1EB5\u1EB7\u1EB9\u1EBB\u1EBD\u1EBF\u1EC1\u1EC3\u1EC5\u1EC7\u1EC9" | ||||
|     r"\u1ECB\u1ECD\u1ECF\u1ED1\u1ED3\u1ED5\u1ED7\u1ED9\u1EDB\u1EDD\u1EDF\u1EE1\u1EE3\u1EE5" | ||||
|     r"\u1EE7\u1EE9\u1EEB\u1EED\u1EEF\u1EF1\u1EF3\u1EF5\u1EF7\u1EF9\u1EFB\u1EFD\u1EFF" | ||||
| ) | ||||
| _latin_diacritics = r"\u1E00-\u1EFF" | ||||
| 
 | ||||
| # all lower latin classes | ||||
| LATIN_LOWER_BASIC = _latin_l_standard + _latin_l_standard_fullwidth + _latin_l_supplement + _latin_l_extendedA | ||||
| LATIN_LOWER = LATIN_LOWER_BASIC + _latin_l_extendedB + _latin_l_extendedC + _latin_l_extendedD + _latin_l_extendedE \ | ||||
|                + _latin_l_phonetic + _latin_l_diacritics | ||||
| LATIN_LOWER_BASIC = ( | ||||
|     _latin_l_standard | ||||
|     + _latin_l_standard_fullwidth | ||||
|     + _latin_l_supplement | ||||
|     + _latin_l_extendedA | ||||
| ) | ||||
| LATIN_LOWER = ( | ||||
|     LATIN_LOWER_BASIC | ||||
|     + _latin_l_extendedB | ||||
|     + _latin_l_extendedC | ||||
|     + _latin_l_extendedD | ||||
|     + _latin_l_extendedE | ||||
|     + _latin_l_phonetic | ||||
|     + _latin_l_diacritics | ||||
| ) | ||||
| 
 | ||||
| # all upper latin classes | ||||
| LATIN_UPPER_BASIC = _latin_u_standard + _latin_u_standard_fullwidth + _latin_u_supplement + _latin_u_extendedA | ||||
| LATIN_UPPER = LATIN_UPPER_BASIC + _latin_u_extendedB + _latin_u_extendedC + _latin_u_extendedD + _latin_u_diacritics | ||||
| LATIN_UPPER_BASIC = ( | ||||
|     _latin_u_standard | ||||
|     + _latin_u_standard_fullwidth | ||||
|     + _latin_u_supplement | ||||
|     + _latin_u_extendedA | ||||
| ) | ||||
| LATIN_UPPER = ( | ||||
|     LATIN_UPPER_BASIC | ||||
|     + _latin_u_extendedB | ||||
|     + _latin_u_extendedC | ||||
|     + _latin_u_extendedD | ||||
|     + _latin_u_diacritics | ||||
| ) | ||||
| 
 | ||||
| # all latin classes | ||||
| LATIN_BASIC = _latin_standard + _latin_standard_fullwidth + _latin_supplement + _latin_extendedA | ||||
| LATIN = LATIN_BASIC + _latin_extendedB + _latin_extendedC + _latin_extendedD + _latin_extendedE \ | ||||
|          + _latin_phonetic + _latin_diacritics | ||||
| LATIN_BASIC = ( | ||||
|     _latin_standard + _latin_standard_fullwidth + _latin_supplement + _latin_extendedA | ||||
| ) | ||||
| LATIN = ( | ||||
|     LATIN_BASIC | ||||
|     + _latin_extendedB | ||||
|     + _latin_extendedC | ||||
|     + _latin_extendedD | ||||
|     + _latin_extendedE | ||||
|     + _latin_phonetic | ||||
|     + _latin_diacritics | ||||
| ) | ||||
| 
 | ||||
| _persian = r"\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD" \ | ||||
|            r"\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB" | ||||
| _persian = ( | ||||
|     r"\u0620-\u064A\u066E-\u06D5\u06E5-\u06FF\u0750-\u077F\u08A0-\u08BD" | ||||
|     r"\uFB50-\uFBB1\uFBD3-\uFD3D\uFD50-\uFDC7\uFDF0-\uFDFB\uFE70-\uFEFC\U0001EE00-\U0001EEBB" | ||||
| ) | ||||
| 
 | ||||
| _russian_lower = r"ёа-я" | ||||
| _russian_upper = r"ЁА-Я" | ||||
|  | @ -165,33 +219,35 @@ _hyphens = "- – — -- --- —— ~" | |||
| 
 | ||||
| # Various symbols like dingbats, but also emoji | ||||
| # Details: https://www.compart.com/en/unicode/category/So | ||||
| _other_symbols = r"\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70" \ | ||||
|                  r"\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34" \ | ||||
|                  r"\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399" \ | ||||
|                  r"\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116" \ | ||||
|                  r"\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B" \ | ||||
|                  r"\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3" \ | ||||
|                  r"\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB" \ | ||||
|                  r"\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E" \ | ||||
|                  r"\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95" \ | ||||
|                  r"\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB" \ | ||||
|                  r"\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3" \ | ||||
|                  r"\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF" \ | ||||
|                  r"\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC" \ | ||||
|                  r"\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B" \ | ||||
|                  r"\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F" \ | ||||
|                  r"\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164" \ | ||||
|                  r"\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8" \ | ||||
|                  r"\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A" \ | ||||
|                  r"\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B" \ | ||||
|                  r"\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF" \ | ||||
|                  r"\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202" \ | ||||
|                  r"\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265" \ | ||||
|                  r"\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9" \ | ||||
|                  r"\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847" \ | ||||
|                  r"\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B" \ | ||||
