mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 01:46:28 +03:00
Tidy up pipes (#5906)
* Tidy up pipes * Fix init, defaults and raise custom errors * Update docs * Update docs [ci skip] * Apply suggestions from code review Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com> * Tidy up error handling and validation, fix consistency * Simplify get_examples check * Remove unused import [ci skip] Co-authored-by: Matthew Honnibal <honnibal+gh@gmail.com>
This commit is contained in:
parent
b7ec06e331
commit
950832f087
|
@ -295,7 +295,11 @@ def train_while_improving(
|
|||
nlp.rehearse(raw_batch, sgd=optimizer, losses=losses, exclude=exclude)
|
||||
# TODO: refactor this so we don't have to run it separately in here
|
||||
for name, proc in nlp.pipeline:
|
||||
if name not in exclude and hasattr(proc, "model"):
|
||||
if (
|
||||
name not in exclude
|
||||
and hasattr(proc, "model")
|
||||
and proc.model not in (True, False, None)
|
||||
):
|
||||
proc.model.finish_update(optimizer)
|
||||
optimizer.step_schedules()
|
||||
if not (step % eval_frequency):
|
||||
|
|
|
@ -482,6 +482,15 @@ class Errors:
|
|||
E199 = ("Unable to merge 0-length span at doc[{start}:{end}].")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E930 = ("Received invalid get_examples callback in {name}.begin_training. "
|
||||
"Expected function that returns an iterable of Example objects but "
|
||||
"got: {obj}")
|
||||
E931 = ("Encountered Pipe subclass without Pipe.{method} method in component "
|
||||
"'{name}'. If the component is trainable and you want to use this "
|
||||
"method, make sure it's overwritten on the subclass. If your "
|
||||
"component isn't trainable, add a method that does nothing or "
|
||||
"don't use the Pipe base class.")
|
||||
E940 = ("Found NaN values in scores.")
|
||||
E941 = ("Can't find model '{name}'. It looks like you're trying to load a "
|
||||
"model from a shortcut, which is deprecated as of spaCy v3.0. To "
|
||||
"load the model, use its full name instead:\n\n"
|
||||
|
@ -578,8 +587,7 @@ class Errors:
|
|||
"but received None.")
|
||||
E977 = ("Can not compare a MorphAnalysis with a string object. "
|
||||
"This is likely a bug in spaCy, so feel free to open an issue.")
|
||||
E978 = ("The '{method}' method of {name} takes a list of Example objects, "
|
||||
"but found {types} instead.")
|
||||
E978 = ("The {name} method takes a list of Example objects, but got: {types}")
|
||||
E979 = ("Cannot convert {type} to an Example object.")
|
||||
E980 = ("Each link annotation should refer to a dictionary with at most one "
|
||||
"identifier mapping to 1.0, and all others to 0.0.")
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from .corpus import Corpus # noqa: F401
|
||||
from .example import Example # noqa: F401
|
||||
from .example import Example, validate_examples # noqa: F401
|
||||
from .align import Alignment # noqa: F401
|
||||
from .iob_utils import iob_to_biluo, biluo_to_iob # noqa: F401
|
||||
from .iob_utils import biluo_tags_from_offsets, offsets_from_biluo_tags # noqa: F401
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from collections import Iterable as IterableInstance
|
||||
import warnings
|
||||
|
||||
import numpy
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
@ -26,6 +26,22 @@ cpdef Doc annotations2doc(vocab, tok_annot, doc_annot):
|
|||
return output
|
||||
|
||||
|
||||
def validate_examples(examples, method):
|
||||
"""Check that a batch of examples received during processing is valid.
|
||||
This function lives here to prevent circular imports.
|
||||
|
||||
examples (Iterable[Examples]): A batch of examples.
|
||||
method (str): The method name to show in error messages.
|
||||
"""
|
||||
if not isinstance(examples, IterableInstance):
|
||||
err = Errors.E978.format(name=method, types=type(examples))
|
||||
raise TypeError(err)
|
||||
wrong = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
||||
if wrong:
|
||||
err = Errors.E978.format(name=method, types=wrong)
|
||||
raise TypeError(err)
|
||||
|
||||
|
||||
cdef class Example:
|
||||
def __init__(self, Doc predicted, Doc reference, *, alignment=None):
|
||||
if predicted is None:
|
||||
|
@ -263,12 +279,10 @@ def _annot2array(vocab, tok_annot, doc_annot):
|
|||
values.append([vocab.morphology.add(v) for v in value])
|
||||
else:
|
||||
attrs.append(key)
|
||||
try:
|
||||
values.append([vocab.strings.add(v) for v in value])
|
||||
except TypeError:
|
||||
if not all(isinstance(v, str) for v in value):
|
||||
types = set([type(v) for v in value])
|
||||
raise TypeError(Errors.E969.format(field=key, types=types)) from None
|
||||
|
||||
values.append([vocab.strings.add(v) for v in value])
|
||||
array = numpy.asarray(values, dtype="uint64")
|
||||
return attrs, array.T
|
||||
|
||||
|
|
|
@ -5,7 +5,6 @@ import random
|
|||
import itertools
|
||||
import weakref
|
||||
import functools
|
||||
from collections import Iterable as IterableInstance
|
||||
from contextlib import contextmanager
|
||||
from copy import copy, deepcopy
|
||||
from pathlib import Path
|
||||
|
@ -19,7 +18,7 @@ from timeit import default_timer as timer
|
|||
from .tokens.underscore import Underscore
|
||||
from .vocab import Vocab, create_vocab
|
||||
from .pipe_analysis import validate_attrs, analyze_pipes, print_pipe_analysis
|
||||
from .gold import Example
|
||||
from .gold import Example, validate_examples
|
||||
from .scorer import Scorer
|
||||
from .util import create_default_optimizer, registry
|
||||
from .util import SimpleFrozenDict, combine_score_weights
|
||||
|
@ -935,17 +934,7 @@ class Language:
|
|||
losses = {}
|
||||
if len(examples) == 0:
|
||||
return losses
|
||||
if not isinstance(examples, IterableInstance):
|
||||
raise TypeError(
|
||||
Errors.E978.format(
|
||||
name="language", method="update", types=type(examples)
|
||||
)
|
||||
)
|
||||
wrong_types = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
||||
if wrong_types:
|
||||
raise TypeError(
|
||||
Errors.E978.format(name="language", method="update", types=wrong_types)
|
||||
)
|
||||
validate_examples(examples, "Language.update")
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = create_default_optimizer()
|
||||
|
@ -962,7 +951,11 @@ class Language:
|
|||
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
||||
if sgd not in (None, False):
|
||||
for name, proc in self.pipeline:
|
||||
if name not in exclude and hasattr(proc, "model"):
|
||||
if (
|
||||
name not in exclude
|
||||
and hasattr(proc, "model")
|
||||
and proc.model not in (True, False, None)
|
||||
):
|
||||
proc.model.finish_update(sgd)
|
||||
return losses
|
||||
|
||||
|
@ -999,19 +992,7 @@ class Language:
|
|||
"""
|
||||
if len(examples) == 0:
|
||||
return
|
||||
if not isinstance(examples, IterableInstance):
|
||||
raise TypeError(
|
||||
Errors.E978.format(
|
||||
name="language", method="rehearse", types=type(examples)
|
||||
)
|
||||
)
|
||||
wrong_types = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
||||
if wrong_types:
|
||||
raise TypeError(
|
||||
Errors.E978.format(
|
||||
name="language", method="rehearse", types=wrong_types
|
||||
)
|
||||
)
|
||||
validate_examples(examples, "Language.rehearse")
|
||||
if sgd is None:
|
||||
if self._optimizer is None:
|
||||
self._optimizer = create_default_optimizer()
|
||||
|
@ -1060,7 +1041,15 @@ class Language:
|
|||
if get_examples is None:
|
||||
get_examples = lambda: []
|
||||
else: # Populate vocab
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="Language", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
for example in get_examples():
|
||||
if not isinstance(example, Example):
|
||||
err = Errors.E978.format(
|
||||
name="Language.begin_training", types=type(example)
|
||||
)
|
||||
raise ValueError(err)
|
||||
for word in [t.text for t in example.reference]:
|
||||
_ = self.vocab[word] # noqa: F841
|
||||
if device >= 0: # TODO: do we need this here?
|
||||
|
@ -1133,17 +1122,7 @@ class Language:
|
|||
|
||||
DOCS: https://spacy.io/api/language#evaluate
|
||||
"""
|
||||
if not isinstance(examples, IterableInstance):
|
||||
err = Errors.E978.format(
|
||||
name="language", method="evaluate", types=type(examples)
|
||||
)
|
||||
raise TypeError(err)
|
||||
wrong_types = set([type(eg) for eg in examples if not isinstance(eg, Example)])
|
||||
if wrong_types:
|
||||
err = Errors.E978.format(
|
||||
name="language", method="evaluate", types=wrong_types
|
||||
)
|
||||
raise TypeError(err)
|
||||
validate_examples(examples, "Language.evaluate")
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
if scorer_cfg is None:
|
||||
|
@ -1663,7 +1642,7 @@ def _fix_pretrained_vectors_name(nlp: Language) -> None:
|
|||
else:
|
||||
raise ValueError(Errors.E092)
|
||||
for name, proc in nlp.pipeline:
|
||||
if not hasattr(proc, "cfg"):
|
||||
if not hasattr(proc, "cfg") or not isinstance(proc.cfg, dict):
|
||||
continue
|
||||
proc.cfg.setdefault("deprecation_fixes", {})
|
||||
proc.cfg["deprecation_fixes"]["vectors_name"] = nlp.vocab.vectors.name
|
||||
|
|
|
@ -9,6 +9,7 @@ from .functions import merge_subtokens
|
|||
from ..language import Language
|
||||
from ._parser_internals import nonproj
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
|
||||
|
||||
default_model_config = """
|
||||
|
@ -147,6 +148,7 @@ cdef class DependencyParser(Parser):
|
|||
|
||||
DOCS: https://spacy.io/api/dependencyparser#score
|
||||
"""
|
||||
validate_examples(examples, "DependencyParser.score")
|
||||
def dep_getter(token, attr):
|
||||
dep = getattr(token, attr)
|
||||
dep = token.vocab.strings.as_string(dep).lower()
|
||||
|
|
|
@ -11,7 +11,7 @@ from ..tokens import Doc
|
|||
from .pipe import Pipe, deserialize_config
|
||||
from ..language import Language
|
||||
from ..vocab import Vocab
|
||||
from ..gold import Example
|
||||
from ..gold import Example, validate_examples
|
||||
from ..errors import Errors, Warnings
|
||||
from .. import util
|
||||
|
||||
|
@ -142,7 +142,7 @@ class EntityLinker(Pipe):
|
|||
|
||||
def begin_training(
|
||||
self,
|
||||
get_examples: Callable[[], Iterable[Example]] = lambda: [],
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
|
@ -197,14 +197,9 @@ class EntityLinker(Pipe):
|
|||
losses.setdefault(self.name, 0.0)
|
||||
if not examples:
|
||||
return losses
|
||||
validate_examples(examples, "EntityLinker.update")
|
||||
sentence_docs = []
|
||||
try:
|
||||
docs = [eg.predicted for eg in examples]
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
raise TypeError(
|
||||
Errors.E978.format(name="EntityLinker", method="update", types=types)
|
||||
) from None
|
||||
if set_annotations:
|
||||
# This seems simpler than other ways to get that exact output -- but
|
||||
# it does run the model twice :(
|
||||
|
@ -250,6 +245,7 @@ class EntityLinker(Pipe):
|
|||
return losses
|
||||
|
||||
def get_loss(self, examples: Iterable[Example], sentence_encodings):
|
||||
validate_examples(examples, "EntityLinker.get_loss")
|
||||
entity_encodings = []
|
||||
for eg in examples:
|
||||
kb_ids = eg.get_aligned("ENT_KB_ID", as_string=True)
|
||||
|
|
|
@ -9,6 +9,7 @@ from ..util import ensure_path, to_disk, from_disk
|
|||
from ..tokens import Doc, Span
|
||||
from ..matcher import Matcher, PhraseMatcher
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
|
||||
|
||||
DEFAULT_ENT_ID_SEP = "||"
|
||||
|
@ -312,6 +313,7 @@ class EntityRuler:
|
|||
return label
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
validate_examples(examples, "EntityRuler.score")
|
||||
return Scorer.score_spans(examples, "ents", **kwargs)
|
||||
|
||||
def from_bytes(
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
from typing import Optional, List, Dict, Any
|
||||
|
||||
from thinc.api import Model
|
||||
|
||||
from .pipe import Pipe
|
||||
|
@ -9,6 +8,7 @@ from ..lookups import Lookups, load_lookups
|
|||
from ..scorer import Scorer
|
||||
from ..tokens import Doc, Token
|
||||
from ..vocab import Vocab
|
||||
from ..gold import validate_examples
|
||||
from .. import util
|
||||
|
||||
|
||||
|
@ -135,10 +135,10 @@ class Lemmatizer(Pipe):
|
|||
elif self.mode == "rule":
|
||||
self.lemmatize = self.rule_lemmatize
|
||||
else:
|
||||
try:
|
||||
self.lemmatize = getattr(self, f"{self.mode}_lemmatize")
|
||||
except AttributeError:
|
||||
mode_attr = f"{self.mode}_lemmatize"
|
||||
if not hasattr(self, mode_attr):
|
||||
raise ValueError(Errors.E1003.format(mode=mode))
|
||||
self.lemmatize = getattr(self, mode_attr)
|
||||
self.cache = {}
|
||||
|
||||
@property
|
||||
|
@ -271,6 +271,7 @@ class Lemmatizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/lemmatizer#score
|
||||
"""
|
||||
validate_examples(examples, "Lemmatizer.score")
|
||||
return Scorer.score_token_attr(examples, "lemma", **kwargs)
|
||||
|
||||
def to_disk(self, path, *, exclude=tuple()):
|
||||
|
|
|
@ -6,15 +6,16 @@ from thinc.api import SequenceCategoricalCrossentropy, Model, Config
|
|||
from ..tokens.doc cimport Doc
|
||||
from ..vocab cimport Vocab
|
||||
from ..morphology cimport Morphology
|
||||
|
||||
from ..parts_of_speech import IDS as POS_IDS
|
||||
from ..symbols import POS
|
||||
|
||||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from .pipe import deserialize_config
|
||||
from .tagger import Tagger
|
||||
from .. import util
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
|
||||
|
||||
default_model_config = """
|
||||
|
@ -126,7 +127,7 @@ class Morphologizer(Tagger):
|
|||
self.cfg["labels_pos"][norm_label] = POS_IDS[pos]
|
||||
return 1
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
|
@ -140,6 +141,9 @@ class Morphologizer(Tagger):
|
|||
|
||||
DOCS: https://spacy.io/api/morphologizer#begin_training
|
||||
"""
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="Morphologizer", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
for example in get_examples():
|
||||
for i, token in enumerate(example.reference):
|
||||
pos = token.pos_