|                  r"\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2" \ | ||||
|                  r"\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D" | ||||
| _other_symbols = ( | ||||
|     r"\u00A6\u00A9\u00AE\u00B0\u0482\u058D\u058E\u060E\u060F\u06DE\u06E9\u06FD\u06FE\u07F6\u09FA\u0B70" | ||||
|     r"\u0BF3-\u0BF8\u0BFA\u0C7F\u0D4F\u0D79\u0F01-\u0F03\u0F13\u0F15-\u0F17\u0F1A-\u0F1F\u0F34" | ||||
|     r"\u0F36\u0F38\u0FBE-\u0FC5\u0FC7-\u0FCC\u0FCE\u0FCF\u0FD5-\u0FD8\u109E\u109F\u1390-\u1399" | ||||
|     r"\u1940\u19DE-\u19FF\u1B61-\u1B6A\u1B74-\u1B7C\u2100\u2101\u2103-\u2106\u2108\u2109\u2114\u2116" | ||||
|     r"\u2117\u211E-\u2123\u2125\u2127\u2129\u212E\u213A\u213B\u214A\u214C\u214D\u214F\u218A\u218B" | ||||
|     r"\u2195-\u2199\u219C-\u219F\u21A1\u21A2\u21A4\u21A5\u21A7-\u21AD\u21AF-\u21CD\u21D0\u21D1\u21D3" | ||||
|     r"\u21D5-\u21F3\u2300-\u2307\u230C-\u231F\u2322-\u2328\u232B-\u237B\u237D-\u239A\u23B4-\u23DB" | ||||
|     r"\u23E2-\u2426\u2440-\u244A\u249C-\u24E9\u2500-\u25B6\u25B8-\u25C0\u25C2-\u25F7\u2600-\u266E" | ||||
|     r"\u2670-\u2767\u2794-\u27BF\u2800-\u28FF\u2B00-\u2B2F\u2B45\u2B46\u2B4D-\u2B73\u2B76-\u2B95" | ||||
|     r"\u2B98-\u2BC8\u2BCA-\u2BFE\u2CE5-\u2CEA\u2E80-\u2E99\u2E9B-\u2EF3\u2F00-\u2FD5\u2FF0-\u2FFB" | ||||
|     r"\u3004\u3012\u3013\u3020\u3036\u3037\u303E\u303F\u3190\u3191\u3196-\u319F\u31C0-\u31E3" | ||||
|     r"\u3200-\u321E\u322A-\u3247\u3250\u3260-\u327F\u328A-\u32B0\u32C0-\u32FE\u3300-\u33FF\u4DC0-\u4DFF" | ||||
|     r"\uA490-\uA4C6\uA828-\uA82B\uA836\uA837\uA839\uAA77-\uAA79\uFDFD\uFFE4\uFFE8\uFFED\uFFEE\uFFFC" | ||||
|     r"\uFFFD\U00010137-\U0001013F\U00010179-\U00010189\U0001018C-\U0001018E\U00010190-\U0001019B" | ||||
|     r"\U000101A0\U000101D0-\U000101FC\U00010877\U00010878\U00010AC8\U0001173F\U00016B3C-\U00016B3F" | ||||
|     r"\U00016B45\U0001BC9C\U0001D000-\U0001D0F5\U0001D100-\U0001D126\U0001D129-\U0001D164" | ||||
|     r"\U0001D16A-\U0001D16C\U0001D183\U0001D184\U0001D18C-\U0001D1A9\U0001D1AE-\U0001D1E8" | ||||
|     r"\U0001D200-\U0001D241\U0001D245\U0001D300-\U0001D356\U0001D800-\U0001D9FF\U0001DA37-\U0001DA3A" | ||||
|     r"\U0001DA6D-\U0001DA74\U0001DA76-\U0001DA83\U0001DA85\U0001DA86\U0001ECAC\U0001F000-\U0001F02B" | ||||
|     r"\U0001F030-\U0001F093\U0001F0A0-\U0001F0AE\U0001F0B1-\U0001F0BF\U0001F0C1-\U0001F0CF" | ||||
|     r"\U0001F0D1-\U0001F0F5\U0001F110-\U0001F16B\U0001F170-\U0001F1AC\U0001F1E6-\U0001F202" | ||||
|     r"\U0001F210-\U0001F23B\U0001F240-\U0001F248\U0001F250\U0001F251\U0001F260-\U0001F265" | ||||
|     r"\U0001F300-\U0001F3FA\U0001F400-\U0001F6D4\U0001F6E0-\U0001F6EC\U0001F6F0-\U0001F6F9" | ||||
|     r"\U0001F700-\U0001F773\U0001F780-\U0001F7D8\U0001F800-\U0001F80B\U0001F810-\U0001F847" | ||||
|     r"\U0001F850-\U0001F859\U0001F860-\U0001F887\U0001F890-\U0001F8AD\U0001F900-\U0001F90B" | ||||
|     r"\U0001F910-\U0001F93E\U0001F940-\U0001F970\U0001F973-\U0001F976\U0001F97A\U0001F97C-\U0001F9A2" | ||||
|     r"\U0001F9B0-\U0001F9B9\U0001F9C0-\U0001F9C2\U0001F9D0-\U0001F9FF\U0001FA60-\U0001FA6D" | ||||
| ) | ||||
| 
 | ||||
| UNITS = merge_chars(_units) | ||||
| CURRENCY = merge_chars(_currency) | ||||
|  |  | |||
|  | @ -19,6 +19,7 @@ cdef struct WeightsC: | |||
|     const float* feat_bias | ||||
|     const float* hidden_bias | ||||
|     const float* hidden_weights | ||||
|     const float* seen_classes | ||||
| 
 | ||||
| 
 | ||||
| cdef struct ActivationsC: | ||||
|  |  | |||
|  | @ -44,8 +44,10 @@ cdef WeightsC get_c_weights(model) except *: | |||
|     output.feat_bias = <const float*>state2vec.bias.data | ||||
|     cdef np.ndarray vec2scores_W = model.vec2scores.W | ||||
|     cdef np.ndarray vec2scores_b = model.vec2scores.b | ||||
|     cdef np.ndarray class_mask = model._class_mask | ||||
|     output.hidden_weights = <const float*>vec2scores_W.data | ||||
|     output.hidden_bias = <const float*>vec2scores_b.data | ||||
|     output.seen_classes = <const float*>class_mask.data | ||||
|     return output | ||||
| 
 | ||||
| 
 | ||||
|  | @ -115,6 +117,16 @@ cdef void predict_states(ActivationsC* A, StateC** states, | |||
|     for i in range(n.states): | ||||
|         VecVec.add_i(&A.scores[i*n.classes], | ||||
|             W.hidden_bias, 1., n.classes) | ||||
|     # Set unseen classes to minimum value | ||||
|     i = 0 | ||||
|     min_ = A.scores[0] | ||||
|     for i in range(1, n.states * n.classes): | ||||
|         if A.scores[i] < min_: | ||||
|             min_ = A.scores[i] | ||||
|     for i in range(n.states): | ||||
|         for j in range(n.classes): | ||||
|             if not W.seen_classes[j]: | ||||
|                 A.scores[i*n.classes+j] = min_ | ||||
| 
 | ||||
| 
 | ||||
| cdef void sum_state_features(float* output, | ||||
|  | @ -189,12 +201,17 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no | |||
| 
 | ||||
| 
 | ||||
| class ParserModel(Model): | ||||
|     def __init__(self, tok2vec, lower_model, upper_model): | ||||
|     def __init__(self, tok2vec, lower_model, upper_model, unseen_classes=None): | ||||
|         Model.__init__(self) | ||||
|         self._layers = [tok2vec, lower_model, upper_model] | ||||
|         self.unseen_classes = set() | ||||
|         if unseen_classes: | ||||
|             for class_ in unseen_classes: | ||||
|                 self.unseen_classes.add(class_) | ||||
| 
 | ||||
|     def begin_update(self, docs, drop=0.): | ||||