|
||||
|
@ -192,6 +196,7 @@ class Morphologizer(Tagger):
|
|||
|
||||
DOCS: https://spacy.io/api/morphologizer#get_loss
|
||||
"""
|
||||
validate_examples(examples, "Morphologizer.get_loss")
|
||||
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
|
||||
truths = []
|
||||
for eg in examples:
|
||||
|
@ -228,6 +233,7 @@ class Morphologizer(Tagger):
|
|||
|
||||
DOCS: https://spacy.io/api/morphologizer#score
|
||||
"""
|
||||
validate_examples(examples, "Morphologizer.score")
|
||||
results = {}
|
||||
results.update(Scorer.score_token_attr(examples, "pos", **kwargs))
|
||||
results.update(Scorer.score_token_attr(examples, "morph", **kwargs))
|
||||
|
|
|
@ -8,6 +8,7 @@ from ..tokens.doc cimport Doc
|
|||
|
||||
from .pipe import Pipe
|
||||
from .tagger import Tagger
|
||||
from ..gold import validate_examples
|
||||
from ..language import Language
|
||||
from ._parser_internals import nonproj
|
||||
from ..attrs import POS, ID
|
||||
|
@ -80,10 +81,11 @@ class MultitaskObjective(Tagger):
|
|||
def set_annotations(self, docs, dep_ids):
|
||||
pass
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
||||
gold_examples = nonproj.preprocess_training_data(get_examples())
|
||||
# for raw_text, doc_annot in gold_tuples:
|
||||
for example in gold_examples:
|
||||
def begin_training(self, get_examples, pipeline=None, sgd=None):
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="MultitaskObjective", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
for example in get_examples():
|
||||
for token in example.y:
|
||||
label = self.make_label(token)
|
||||
if label is not None and label not in self.labels:
|
||||
|
@ -175,7 +177,7 @@ class ClozeMultitask(Pipe):
|
|||
def set_annotations(self, docs, dep_ids):
|
||||
pass
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, pipeline=None, sgd=None):
|
||||
self.model.initialize()
|
||||
X = self.model.ops.alloc((5, self.model.get_ref("tok2vec").get_dim("nO")))
|
||||
self.model.output_layer.begin_training(X)
|
||||
|
@ -189,6 +191,7 @@ class ClozeMultitask(Pipe):
|
|||
return tokvecs, vectors
|
||||
|
||||
def get_loss(self, examples, vectors, prediction):
|
||||
validate_examples(examples, "ClozeMultitask.get_loss")
|
||||
# The simplest way to implement this would be to vstack the
|
||||
# token.vector values, but that's a bit inefficient, especially on GPU.
|
||||
# Instead we fetch the index into the vectors table for each of our tokens,
|
||||
|
@ -206,18 +209,16 @@ class ClozeMultitask(Pipe):
|
|||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
set_dropout_rate(self.model, drop)
|
||||
try:
|
||||
predictions, bp_predictions = self.model.begin_update([eg.predicted for eg in examples])
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
raise TypeError(Errors.E978.format(name="ClozeMultitask", method="rehearse", types=types)) from None
|
||||
validate_examples(examples, "ClozeMultitask.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
predictions, bp_predictions = self.model.begin_update()
|
||||
loss, d_predictions = self.get_loss(examples, self.vocab.vectors.data, predictions)
|
||||
bp_predictions(d_predictions)
|
||||
if sgd is not None:
|
||||
self.model.finish_update(sgd)
|
||||
|
||||
if losses is not None:
|
||||
losses[self.name] += loss
|
||||
return losses
|
||||
|
||||
def add_label(self, label):
|
||||
raise NotImplementedError
|
||||
|
|
|
@ -7,6 +7,7 @@ from ._parser_internals.ner cimport BiluoPushDown
|
|||
|
||||
from ..language import Language
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
|
||||
|
||||
default_model_config = """
|
||||
|
@ -120,4 +121,5 @@ cdef class EntityRecognizer(Parser):
|
|||
|
||||
DOCS: https://spacy.io/api/entityrecognizer#score
|
||||
"""
|
||||
validate_examples(examples, "EntityRecognizer.score")
|
||||
return Scorer.score_spans(examples, "ents", **kwargs)
|
||||
|
|
|
@ -1,2 +1,5 @@
|
|||
cdef class Pipe:
|
||||
cdef public object vocab
|
||||
cdef public object model
|
||||
cdef public str name
|
||||
cdef public object cfg
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
# cython: infer_types=True, profile=True
|
||||
import srsly
|
||||
from thinc.api import set_dropout_rate, Model
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from ..util import create_default_optimizer
|
||||
from ..gold import validate_examples
|
||||
from ..errors import Errors
|
||||
from .. import util
|
||||
|
||||
|
@ -16,7 +17,6 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe
|
||||
"""
|
||||
|
||||
def __init__(self, vocab, model, name, **cfg):
|
||||
"""Initialize a pipeline component.
|
||||
|
||||
|
@ -27,7 +27,10 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#init
|
||||
"""
|
||||
raise NotImplementedError
|
||||
self.vocab = vocab
|
||||
self.model = model
|
||||
self.name = name
|
||||
self.cfg = dict(cfg)
|
||||
|
||||
def __call__(self, Doc doc):
|
||||
"""Apply the pipe to one document. The document is modified in place,
|
||||
|
@ -68,7 +71,7 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#predict
|
||||
"""
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError(Errors.E931.format(method="predict", name=self.name))
|
||||
|
||||
def set_annotations(self, docs, scores):
|
||||
"""Modify a batch of documents, using pre-computed scores.
|
||||
|
@ -78,7 +81,43 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#set_annotations
|
||||
"""
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError(Errors.E931.format(method="set_annotations", name=self.name))
|
||||
|
||||
def update(self, examples, *, drop=0.0, set_annotations=False, sgd=None, losses=None):
|
||||
"""Learn from a batch of documents and gold-standard information,
|
||||
updating the pipe's model. Delegates to predict and get_loss.
|
||||
|
||||
examples (Iterable[Example]): A batch of Example objects.
|
||||
drop (float): The dropout rate.
|
||||
set_annotations (bool): Whether or not to update the Example objects
|
||||
with the predictions.
|
||||
sgd (thinc.api.Optimizer): The optimizer.