|         step_model = ParserStepModel(docs, self._layers, drop=drop) | ||||
|         step_model = ParserStepModel(docs, self._layers, drop=drop, | ||||
|                         unseen_classes=self.unseen_classes) | ||||
|         def finish_parser_update(golds, sgd=None): | ||||
|             step_model.make_updates(sgd) | ||||
|             return None | ||||
|  | @ -207,9 +224,8 @@ class ParserModel(Model): | |||
| 
 | ||||
|         with Model.use_device('cpu'): | ||||
|             larger = Affine(new_output, smaller.nI) | ||||
|         # Set nan as value for unseen classes, to prevent prediction. | ||||
|         larger.W.fill(self.ops.xp.nan) | ||||
|         larger.b.fill(self.ops.xp.nan) | ||||
|         larger.W.fill(0.0) | ||||
|         larger.b.fill(0.0) | ||||
|         # It seems very unhappy if I pass these as smaller.W? | ||||
|         # Seems to segfault. Maybe it's a descriptor protocol thing? | ||||
|         smaller_W = smaller.W | ||||
|  | @ -221,6 +237,8 @@ class ParserModel(Model): | |||
|         larger_W[:smaller.nO] = smaller_W | ||||
|         larger_b[:smaller.nO] = smaller_b | ||||
|         self._layers[-1] = larger | ||||
|         for i in range(smaller.nO, new_output): | ||||
|             self.unseen_classes.add(i) | ||||
| 
 | ||||
|     def begin_training(self, X, y=None): | ||||
|         self.lower.begin_training(X, y=y) | ||||
|  | @ -239,18 +257,32 @@ class ParserModel(Model): | |||
| 
 | ||||
| 
 | ||||
| class ParserStepModel(Model): | ||||
|     def __init__(self, docs, layers, drop=0.): | ||||
|     def __init__(self, docs, layers, unseen_classes=None, drop=0.): | ||||
|         self.tokvecs, self.bp_tokvecs = layers[0].begin_update(docs, drop=drop) | ||||
|         self.state2vec = precompute_hiddens(len(docs), self.tokvecs, layers[1], | ||||
|                                             drop=drop) | ||||
|         self.vec2scores = layers[-1] | ||||
|         self.cuda_stream = util.get_cuda_stream() | ||||
|         self.backprops = [] | ||||
|         self._class_mask = numpy.zeros((self.vec2scores.nO,), dtype='f') | ||||
|         self._class_mask.fill(1) | ||||
|         if unseen_classes is not None: | ||||
|             for class_ in unseen_classes: | ||||
|                 self._class_mask[class_] = 0. | ||||
| 
 | ||||
|     @property | ||||
|     def nO(self): | ||||
|         return self.state2vec.nO | ||||
| 
 | ||||
|     def class_is_unseen(self, class_): | ||||
|         return self._class_mask[class_] | ||||
| 
 | ||||
|     def mark_class_unseen(self, class_): | ||||
|         self._class_mask[class_] = 0 | ||||
| 
 | ||||
|     def mark_class_seen(self, class_): | ||||
|         self._class_mask[class_] = 1 | ||||
| 
 | ||||
|     def begin_update(self, states, drop=0.): | ||||
|         token_ids = self.get_token_ids(states) | ||||
|         vector, get_d_tokvecs = self.state2vec.begin_update(token_ids, drop=0.0) | ||||
|  | @ -258,24 +290,12 @@ class ParserStepModel(Model): | |||
|         if mask is not None: | ||||
|             vector *= mask | ||||
|         scores, get_d_vector = self.vec2scores.begin_update(vector, drop=drop) | ||||
|         # We can have nans from unseen classes. | ||||
|         # For backprop purposes, we want to treat unseen classes as having the | ||||
|         # lowest score. | ||||
|         # numpy's nan_to_num function doesn't take a value, and nan is replaced | ||||
|         # by 0...-inf is replaced by minimum, so we go via that. Ugly to the max. | ||||
|         # Note that scores is always a numpy array! Should fix #3112 | ||||
|         scores[numpy.isnan(scores)] = -numpy.inf | ||||
|         numpy.nan_to_num(scores, copy=False) | ||||
|         # If the class is unseen, make sure its score is minimum | ||||
|         scores[:, self._class_mask == 0] = numpy.nanmin(scores) | ||||
| 
 | ||||
|         def backprop_parser_step(d_scores, sgd=None): | ||||
|             # If we have a non-zero gradient for a previously unseen class, | ||||
|             # replace the weight with 0. | ||||
|             new_classes = self.vec2scores.ops.xp.logical_and( | ||||
|                 self.vec2scores.ops.xp.isnan(self.vec2scores.b), | ||||
|                 d_scores.any(axis=0) | ||||
|             ) | ||||
|             self.vec2scores.b[new_classes] = 0. | ||||
|             self.vec2scores.W[new_classes] = 0. | ||||
|             # Zero vectors for unseen classes | ||||
|             d_scores *= self._class_mask | ||||
|             d_vector = get_d_vector(d_scores, sgd=sgd) | ||||
|             if mask is not None: | ||||
|                 d_vector *= mask | ||||
|  |  | |||
|  | @ -163,6 +163,8 @@ cdef class Parser: | |||
|             added = self.moves.add_action(action, label) | ||||
|             if added: | ||||
|                 resized = True | ||||
|         if resized and "nr_class" in self.cfg: | ||||
|             self.cfg["nr_class"] = self.moves.n_moves | ||||
|         if self.model not in (True, False, None) and resized: | ||||
|             self.model.resize_output(self.moves.n_moves) | ||||
| 
 | ||||
|  | @ -435,22 +437,22 @@ cdef class Parser: | |||
|         if self._rehearsal_model is None: | ||||
|             return None | ||||
|         losses.setdefault(self.name, 0.) | ||||
|   | ||||
|         states = self.moves.init_batch(docs) | ||||
|         # This is pretty dirty, but the NER can resize itself in init_batch, | ||||
|         # if labels are missing. We therefore have to check whether we need to | ||||
|         # expand our model output. | ||||
|         self.model.resize_output(self.moves.n_moves) | ||||
|         self._rehearsal_model.resize_output(self.moves.n_moves) | ||||
|         # Prepare the stepwise model, and get the callback for finishing the batch | ||||
|         tutor = self._rehearsal_model(docs) | ||||
|         tutor, _ = self._rehearsal_model.begin_update(docs, drop=0.0) | ||||
|         model, finish_update = self.model.begin_update(docs, drop=0.0) | ||||
|         n_scores = 0. | ||||
|         loss = 0. | ||||
|         non_zeroed_classes = self._rehearsal_model.upper.W.any(axis=1) | ||||
|         while states: | ||||
|             targets, _ = tutor.begin_update(states) | ||||
|             guesses, backprop = model.begin_update(states) | ||||
|             d_scores = (targets - guesses) / targets.shape[0] | ||||
|             d_scores *= non_zeroed_classes | ||||
|             targets, _ = tutor.begin_update(states, drop=0.) | ||||
|             guesses, backprop = model.begin_update(states, drop=0.) | ||||
|             d_scores = (guesses - targets) / targets.shape[0] | ||||
|             # If all weights for an output are 0 in the original model, don't | ||||
|             # supervise that output. This allows us to add classes. | ||||
|             loss += (d_scores**2).sum() | ||||
|  | @ -543,6 +545,9 @@ cdef class Parser: | |||
|             memset(is_valid, 0, self.moves.n_moves * sizeof(int)) | ||||
|             memset(costs, 0, self.moves.n_moves * sizeof(float)) | ||||
|             self.moves.set_costs(is_valid, costs, state, gold) | ||||
|             for j in range(self.moves.n_moves): | ||||
|                 if costs[j] <= 0.0 and j in self.model.unseen_classes: | ||||
|                     self.model.unseen_classes.remove(j) | ||||
|             cpu_log_loss(c_d_scores, | ||||
|                 costs, is_valid, &scores[i, 0], d_scores.shape[1]) | ||||
|             c_d_scores += d_scores.shape[1] | ||||
|  |  | |||
|  | @ -147,6 +147,8 @@ cdef class TransitionSystem: | |||
|     def initialize_actions(self, labels_by_action, min_freq=None): | ||||
|         self.labels = {} | ||||
|         self.n_moves = 0 | ||||
|         added_labels = [] | ||||
|         added_actions = {} | ||||
|         for action, label_freqs in sorted(labels_by_action.items()): | ||||
|             action = int(action) | ||||
|             # Make sure we take a copy here, and that we get a Counter | ||||
|  | @ -157,6 +159,15 @@ cdef class TransitionSystem: | |||
|             sorted_labels.sort() | ||||
|             sorted_labels.reverse() | ||||
|             for freq, label_str in sorted_labels: | ||||
|                 if freq < 0: | ||||
|                     added_labels.append((freq, label_str)) | ||||
|                     added_actions.setdefault(label_str, []).append(action) | ||||
|                 else: | ||||
|                     self.add_action(int(action), label_str) | ||||
|                     self.labels[action][label_str] = freq | ||||
|         added_labels.sort(reverse=True) | ||||
|         for freq, label_str in added_labels: | ||||
|             for action in added_actions[label_str]: | ||||
|                 self.add_action(int(action), label_str) | ||||
|                 self.labels[action][label_str] = freq | ||||
| 
 | ||||
|  |  | |||
|  | @ -6,7 +6,6 @@ import pytest | |||
| import numpy | ||||
| from spacy.tokens import Doc | ||||
| from spacy.vocab import Vocab | ||||
| from spacy.attrs import LEMMA | ||||
| from spacy.errors import ModelsWarning | ||||
| 
 | ||||
| from ..util import get_doc | ||||
|  | @ -139,81 +138,6 @@ def test_doc_api_set_ents(en_tokenizer): | |||
|     assert tokens.ents[0].end == 4 | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_merge(en_tokenizer): | ||||
|     text = "WKRO played songs by the beach boys all night" | ||||
|     attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} | ||||
|     # merge both with bulk merge | ||||
|     doc = en_tokenizer(text) | ||||
|     assert len(doc) == 9 | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|         retokenizer.merge(doc[7:9], attrs=attrs) | ||||
|     assert len(doc) == 6 | ||||
|     assert doc[4].text == "the beach boys" | ||||
|     assert doc[4].text_with_ws == "the beach boys " | ||||
|     assert doc[4].tag_ == "NAMED" | ||||
|     assert doc[5].text == "all night" | ||||
|     assert doc[5].text_with_ws == "all night" | ||||
|     assert doc[5].tag_ == "NAMED" | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_merge_children(en_tokenizer): | ||||
|     """Test that attachments work correctly after merging.""" | ||||
|     text = "WKRO played songs by the beach boys all night" | ||||
|     attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} | ||||
|     doc = en_tokenizer(text) | ||||
|     assert len(doc) == 9 | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|     for word in doc: | ||||
|         if word.i < word.head.i: | ||||
|             assert word in list(word.head.lefts) | ||||
|         elif word.i > word.head.i: | ||||
|             assert word in list(word.head.rights) | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_merge_hang(en_tokenizer): | ||||
|     text = "through North and South Carolina" | ||||