|
||||
losses (Dict[str, float]): Optional record of the loss during training.
|
||||
Updated using the component name as the key.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary.
|
||||
|
||||
DOCS: https://spacy.io/api/pipe#update
|
||||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
if not hasattr(self, "model") or self.model in (None, True, False):
|
||||
return losses
|
||||
losses.setdefault(self.name, 0.0)
|
||||
validate_examples(examples, "Pipe.update")
|
||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
set_dropout_rate(self.model, drop)
|
||||
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
|
||||
loss, d_scores = self.get_loss(examples, scores)
|
||||
bp_scores(d_scores)
|
||||
if sgd not in (None, False):
|
||||
self.model.finish_update(sgd)
|
||||
losses[self.name] += loss
|
||||
if set_annotations:
|
||||
docs = [eg.predicted for eg in examples]
|
||||
self.set_annotations(docs, scores=scores)
|
||||
return losses
|
||||
|
||||
def rehearse(self, examples, *, sgd=None, losses=None, **config):
|
||||
"""Perform a "rehearsal" update from a batch of data. Rehearsal updates
|
||||
|
@ -107,7 +146,7 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#get_loss
|
||||
"""
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError(Errors.E931.format(method="get_loss", name=self.name))
|
||||
|
||||
def add_label(self, label):
|
||||
"""Add an output label, to be predicted by the model. It's possible to
|
||||
|
@ -119,7 +158,7 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#add_label
|
||||
"""
|
||||
raise NotImplementedError
|
||||
raise NotImplementedError(Errors.E931.format(method="add_label", name=self.name))
|
||||
|
||||
def create_optimizer(self):
|
||||
"""Create an optimizer for the pipeline component.
|
||||
|
@ -128,9 +167,9 @@ cdef class Pipe:
|
|||
|
||||
DOCS: https://spacy.io/api/pipe#create_optimizer
|
||||
"""
|
||||
return create_default_optimizer()
|
||||
return util.create_default_optimizer()
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
|
|
|
@ -7,6 +7,7 @@ from ..tokens.doc cimport Doc
|
|||
from .pipe import Pipe
|
||||
from ..language import Language
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
from .. import util
|
||||
|
||||
|
||||
|
@ -58,7 +59,7 @@ class Sentencizer(Pipe):
|
|||
else:
|
||||
self.punct_chars = set(self.default_punct_chars)
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, pipeline=None, sgd=None):
|
||||
pass
|
||||
|
||||
def __call__(self, doc):
|
||||
|
@ -158,6 +159,7 @@ class Sentencizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/sentencizer#score
|
||||
"""
|
||||
validate_examples(examples, "Sentencizer.score")
|
||||
results = Scorer.score_spans(examples, "sents", **kwargs)
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
|
|
@ -9,6 +9,7 @@ from .tagger import Tagger
|
|||
from ..language import Language
|
||||
from ..errors import Errors
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
from .. import util
|
||||
|
||||
|
||||
|
@ -102,6 +103,7 @@ class SentenceRecognizer(Tagger):
|
|||
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#get_loss
|
||||
"""
|
||||
validate_examples(examples, "SentenceRecognizer.get_loss")
|
||||
labels = self.labels
|
||||
loss_func = SequenceCategoricalCrossentropy(names=labels, normalize=False)
|
||||
truths = []
|
||||
|
@ -121,7 +123,7 @@ class SentenceRecognizer(Tagger):
|
|||
raise ValueError("nan value when computing loss")
|
||||
return float(loss), d_scores
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
|
@ -151,6 +153,7 @@ class SentenceRecognizer(Tagger):
|
|||
RETURNS (Dict[str, Any]): The scores, produced by Scorer.score_spans.
|
||||
DOCS: https://spacy.io/api/sentencerecognizer#score
|
||||
"""
|
||||
validate_examples(examples, "SentenceRecognizer.score")
|
||||
results = Scorer.score_spans(examples, "sents", **kwargs)
|
||||
del results["sents_per_type"]
|
||||
return results
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import List, Iterable, Optional, Dict, Tuple, Callable
|
||||
from typing import List, Iterable, Optional, Dict, Tuple, Callable, Set
|
||||
from thinc.types import Floats2d
|
||||
from thinc.api import SequenceCategoricalCrossentropy, set_dropout_rate, Model
|
||||
from thinc.api import Optimizer, Config
|
||||
|
@ -6,6 +6,7 @@ from thinc.util import to_numpy
|
|||
|
||||
from ..errors import Errors
|
||||
from ..gold import Example, spans_from_biluo_tags, iob_to_biluo, biluo_to_iob
|
||||
from ..gold import validate_examples
|
||||
from ..tokens import Doc
|
||||
from ..language import Language
|
||||
from ..vocab import Vocab
|
||||
|
@ -127,6 +128,7 @@ class SimpleNER(Pipe):
|
|||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault("ner", 0.0)
|
||||
validate_examples(examples, "SimpleNER.update")
|
||||
if not any(_has_ner(eg) for eg in examples):
|
||||
return losses
|
||||
docs = [eg.predicted for eg in examples]
|
||||
|
@ -142,6 +144,7 @@ class SimpleNER(Pipe):
|
|||
return losses
|
||||
|
||||
def get_loss(self, examples: List[Example], scores) -> Tuple[List[Floats2d], float]:
|
||||
validate_examples(examples, "SimpleNER.get_loss")
|
||||
truths = []
|
||||
for eg in examples:
|
||||
tags = eg.get_aligned_ner()
|
||||
|
@ -161,14 +164,17 @@ class SimpleNER(Pipe):
|
|||
|
||||
def begin_training(
|
||||
self,
|
||||
get_examples: Callable,
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
):
|
||||
all_labels = set()
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
gold_tuples = get_examples
|
||||
get_examples = lambda: gold_tuples
|
||||
for label in _get_labels(get_examples()):
|
||||
err = Errors.E930.format(name="SimpleNER", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
for example in get_examples():
|
||||
all_labels.update(_get_labels(example))
|
||||
for label in sorted(all_labels):
|
||||
self.add_label(label)
|
||||
labels = self.labels
|
||||
n_actions = self.model.attrs["get_num_actions"](len(labels))
|
||||
|
@ -185,6 +191,7 @@ class SimpleNER(Pipe):
|
|||
pass
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
validate_examples(examples, "SimpleNER.score")
|
||||
return Scorer.score_spans(examples, "ents", **kwargs)