|     doc = en_tokenizer(text) | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"}) | ||||
|         retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"}) | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_retokenizer(en_tokenizer): | ||||
|     doc = en_tokenizer("WKRO played songs by the beach boys all night") | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7]) | ||||
|     assert len(doc) == 7 | ||||
|     assert doc[4].text == "the beach boys" | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_retokenizer_attrs(en_tokenizer): | ||||
|     doc = en_tokenizer("WKRO played songs by the beach boys all night") | ||||
|     # test both string and integer attributes and values | ||||
|     attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]} | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|     assert len(doc) == 7 | ||||
|     assert doc[4].text == "the beach boys" | ||||
|     assert doc[4].lemma_ == "boys" | ||||
|     assert doc[4].ent_type_ == "ORG" | ||||
| 
 | ||||
| 
 | ||||
| @pytest.mark.xfail | ||||
| def test_doc_api_retokenizer_lex_attrs(en_tokenizer): | ||||
|     """Test that lexical attributes can be changed (see #2390).""" | ||||
|     doc = en_tokenizer("WKRO played beach boys songs") | ||||
|     assert not any(token.is_stop for token in doc) | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True}) | ||||
|     assert doc[2].text == "beach boys" | ||||
|     assert doc[2].lemma_ == "boys" | ||||
|     assert doc[2].is_stop | ||||
|     new_doc = Doc(doc.vocab, words=["beach boys"]) | ||||
|     assert new_doc[0].is_stop | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_api_sents_empty_string(en_tokenizer): | ||||
|     doc = en_tokenizer("") | ||||
|     doc.is_parsed = True | ||||
|  |  | |||
|  | @ -1,14 +1,89 @@ | |||
| # coding: utf-8 | ||||
| from __future__ import unicode_literals | ||||
| 
 | ||||
| import pytest | ||||
| from spacy.attrs import LEMMA | ||||
| from spacy.vocab import Vocab | ||||
| from spacy.tokens import Doc | ||||
| import pytest | ||||
| 
 | ||||
| from ..util import get_doc | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_merge_tokens(en_tokenizer): | ||||
| def test_doc_retokenize_merge(en_tokenizer): | ||||
|     text = "WKRO played songs by the beach boys all night" | ||||
|     attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} | ||||
|     doc = en_tokenizer(text) | ||||
|     assert len(doc) == 9 | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|         retokenizer.merge(doc[7:9], attrs=attrs) | ||||
|     assert len(doc) == 6 | ||||
|     assert doc[4].text == "the beach boys" | ||||
|     assert doc[4].text_with_ws == "the beach boys " | ||||
|     assert doc[4].tag_ == "NAMED" | ||||
|     assert doc[5].text == "all night" | ||||
|     assert doc[5].text_with_ws == "all night" | ||||
|     assert doc[5].tag_ == "NAMED" | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_retokenize_merge_children(en_tokenizer): | ||||
|     """Test that attachments work correctly after merging.""" | ||||
|     text = "WKRO played songs by the beach boys all night" | ||||
|     attrs = {"tag": "NAMED", "lemma": "LEMMA", "ent_type": "TYPE"} | ||||
|     doc = en_tokenizer(text) | ||||
|     assert len(doc) == 9 | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|     for word in doc: | ||||
|         if word.i < word.head.i: | ||||
|             assert word in list(word.head.lefts) | ||||
|         elif word.i > word.head.i: | ||||
|             assert word in list(word.head.rights) | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_retokenize_merge_hang(en_tokenizer): | ||||
|     text = "through North and South Carolina" | ||||
|     doc = en_tokenizer(text) | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[3:5], attrs={"lemma": "", "ent_type": "ORG"}) | ||||
|         retokenizer.merge(doc[1:2], attrs={"lemma": "", "ent_type": "ORG"}) | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_retokenize_retokenizer(en_tokenizer): | ||||
|     doc = en_tokenizer("WKRO played songs by the beach boys all night") | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7]) | ||||
|     assert len(doc) == 7 | ||||
|     assert doc[4].text == "the beach boys" | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_retokenize_retokenizer_attrs(en_tokenizer): | ||||
|     doc = en_tokenizer("WKRO played songs by the beach boys all night") | ||||
|     # test both string and integer attributes and values | ||||
|     attrs = {LEMMA: "boys", "ENT_TYPE": doc.vocab.strings["ORG"]} | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[4:7], attrs=attrs) | ||||
|     assert len(doc) == 7 | ||||
|     assert doc[4].text == "the beach boys" | ||||
|     assert doc[4].lemma_ == "boys" | ||||
|     assert doc[4].ent_type_ == "ORG" | ||||
| 
 | ||||
| 
 | ||||
| @pytest.mark.xfail | ||||
| def test_doc_retokenize_lex_attrs(en_tokenizer): | ||||
|     """Test that lexical attributes can be changed (see #2390).""" | ||||
|     doc = en_tokenizer("WKRO played beach boys songs") | ||||
|     assert not any(token.is_stop for token in doc) | ||||
|     with doc.retokenize() as retokenizer: | ||||
|         retokenizer.merge(doc[2:4], attrs={"LEMMA": "boys", "IS_STOP": True}) | ||||
|     assert doc[2].text == "beach boys" | ||||
|     assert doc[2].lemma_ == "boys" | ||||
|     assert doc[2].is_stop | ||||
|     new_doc = Doc(doc.vocab, words=["beach boys"]) | ||||