|
||||
|
||||
|
||||
|
@ -196,10 +203,9 @@ def _has_ner(example: Example) -> bool:
|
|||
return False
|
||||
|
||||
|
||||
def _get_labels(examples: List[Example]) -> List[str]:
|
||||
def _get_labels(example: Example) -> Set[str]:
|
||||
labels = set()
|
||||
for eg in examples:
|
||||
for ner_tag in eg.get_aligned("ENT_TYPE", as_string=True):
|
||||
for ner_tag in example.get_aligned("ENT_TYPE", as_string=True):
|
||||
if ner_tag != "O" and ner_tag != "-":
|
||||
labels.add(ner_tag)
|
||||
return list(sorted(labels))
|
||||
return labels
|
||||
|
|
|
@ -16,6 +16,7 @@ from ..attrs import POS, ID
|
|||
from ..parts_of_speech import X
|
||||
from ..errors import Errors, TempErrors, Warnings
|
||||
from ..scorer import Scorer
|
||||
from ..gold import validate_examples
|
||||
from .. import util
|
||||
|
||||
|
||||
|
@ -187,19 +188,15 @@ class Tagger(Pipe):
|
|||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault(self.name, 0.0)
|
||||
try:
|
||||
validate_examples(examples, "Tagger.update")
|
||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
raise TypeError(Errors.E978.format(name="Tagger", method="update", types=types)) from None
|
||||
set_dropout_rate(self.model, drop)
|
||||
tag_scores, bp_tag_scores = self.model.begin_update(
|
||||
[eg.predicted for eg in examples])
|
||||
tag_scores, bp_tag_scores = self.model.begin_update([eg.predicted for eg in examples])
|
||||
for sc in tag_scores:
|
||||
if self.model.ops.xp.isnan(sc.sum()):
|
||||
raise ValueError("nan value in scores")
|
||||
raise ValueError(Errors.E940)
|
||||
loss, d_tag_scores = self.get_loss(examples, tag_scores)
|
||||
bp_tag_scores(d_tag_scores)
|
||||
if sgd not in (None, False):
|
||||
|
@ -226,11 +223,8 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#rehearse
|
||||
"""
|
||||
try:
|
||||
validate_examples(examples, "Tagger.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
raise TypeError(Errors.E978.format(name="Tagger", method="rehearse", types=types)) from None
|
||||
if self._rehearsal_model is None:
|
||||
return
|
||||
if not any(len(doc) for doc in docs):
|
||||
|
@ -256,6 +250,7 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#get_loss
|
||||
"""
|
||||
validate_examples(examples, "Tagger.get_loss")
|
||||
loss_func = SequenceCategoricalCrossentropy(names=self.labels, normalize=False)
|
||||
truths = [eg.get_aligned("TAG", as_string=True) for eg in examples]
|
||||
d_scores, loss = loss_func(scores, truths)
|
||||
|
@ -263,7 +258,7 @@ class Tagger(Pipe):
|
|||
raise ValueError("nan value when computing loss")
|
||||
return float(loss), d_scores
|
||||
|
||||
def begin_training(self, get_examples=lambda: [], *, pipeline=None, sgd=None):
|
||||
def begin_training(self, get_examples, *, pipeline=None, sgd=None):
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
|
@ -277,13 +272,12 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#begin_training
|
||||
"""
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="Tagger", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
tags = set()
|
||||
for example in get_examples():
|
||||
try:
|
||||
y = example.y
|
||||
except AttributeError:
|
||||
raise TypeError(Errors.E978.format(name="Tagger", method="begin_training", types=type(example))) from None
|
||||
for token in y:
|
||||
for token in example.y:
|
||||
tags.add(token.tag_)
|
||||
for tag in sorted(tags):
|
||||
self.add_label(tag)
|
||||
|
@ -318,6 +312,7 @@ class Tagger(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/tagger#score
|
||||
"""
|
||||
validate_examples(examples, "Tagger.score")
|
||||
return Scorer.score_token_attr(examples, "tag", **kwargs)
|
||||
|
||||
def to_bytes(self, *, exclude=tuple()):
|
||||
|
|
|
@ -5,7 +5,7 @@ import numpy
|
|||
|
||||
from .pipe import Pipe
|
||||
from ..language import Language
|
||||
from ..gold import Example
|
||||
from ..gold import Example, validate_examples
|
||||
from ..errors import Errors
|
||||
from ..scorer import Scorer
|
||||
from .. import util
|
||||
|
@ -209,15 +209,10 @@ class TextCategorizer(Pipe):
|
|||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault(self.name, 0.0)
|
||||
try:
|
||||
validate_examples(examples, "TextCategorizer.update")
|
||||
if not any(len(eg.predicted) if eg.predicted else 0 for eg in examples):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return losses
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
raise TypeError(
|
||||
Errors.E978.format(name="TextCategorizer", method="update", types=types)
|
||||
) from None
|
||||
set_dropout_rate(self.model, drop)
|
||||
scores, bp_scores = self.model.begin_update([eg.predicted for eg in examples])
|
||||
loss, d_scores = self.get_loss(examples, scores)
|
||||
|
@ -252,19 +247,12 @@ class TextCategorizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/textcategorizer#rehearse
|
||||
"""
|
||||
|
||||
if losses is not None:
|
||||
losses.setdefault(self.name, 0.0)
|
||||
if self._rehearsal_model is None:
|
||||
return losses
|
||||
try:
|
||||
validate_examples(examples, "TextCategorizer.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
except AttributeError:
|
||||
types = set([type(eg) for eg in examples])
|
||||
err = Errors.E978.format(
|
||||
name="TextCategorizer", method="rehearse", types=types
|
||||
)
|
||||
raise TypeError(err) from None
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle cases where there are no tokens in any docs.
|
||||
return losses
|
||||
|
@ -303,6 +291,7 @@ class TextCategorizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/textcategorizer#get_loss
|
||||
"""
|
||||
validate_examples(examples, "TextCategorizer.get_loss")
|
||||
truths, not_missing = self._examples_to_truth(examples)
|
||||
not_missing = self.model.ops.asarray(not_missing)
|
||||
d_scores = (scores - truths) / scores.shape[0]
|
||||
|
@ -338,7 +327,7 @@ class TextCategorizer(Pipe):
|
|||
|
||||
def begin_training(
|
||||
self,
|
||||
get_examples: Callable[[], Iterable[Example]] = lambda: [],
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
|
@ -356,21 +345,20 @@ class TextCategorizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/textcategorizer#begin_training
|
||||
"""