|     assert new_doc[0].is_stop | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_retokenize_spans_merge_tokens(en_tokenizer): | ||||
|     text = "Los Angeles start." | ||||
|     heads = [1, 1, 0, -1] | ||||
|     tokens = en_tokenizer(text) | ||||
|  | @ -25,7 +100,7 @@ def test_spans_merge_tokens(en_tokenizer): | |||
|     assert doc[0].ent_type_ == "GPE" | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_merge_heads(en_tokenizer): | ||||
| def test_doc_retokenize_spans_merge_heads(en_tokenizer): | ||||
|     text = "I found a pilates class near work." | ||||
|     heads = [1, 0, 2, 1, -3, -1, -1, -6] | ||||
|     tokens = en_tokenizer(text) | ||||
|  | @ -43,7 +118,7 @@ def test_spans_merge_heads(en_tokenizer): | |||
|     assert doc[5].head.i == 4 | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_merge_non_disjoint(en_tokenizer): | ||||
| def test_doc_retokenize_spans_merge_non_disjoint(en_tokenizer): | ||||
|     text = "Los Angeles start." | ||||
|     doc = en_tokenizer(text) | ||||
|     with pytest.raises(ValueError): | ||||
|  | @ -58,7 +133,7 @@ def test_spans_merge_non_disjoint(en_tokenizer): | |||
|             ) | ||||
| 
 | ||||
| 
 | ||||
| def test_span_np_merges(en_tokenizer): | ||||
| def test_doc_retokenize_span_np_merges(en_tokenizer): | ||||
|     text = "displaCy is a parse tool built with Javascript" | ||||
|     heads = [1, 0, 2, 1, -3, -1, -1, -1] | ||||
|     tokens = en_tokenizer(text) | ||||
|  | @ -87,7 +162,7 @@ def test_span_np_merges(en_tokenizer): | |||
|             retokenizer.merge(ent) | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_entity_merge(en_tokenizer): | ||||
| def test_doc_retokenize_spans_entity_merge(en_tokenizer): | ||||
|     # fmt: off | ||||
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale.\n" | ||||
|     heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2, -13, -1] | ||||
|  | @ -108,7 +183,7 @@ def test_spans_entity_merge(en_tokenizer): | |||
|     assert len(doc) == 15 | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_entity_merge_iob(): | ||||
| def test_doc_retokenize_spans_entity_merge_iob(): | ||||
|     # Test entity IOB stays consistent after merging | ||||
|     words = ["a", "b", "c", "d", "e"] | ||||
|     doc = Doc(Vocab(), words=words) | ||||
|  | @ -147,7 +222,7 @@ def test_spans_entity_merge_iob(): | |||
|     assert doc[4].ent_iob_ == "I" | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_sentence_update_after_merge(en_tokenizer): | ||||
| def test_doc_retokenize_spans_sentence_update_after_merge(en_tokenizer): | ||||
|     # fmt: off | ||||
|     text = "Stewart Lee is a stand up comedian. He lives in England and loves Joe Pasquale." | ||||
|     heads = [1, 1, 0, 1, 2, -1, -4, -5, 1, 0, -1, -1, -3, -4, 1, -2, -7] | ||||
|  | @ -155,7 +230,6 @@ def test_spans_sentence_update_after_merge(en_tokenizer): | |||
|             'punct', 'nsubj', 'ROOT', 'prep', 'pobj', 'cc', 'conj', | ||||
|             'compound', 'dobj', 'punct'] | ||||
|     # fmt: on | ||||
| 
 | ||||
|     tokens = en_tokenizer(text) | ||||
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) | ||||
|     sent1, sent2 = list(doc.sents) | ||||
|  | @ -169,7 +243,7 @@ def test_spans_sentence_update_after_merge(en_tokenizer): | |||
|     assert len(sent2) == init_len2 - 1 | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_subtree_size_check(en_tokenizer): | ||||
| def test_doc_retokenize_spans_subtree_size_check(en_tokenizer): | ||||
|     # fmt: off | ||||
|     text = "Stewart Lee is a stand up comedian who lives in England and loves Joe Pasquale" | ||||
|     heads = [1, 1, 0, 1, 2, -1, -4, 1, -2, -1, -1, -3, -10, 1, -2] | ||||
|  | @ -177,7 +251,6 @@ def test_spans_subtree_size_check(en_tokenizer): | |||
|             "nsubj", "relcl", "prep", "pobj", "cc", "conj", "compound", | ||||
|             "dobj"] | ||||
|     # fmt: on | ||||
| 
 | ||||
|     tokens = en_tokenizer(text) | ||||
|     doc = get_doc(tokens.vocab, words=[t.text for t in tokens], heads=heads, deps=deps) | ||||
|     sent1 = list(doc.sents)[0] | ||||
|  | @ -8,7 +8,7 @@ from spacy.tokens import Doc | |||
| from ..util import get_doc | ||||
| 
 | ||||
| 
 | ||||
| def test_doc_split(en_vocab): | ||||
| def test_doc_retokenize_split(en_vocab): | ||||
|     words = ["LosAngeles", "start", "."] | ||||
|     heads = [1, 1, 0] | ||||
|     doc = get_doc(en_vocab, words=words, heads=heads) | ||||
|  | @ -41,7 +41,7 @@ def test_doc_split(en_vocab): | |||
|     assert len(str(doc)) == 19 | ||||
| 
 | ||||
| 
 | ||||
| def test_split_dependencies(en_vocab): | ||||
| def test_doc_retokenize_split_dependencies(en_vocab): | ||||
|     doc = Doc(en_vocab, words=["LosAngeles", "start", "."]) | ||||
|     dep1 = doc.vocab.strings.add("amod") | ||||
|     dep2 = doc.vocab.strings.add("subject") | ||||
|  | @ -56,7 +56,7 @@ def test_split_dependencies(en_vocab): | |||
|     assert doc[1].dep == dep2 | ||||
| 
 | ||||
| 
 | ||||
| def test_split_heads_error(en_vocab): | ||||
| def test_doc_retokenize_split_heads_error(en_vocab): | ||||
|     doc = Doc(en_vocab, words=["LosAngeles", "start", "."]) | ||||
|     # Not enough heads | ||||
|     with pytest.raises(ValueError): | ||||
|  | @ -69,7 +69,7 @@ def test_split_heads_error(en_vocab): | |||
|             retokenizer.split(doc[0], ["Los", "Angeles"], [doc[1], doc[1], doc[1]]) | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_entity_merge_iob(): | ||||
| def test_doc_retokenize_spans_entity_split_iob(): | ||||
|     # Test entity IOB stays consistent after merging | ||||
|     words = ["abc", "d", "e"] | ||||
|     doc = Doc(Vocab(), words=words) | ||||
|  | @ -84,7 +84,7 @@ def test_spans_entity_merge_iob(): | |||
|     assert doc[3].ent_iob_ == "I" | ||||
| 
 | ||||
| 
 | ||||
| def test_spans_sentence_update_after_merge(en_vocab): | ||||
| def test_doc_retokenize_spans_sentence_update_after_split(en_vocab): | ||||
|     # fmt: off | ||||
|     words = ["StewartLee", "is", "a", "stand", "up", "comedian", ".", "He", | ||||
|              "lives", "in", "England", "and", "loves", "JoePasquale", "."] | ||||
|  | @ -114,7 +114,7 @@ def test_spans_sentence_update_after_merge(en_vocab): | |||
|     assert len(sent2) == init_len2 + 1 | ||||
| 
 | ||||
| 
 | ||||
| def test_split_orths_mismatch(en_vocab): | ||||
| def test_doc_retokenize_split_orths_mismatch(en_vocab): | ||||
|     """Test that the regular retokenizer.split raises an error if the orths | ||||
|     don't match the original token text. There might still be a method that | ||||
|     allows this, but for the default use cases, merging and splitting should | ||||
|  | @ -1,7 +1,6 @@ | |||
| # coding: utf8 | ||||
| from __future__ import unicode_literals | ||||
| 
 | ||||
| import pytest | ||||
| from spacy.matcher import Matcher | ||||
| from spacy.tokens import Token, Doc | ||||
| 
 | ||||
|  | @ -28,7 +27,7 @@ def test_issue1971(en_vocab): | |||
| def test_issue_1971_2(en_vocab): | ||||
|     matcher = Matcher(en_vocab) | ||||
|     pattern1 = [{"ORTH": "EUR", "LOWER": {"IN": ["eur"]}}, {"LIKE_NUM": True}] | ||||
|     pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}] #{"IN": ["EUR"]}}] | ||||
|     pattern2 = [{"LIKE_NUM": True}, {"ORTH": "EUR"}]  # {"IN": ["EUR"]}}] | ||||
|     doc = Doc(en_vocab, words=["EUR", "10", "is", "10", "EUR"]) | ||||
|     matcher.add("TEST1", None, pattern1, pattern2) | ||||
|     matches = matcher(doc) | ||||
|  | @ -59,6 +58,5 @@ def test_issue_1971_4(en_vocab): | |||
|     pattern = [{"_": {"ext_a": "str_a", "ext_b": "str_b"}}] * 3 | ||||
|     matcher.add("TEST", None, pattern) | ||||
|     matches = matcher(doc) | ||||
|     # Interesting: uncommenting this causes a segmentation fault, so there's | ||||
|     # definitely something going on here | ||||
|     # assert len(matches) == 1 | ||||
|     # Uncommenting this caused a segmentation fault | ||||
|     assert len(matches) == 1 | ||||
|  |  | |||
|  | @ -1,7 +1,6 @@ | |||
| # coding: utf-8 | ||||
| from __future__ import unicode_literals | ||||
| 
 | ||||
| import pytest | ||||
| import numpy | ||||
| from spacy import displacy | ||||
| 
 | ||||
|  |  | |||
|  | @ -1,7 +1,6 @@ | |||
| # coding: utf-8 | ||||
| from __future__ import unicode_literals | ||||
| 
 | ||||
| import pytest | ||||
| from spacy.lang.en import English | ||||
| 
 | ||||
| 
 | ||||
|  |  | |||
|  | @ -315,6 +315,11 @@ def read_regex(path): | |||
| 
 | ||||
| 
 | ||||
| def compile_prefix_regex(entries): | ||||
|     """Compile a list of prefix rules into a regex object. | ||||
| 
 | ||||
|     entries (tuple): The prefix rules, e.g. spacy.lang.punctuation.TOKENIZER_PREFIXES. | ||||
|     RETURNS (regex object): The regex object. to be used for Tokenizer.prefix_search. | ||||
|     """ | ||||
|     if "(" in entries: | ||||
|         # Handle deprecated data | ||||
|         expression = "|".join( | ||||
|  | @ -327,11 +332,21 @@ def compile_prefix_regex(entries): | |||
| 
 | ||||
| 
 | ||||
| def compile_suffix_regex(entries): | ||||
|     """Compile a list of suffix rules into a regex object. | ||||
| 
 | ||||
|     entries (tuple): The suffix rules, e.g. spacy.lang.punctuation.TOKENIZER_SUFFIXES. | ||||
|     RETURNS (regex object): The regex object. to be used for Tokenizer.suffix_search. | ||||
|     """ | ||||
|     expression = "|".join([piece + "$" for piece in entries if piece.strip()]) | ||||
|     return re.compile(expression) | ||||
| 
 | ||||
| 
 | ||||
| def compile_infix_regex(entries): | ||||
|     """Compile a list of infix rules into a regex object. | ||||
| 
 | ||||
|     entries (tuple): The infix rules, e.g. spacy.lang.punctuation.TOKENIZER_INFIXES. | ||||
|     RETURNS (regex object): The regex object. to be used for Tokenizer.infix_finditer. | ||||
|     """ | ||||
|     expression = "|".join([piece for piece in entries if piece.strip()]) | ||||
|     return re.compile(expression) | ||||
| 
 | ||||
|  |  | |||
|  | @ -504,6 +504,57 @@ an error if key doesn't match `ORTH` values. | |||
| | `*addition_dicts` | dicts | Exception dictionaries to add to the base exceptions, in order. | | ||||
| | **RETURNS**       | dict  | Combined tokenizer exceptions.                                  | | ||||
| 
 | ||||
| ### util.compile_prefix_regex {#util.compile_prefix_regex tag="function"} | ||||
| 
 | ||||
| Compile a sequence of prefix rules into a regex object. | ||||
| 
 | ||||
| > #### Example | ||||
| > | ||||
| > ```python | ||||
| > prefixes = ("§", "%", "=", r"\+") | ||||
| > prefix_regex = util.compile_prefix_regex(prefixes) | ||||
| > nlp.tokenizer.prefix_search = prefix_regex.search | ||||
| > ``` | ||||
| 
 | ||||
| | Name        | Type                                                          | Description                                                                                                                               | | ||||