|
||||
# TODO: begin_training is not guaranteed to see all data / labels ?
|
||||
examples = list(get_examples())
|
||||
for example in examples:
|
||||
try:
|
||||
y = example.y
|
||||
except AttributeError:
|
||||
err = Errors.E978.format(
|
||||
name="TextCategorizer", method="update", types=type(example)
|
||||
)
|
||||
raise TypeError(err) from None
|
||||
for cat in y.cats:
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="TextCategorizer", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
subbatch = [] # Select a subbatch of examples to initialize the model
|
||||
for example in get_examples():
|
||||
if len(subbatch) < 2:
|
||||
subbatch.append(example)
|
||||
for cat in example.y.cats:
|
||||
self.add_label(cat)
|
||||
self.require_labels()
|
||||
docs = [eg.reference for eg in subbatch]
|
||||
if not docs: # need at least one doc
|
||||
docs = [Doc(self.vocab, words=["hello"])]
|
||||
truths, _ = self._examples_to_truth(examples)
|
||||
truths, _ = self._examples_to_truth(subbatch)
|
||||
self.set_output(len(self.labels))
|
||||
self.model.initialize(X=docs, Y=truths)
|
||||
if sgd is None:
|
||||
|
@ -392,6 +380,7 @@ class TextCategorizer(Pipe):
|
|||
|
||||
DOCS: https://spacy.io/api/textcategorizer#score
|
||||
"""
|
||||
validate_examples(examples, "TextCategorizer.score")
|
||||
return Scorer.score_cats(
|
||||
examples,
|
||||
"cats",
|
||||
|
|
|
@ -2,7 +2,7 @@ from typing import Iterator, Sequence, Iterable, Optional, Dict, Callable, List,
|
|||
from thinc.api import Model, set_dropout_rate, Optimizer, Config
|
||||
|
||||
from .pipe import Pipe
|
||||
from ..gold import Example
|
||||
from ..gold import Example, validate_examples
|
||||
from ..tokens import Doc
|
||||
from ..vocab import Vocab
|
||||
from ..language import Language
|
||||
|
@ -166,9 +166,8 @@ class Tok2Vec(Pipe):
|
|||
"""
|
||||
if losses is None:
|
||||
losses = {}
|
||||
validate_examples(examples, "Tok2Vec.update")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
set_dropout_rate(self.model, drop)
|
||||
tokvecs, bp_tokvecs = self.model.begin_update(docs)
|
||||
d_tokvecs = [self.model.ops.alloc2f(*t2v.shape) for t2v in tokvecs]
|
||||
|
@ -204,7 +203,7 @@ class Tok2Vec(Pipe):
|
|||
|
||||
def begin_training(
|
||||
self,
|
||||
get_examples: Callable[[], Iterable[Example]] = lambda: [],
|
||||
get_examples: Callable[[], Iterable[Example]],
|
||||
*,
|
||||
pipeline: Optional[List[Tuple[str, Callable[[Doc], Doc]]]] = None,
|
||||
sgd: Optional[Optimizer] = None,
|
||||
|
|
|
@ -8,11 +8,8 @@ from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC
|
|||
|
||||
|
||||
cdef class Parser(Pipe):
|
||||
cdef readonly Vocab vocab
|
||||
cdef public object model
|
||||
cdef public object _rehearsal_model
|
||||
cdef readonly TransitionSystem moves
|
||||
cdef readonly object cfg
|
||||
cdef public object _multitasks
|
||||
|
||||
cdef void _parseC(self, StateC** states,
|
||||
|
|
|
@ -8,22 +8,21 @@ from libc.string cimport memset
|
|||
from libc.stdlib cimport calloc, free
|
||||
|
||||
import srsly
|
||||
from thinc.api import set_dropout_rate
|
||||
import numpy.random
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
from ._parser_internals.stateclass cimport StateClass
|
||||
from ..ml.parser_model cimport alloc_activations, free_activations
|
||||
from ..ml.parser_model cimport predict_states, arg_max_if_valid
|
||||
from ..ml.parser_model cimport WeightsC, ActivationsC, SizesC, cpu_log_loss
|
||||
from ..ml.parser_model cimport get_c_weights, get_c_sizes
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
|
||||
from ..gold import validate_examples
|
||||
from ..errors import Errors, Warnings
|
||||
from .. import util
|
||||
from ..util import create_default_optimizer
|
||||
|
||||
from thinc.api import set_dropout_rate
|
||||
import numpy.random
|
||||
import numpy
|
||||
import warnings
|
||||
|
||||
|
||||
cdef class Parser(Pipe):
|
||||
|
@ -266,6 +265,7 @@ cdef class Parser(Pipe):
|
|||
if losses is None:
|
||||
losses = {}
|
||||
losses.setdefault(self.name, 0.)
|
||||
validate_examples(examples, "Parser.update")
|
||||
for multitask in self._multitasks:
|
||||
multitask.update(examples, drop=drop, sgd=sgd)
|
||||
n_examples = len([eg for eg in examples if self.moves.has_gold(eg)])
|
||||
|
@ -329,7 +329,7 @@ cdef class Parser(Pipe):
|
|||
if self._rehearsal_model is None:
|
||||
return None
|
||||
losses.setdefault(self.name, 0.)
|
||||
|
||||
validate_examples(examples, "Parser.rehearse")
|
||||
docs = [eg.predicted for eg in examples]
|
||||
states = self.moves.init_batch(docs)
|
||||
# This is pretty dirty, but the NER can resize itself in init_batch,
|
||||
|
@ -398,21 +398,18 @@ cdef class Parser(Pipe):
|
|||
losses[self.name] += (d_scores**2).sum()
|
||||
return d_scores
|
||||
|
||||
def create_optimizer(self):
|
||||
return create_default_optimizer()
|
||||
|
||||
def set_output(self, nO):
|
||||
self.model.attrs["resize_output"](self.model, nO)
|
||||
|
||||
def begin_training(self, get_examples, pipeline=None, sgd=None, **kwargs):
|
||||
if not hasattr(get_examples, "__call__"):
|
||||
err = Errors.E930.format(name="DependencyParser/EntityRecognizer", obj=type(get_examples))
|
||||
raise ValueError(err)
|
||||
self.cfg.update(kwargs)
|
||||
lexeme_norms = self.vocab.lookups.get_table("lexeme_norm", {})
|
||||
if len(lexeme_norms) == 0 and self.vocab.lang in util.LEXEME_NORM_LANGS:
|
||||
langs = ", ".join(util.LEXEME_NORM_LANGS)
|
||||
warnings.warn(Warnings.W033.format(model="parser or NER", langs=langs))
|
||||
if not hasattr(get_examples, '__call__'):
|
||||
gold_tuples = get_examples
|
||||
get_examples = lambda: gold_tuples
|
||||
actions = self.moves.get_actions(
|
||||
examples=get_examples(),
|
||||
min_freq=self.cfg['min_action_freq'],
|
||||
|
|
|
@ -18,7 +18,7 @@ def test_doc_add_entities_set_ents_iob(en_vocab):
|
|||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.make_from_config(cfg, validate=True)["model"]
|
||||
ner = EntityRecognizer(en_vocab, model, **config)
|
||||
ner.begin_training([])
|
||||
ner.begin_training(lambda: [])
|
||||
ner(doc)
|
||||
assert len(list(doc.ents)) == 0
|
||||
assert [w.ent_iob_ for w in doc] == (["O"] * len(doc))
|
||||
|
@ -41,7 +41,7 @@ def test_ents_reset(en_vocab):
|
|||
cfg = {"model": DEFAULT_NER_MODEL}
|
||||
model = registry.make_from_config(cfg, validate=True)["model"]
|
||||
ner = EntityRecognizer(en_vocab, model, **config)
|
||||
ner.begin_training([])
|
||||
ner.begin_training(lambda: [])
|
||||
ner(doc)
|
||||
assert [t.ent_iob_ for t in doc] == (["O"] * len(doc))
|
||||
doc.ents = list(doc.ents)
|
||||
|
|
|
@ -35,7 +35,7 @@ def test_init_parser(parser):
|
|||
def _train_parser(parser):
|
||||
fix_random_seed(1)
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
parser.begin_training(lambda: [], **parser.cfg)
|
||||
sgd = Adam(0.001)
|
||||
|
||||
for i in range(5):
|
||||
|
@ -75,7 +75,7 @@ def test_add_label_deserializes_correctly():
|
|||
ner1.add_label("C")
|
||||
ner1.add_label("B")
|
||||
ner1.add_label("A")
|
||||
ner1.begin_training([])
|
||||
ner1.begin_training(lambda: [])
|
||||
ner2 = EntityRecognizer(Vocab(), model, **config)
|
||||
|
||||
# the second model needs to be resized before we can call from_bytes
|
||||
|
|
|
@ -28,7 +28,7 @@ def parser(vocab):
|
|||
parser.cfg["hidden_width"] = 32
|
||||
# parser.add_label('right')
|
||||
parser.add_label("left")
|
||||
parser.begin_training([], **parser.cfg)
|
||||
parser.begin_training(lambda: [], **parser.cfg)
|
||||
sgd = Adam(0.001)
|
||||
|
||||
for i in range(10):
|
||||
|
|
|
@ -136,7 +136,7 @@ def test_kb_undefined(nlp):
|
|||
"""Test that the EL can't train without defining a KB"""
|
||||
entity_linker = nlp.add_pipe("entity_linker", config={})
|
||||
with pytest.raises(ValueError):
|
||||
entity_linker.begin_training()
|
||||
entity_linker.begin_training(lambda: [])
|
||||
|
||||
|
||||
def test_kb_empty(nlp):
|
||||
|
@ -145,7 +145,7 @@ def test_kb_empty(nlp):
|
|||
entity_linker = nlp.add_pipe("entity_linker", config=config)
|
||||
assert len(entity_linker.kb) == 0
|
||||
with pytest.raises(ValueError):
|
||||
entity_linker.begin_training()
|
||||
entity_linker.begin_training(lambda: [])
|
||||
|
||||
|
||||
def test_candidate_generation(nlp):
|
||||
|
@ -249,7 +249,7 @@ def test_preserving_links_asdoc(nlp):
|
|||
ruler.add_patterns(patterns)
|
||||
el_config = {"kb": {"@assets": "myLocationsKB.v1"}, "incl_prior": False}
|
||||
el_pipe = nlp.add_pipe("entity_linker", config=el_config, last=True)
|
||||
el_pipe.begin_training()
|
||||
el_pipe.begin_training(lambda: [])
|
||||
el_pipe.incl_context = False
|
||||
el_pipe.incl_prior = True
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ def test_textcat_learns_multilabel():
|
|||
textcat = TextCategorizer(nlp.vocab, width=8)
|
||||
for letter in letters:
|
||||
textcat.add_label(letter)
|
||||
optimizer = textcat.begin_training()
|
||||
optimizer = textcat.begin_training(lambda: [])
|
||||
for i in range(30):
|
||||
losses = {}
|
||||
examples = [Example.from_dict(doc, {"cats": cats}) for doc, cat in docs]
|
||||
|
|
|
@ -20,7 +20,7 @@ def test_issue2564():
|
|||
nlp = Language()
|
||||
tagger = nlp.add_pipe("tagger")
|
||||
tagger.add_label("A")
|
||||
tagger.begin_training()
|
||||
tagger.begin_training(lambda: [])
|
||||
doc = nlp("hello world")
|
||||
assert doc.is_tagged
|
||||
docs = nlp.pipe(["hello", "world"])
|
||||
|
|
|
@ -303,7 +303,7 @@ def test_issue4313():
|
|||
config = {}
|
||||
ner = nlp.create_pipe("ner", config=config)
|
||||
ner.add_label("SOME_LABEL")
|
||||
ner.begin_training([])
|
||||
ner.begin_training(lambda: [])
|
||||
# add a new label to the doc
|
||||
doc = nlp("What do you think about Apple ?")
|
||||
assert len(ner.labels) == 1
|
||||
|
|
|
@ -62,7 +62,7 @@ def tagger():
|
|||
# need to add model for two reasons:
|
||||
# 1. no model leads to error in serialization,
|
||||
# 2. the affected line is the one for model serialization
|
||||
tagger.begin_training(pipeline=nlp.pipeline)
|
||||
tagger.begin_training(lambda: [], pipeline=nlp.pipeline)
|
||||
return tagger
|
||||
|
||||
|
||||
|
@ -81,7 +81,7 @@ def entity_linker():
|
|||
# need to add model for two reasons:
|
||||
# 1. no model leads to error in serialization,
|
||||
# 2. the affected line is the one for model serialization
|
||||
entity_linker.begin_training(pipeline=nlp.pipeline)
|
||||
entity_linker.begin_training(lambda: [], pipeline=nlp.pipeline)
|
||||
return entity_linker
|
||||
|
||||
|
||||
|
|
|
@ -24,6 +24,7 @@ from .util import registry
|
|||
from .attrs import intify_attrs
|
||||
from .symbols import ORTH
|
||||
from .scorer import Scorer
|
||||
from .gold import validate_examples
|
||||
|
||||
|
||||
cdef class Tokenizer:
|
||||
|
@ -712,6 +713,7 @@ cdef class Tokenizer:
|
|||
return tokens
|
||||
|
||||
def score(self, examples, **kwargs):
|
||||
validate_examples(examples, "Tokenizer.score")
|
||||
return Scorer.score_tokenization(examples)
|
||||
|
||||
def to_disk(self, path, **kwargs):
|
||||
|
|
|
@ -45,18 +45,12 @@ Create a new pipeline instance. In your application, you would normally use a
|
|||
shortcut for this and instantiate the component using its string name and
|
||||
[`nlp.add_pipe`](/api/language#create_pipe).
|
||||
|
||||
<Infobox variant="danger">
|
||||
|
||||
This method needs to be overwritten with your own custom `__init__` method.
|
||||
|
||||
</Infobox>
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------- |
|
||||
| ------- | ------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | `Vocab` | The shared vocabulary. |
|
||||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The Thinc [`Model`](https://thinc.ai/docs/api-model) powering the pipeline component. |
|
||||
| `name` | str | String name of the component instance. Used to add entries to the `losses` during training. |
|
||||
| `**cfg` | | Additional config parameters and settings. |
|
||||
| `**cfg` | | Additional config parameters and settings. Will be available as the dictionary `Pipe.cfg` and is serialized with the component. |
|
||||
|
||||
## Pipe.\_\_call\_\_ {#call tag="method"}
|
||||
|
||||
|
@ -182,12 +176,6 @@ method.
|
|||
Learn from a batch of [`Example`](/api/example) objects containing the
|
||||
predictions and gold-standard annotations, and update the component's model.
|
||||
|
||||
<Infobox variant="danger">
|
||||
|
||||
This method needs to be overwritten with your own custom `update` method.
|
||||
|
||||
</Infobox>
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
|
@ -384,6 +372,15 @@ Load the pipe from a bytestring. Modifies the object in place and returns it.