| | ----------- | ------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `entries`   | tuple                                                         | The prefix rules, e.g. [`lang.punctuation.TOKENIZER_PREFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). | | ||||
| | **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.prefix_search`](/api/tokenizer#attributes).                                                  | | ||||
| 
 | ||||
| ### util.compile_suffix_regex {#util.compile_suffix_regex tag="function"} | ||||
| 
 | ||||
| Compile a sequence of suffix rules into a regex object. | ||||
| 
 | ||||
| > #### Example | ||||
| > | ||||
| > ```python | ||||
| > suffixes = ("'s", "'S", r"(?<=[0-9])\+") | ||||
| > suffix_regex = util.compile_suffix_regex(suffixes) | ||||
| > nlp.tokenizer.suffix_search = suffix_regex.search | ||||
| > ``` | ||||
| 
 | ||||
| | Name        | Type                                                          | Description                                                                                                                               | | ||||
| | ----------- | ------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `entries`   | tuple                                                         | The suffix rules, e.g. [`lang.punctuation.TOKENIZER_SUFFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). | | ||||
| | **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.suffix_search`](/api/tokenizer#attributes).                                                  | | ||||
| 
 | ||||
| ### util.compile_infix_regex {#util.compile_infix_regex tag="function"} | ||||
| 
 | ||||
| Compile a sequence of infix rules into a regex object. | ||||
| 
 | ||||
| > #### Example | ||||
| > | ||||
| > ```python | ||||
| > infixes = ("…", "-", "—", r"(?<=[0-9])[+\-\*^](?=[0-9-])") | ||||
| > infix_regex = util.compile_infix_regex(infixes) | ||||
| > nlp.tokenizer.infix_finditer = infix_regex.finditer | ||||
| > ``` | ||||
| 
 | ||||
| | Name        | Type                                                          | Description                                                                                                                             | | ||||
| | ----------- | ------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------- | | ||||
| | `entries`   | tuple                                                         | The infix rules, e.g. [`lang.punctuation.TOKENIZER_INFIXES`](https://github.com/explosion/spaCy/tree/master/spacy/lang/punctuation.py). | | ||||
| | **RETURNS** | [regex](https://docs.python.org/3/library/re.html#re-objects) | The regex object. to be used for [`Tokenizer.infix_finditer`](/api/tokenizer#attributes).                                               | | ||||
| 
 | ||||
| ### util.minibatch {#util.minibatch tag="function" new="2"} | ||||
| 
 | ||||
| Iterate over batches of items. `size` may be an iterator, so that batch-size can | ||||
|  |  | |||
|  | @ -812,6 +812,40 @@ only be applied at the **end of a token**, so your expression should end with a | |||
| 
 | ||||
| </Infobox> | ||||
| 
 | ||||
| #### Adding to existing rule sets {#native-tokenizer-additions} | ||||
| 
 | ||||
| In many situations, you don't necessarily need entirely custom rules. Sometimes | ||||
| you just want to add another character to the prefixes, suffixes or infixes. The | ||||
| default prefix, suffix and infix rules are available via the `nlp` object's | ||||
| `Defaults` and the [`Tokenizer.suffix_search`](/api/tokenizer#attributes) | ||||
| attribute is writable, so you can overwrite it with a compiled regular | ||||
| expression object using of the modified default rules. spaCy ships with utility | ||||
| functions to help you compile the regular expressions – for example, | ||||
| [`compile_suffix_regex`](/api/top-level#util.compile_suffix_regex): | ||||
| 
 | ||||
| ```python | ||||
| suffixes = nlp.Defaults.suffixes + (r'''-+$''',) | ||||
| suffix_regex = spacy.util.compile_suffix_regex(suffixes) | ||||
| nlp.tokenizer.suffix_search = suffix_regex.search | ||||
| ``` | ||||
| 
 | ||||
| For an overview of the default regular expressions, see | ||||
| [`lang/punctuation.py`](https://github.com/explosion/spaCy/blob/master/spacy/lang/punctuation.py). | ||||
| The `Tokenizer.suffix_search` attribute should be a function which takes a | ||||
| unicode string and returns a **regex match object** or `None`. Usually we use | ||||
| the `.search` attribute of a compiled regex object, but you can use some other | ||||
| function that behaves the same way. | ||||
| 
 | ||||
| <Infobox title="Important note" variant="warning"> | ||||
| 
 | ||||
| If you're using a statistical model, writing to the `nlp.Defaults` or | ||||
| `English.Defaults` directly won't work, since the regular expressions are read | ||||
| from the model and will be compiled when you load it. You'll only see the effect | ||||
| if you call [`spacy.blank`](/api/top-level#spacy.blank) or | ||||
| `Defaults.create_tokenizer()`. | ||||
| 
 | ||||
| </Infobox> | ||||
| 
 | ||||
| ### Hooking an arbitrary tokenizer into the pipeline {#custom-tokenizer} | ||||
| 
 | ||||
| The tokenizer is the first component of the processing pipeline and the only one | ||||
|  |  | |||
		Loading…
	
		Reference in New Issue
	
	Block a user