|
|||
| `exclude` | `Iterable[str]` | String names of [serialization fields](#serialization-fields) to exclude. |
|
||||
| **RETURNS** | `Pipe` | The pipe. |
|
||||
|
||||
## Attributes {#attributes}
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------- | ------------------------------------------ | ----------------------------------------------------------------------------------------------------- |
|
||||
| `vocab` | [`Vocab`](/api/vocab) | The shared vocabulary that's passed in on initialization. |
|
||||
| `model` | [`Model`](https://thinc.ai/docs/api-model) | The model powering the component. |
|
||||
| `name` | str | The name of the component instance in the pipeline. Can be used in the losses. |
|
||||
| `cfg` | dict | Keyword arguments passed to [`Pipe.__init__`](/api/pipe#init). Will be serialized with the component. |
|
||||
|
||||
## Serialization fields {#serialization-fields}
|
||||
|
||||
During serialization, spaCy will export several data fields used to restore
|
||||
|
|
|
@ -5,7 +5,6 @@ menu:
|
|||
- ['Processing Text', 'processing']
|
||||
- ['How Pipelines Work', 'pipelines']
|
||||
- ['Custom Components', 'custom-components']
|
||||
# - ['Trainable Components', 'trainable-components']
|
||||
- ['Extension Attributes', 'custom-components-attributes']
|
||||
- ['Plugins & Wrappers', 'plugins']
|
||||
---
|
||||
|
@ -885,15 +884,117 @@ available, falls back to looking up the regular factory name.
|
|||
|
||||
</Infobox>
|
||||
|
||||
<!-- TODO:
|
||||
## Trainable components {#trainable-components new="3"}
|
||||
### Trainable components {#trainable-components new="3"}
|
||||
|
||||
spaCy's [`Pipe`](/api/pipe) class helps you implement your own trainable
|
||||
components that have their own model instance, make predictions over `Doc`
|
||||
objects and can be updated using [`spacy train`](/api/cli#train). This lets you
|
||||
plug fully custom machine learning components into your pipeline.
|
||||
plug fully custom machine learning components into your pipeline. You'll need
|
||||
the following:
|
||||
|
||||
--->
|
||||
1. **Model:** A Thinc [`Model`](https://thinc.ai/docs/api-model) instance. This
|
||||
can be a model using [layers](https://thinc.ai/docs/api-layers) implemented
|
||||
in Thinc, or a [wrapped model](https://thinc.ai/docs/usage-frameworks)
|
||||
implemented in PyTorch, TensorFlow, MXNet or a fully custom solution. The
|
||||
model must take a list of [`Doc`](/api/doc) objects as input and can have any
|
||||
type of output.
|
||||
2. **Pipe subclass:** A subclass of [`Pipe`](/api/pipe) that implements at least
|
||||
two methods: [`Pipe.predict`](/api/pipe#predict) and
|
||||
[`Pipe.set_annotations`](/api/pipe#set_annotations).
|
||||
3. **Component factory:** A component factory registered with
|
||||
[`@Language.factory`](/api/language#factory) that takes the `nlp` object and
|
||||
component `name` and optional settings provided by the config and returns an
|
||||
instance of your trainable component.
|
||||
|
||||
> #### Example
|
||||
>
|
||||
> ```python
|
||||
> from spacy.pipeline import Pipe
|
||||
> from spacy.language import Language
|
||||
>
|
||||
> class TrainableComponent(Pipe):
|
||||
> def predict(self, docs):
|
||||
> ...
|
||||
>
|
||||
> def set_annotations(self, docs, scores):
|
||||
> ...
|
||||
>
|
||||
> @Language.factory("my_trainable_component")
|
||||
> def make_component(nlp, name, model):
|
||||
> return TrainableComponent(nlp.vocab, model, name=name)
|
||||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ---------------------------------------------- | ------------------------------------------------------------------------------------------------------------------- |
|
||||
| [`predict`](/api/pipe#predict) | Apply the component's model to a batch of [`Doc`](/api/doc) objects (without modifying them) and return the scores. |
|
||||
| [`set_annotations`](/api/pipe#set_annotations) | Modify a batch of [`Doc`](/api/doc) objects, using pre-computed scores generated by `predict`. |
|
||||
|
||||
By default, [`Pipe.__init__`](/api/pipe#init) takes the shared vocab, the
|
||||
[`Model`](https://thinc.ai/docs/api-model) and the name of the component
|
||||
instance in the pipeline, which you can use as a key in the losses. All other
|
||||
keyword arguments will become available as [`Pipe.cfg`](/api/pipe#cfg) and will
|
||||
also be serialized with the component.
|
||||
|
||||
<Accordion title="Why components should be passed a Model instance, not create it" spaced>
|
||||
|
||||
spaCy's [config system](/usage/training#config) resolves the config describing
|
||||
the pipeline components and models **bottom-up**. This means that it will
|
||||
_first_ create a `Model` from a [registered architecture](/api/architectures),
|
||||
validate its arguments and _then_ pass the object forward to the component. This
|
||||
means that the config can express very complex, nested trees of objects – but
|
||||
the objects don't have to pass the model settings all the way down to the
|
||||
components. It also makes the components more **modular** and lets you swap
|
||||
different architectures in your config, and re-use model definitions.
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "textcat"
|
||||
labels = []
|
||||
|
||||
# This function is created and then passed to the "textcat" component as
|
||||
# the argument "model"
|
||||
[components.textcat.model]
|
||||
@architectures = "spacy.TextCatEnsemble.v1"
|
||||
exclusive_classes = false
|
||||
pretrained_vectors = null
|
||||
width = 64
|
||||
conv_depth = 2
|
||||
embed_size = 2000
|
||||
window_size = 1
|
||||
ngram_size = 1
|
||||
dropout = null
|
||||
|
||||
[components.other_textcat]
|
||||
factory = "textcat"
|
||||
# This references the [components.textcat.model] block above
|
||||
model = ${components.textcat.model}
|
||||
labels = []
|
||||
```
|
||||
|
||||
Your trainable pipeline component factories should therefore always take a
|
||||
`model` argument instead of instantiating the
|
||||
[`Model`](https://thinc.ai/docs/api-model) inside the component. To register
|
||||
custom architectures, you can use the
|
||||
[`@spacy.registry.architectures`](/api/top-level#registry) decorator. Also see
|
||||
the [training guide](/usage/training#config) for details.
|
||||
|
||||
</Accordion>
|
||||
|
||||
For some use cases, it makes sense to also overwrite additional methods to
|
||||
customize how the model is updated from examples, how it's initialized, how the
|
||||
loss is calculated and to add evaluation scores to the training output.
|
||||
|
||||
| Name | Description |
|
||||
| -------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|
||||
| [`update`](/api/pipe#update) | Learn from a batch of [`Example`](/api/example) objects containing the predictions and gold-standard annotations, and update the component's model. |
|
||||
| [`begin_training`](/api/pipe#begin_training) | Initialize the model. Typically calls into [`Model.initialize`](https://thinc.ai/docs/api-model#initialize) and [`Pipe.create_optimizer`](/api/pipe#create_optimizer) if no optimizer is provided. |
|
||||
| [`get_loss`](/api/pipe#get_loss) | Return a tuple of the loss and the gradient for a batch of [`Example`](/api/example) objects. |
|
||||
| [`score`](/api/pipe#score) | Score a batch of [`Example`](/api/example) objects and return a dictionary of scores. The [`@Language.factory`](/api/language#factory) decorator can define the `default_socre_weights` of the component to decide which keys of the scores to display during training and how they count towards the final score. |
|
||||
|
||||
<!-- TODO: add more details, examples and maybe an example project -->
|
||||
|
||||
## Extension attributes {#custom-components-attributes new="2"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user