mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 18:26:30 +03:00
Add training option to set annotations on update (#7767)
* Add training option to set annotations on update Add a `[training]` option called `set_annotations_on_update` to specify a list of components for which the predicted annotations should be set on `example.predicted` immediately after that component has been updated. The predicted annotations can be accessed by later components in the pipeline during the processing of the batch in the same `update` call. * Rename to annotates / annotating_components * Add test for `annotating_components` when training from config * Add documentation
This commit is contained in:
parent
c105ed10fd
commit
95c0833656
|
@ -80,6 +80,8 @@ eval_frequency = 200
|
|||
score_weights = {}
|
||||
# Names of pipeline components that shouldn't be updated during training
|
||||
frozen_components = []
|
||||
# Names of pipeline components that should set annotations during training
|
||||
annotating_components = []
|
||||
# Location in the config where the dev corpus is defined
|
||||
dev_corpus = "corpora.dev"
|
||||
# Location in the config where the train corpus is defined
|
||||
|
|
|
@ -1074,6 +1074,7 @@ class Language:
|
|||
losses: Optional[Dict[str, float]] = None,
|
||||
component_cfg: Optional[Dict[str, Dict[str, Any]]] = None,
|
||||
exclude: Iterable[str] = SimpleFrozenList(),
|
||||
annotates: Iterable[str] = SimpleFrozenList(),
|
||||
):
|
||||
"""Update the models in the pipeline.
|
||||
|
||||
|
@ -1081,10 +1082,13 @@ class Language:
|
|||
_: Should not be set - serves to catch backwards-incompatible scripts.
|
||||
drop (float): The dropout rate.
|
||||
sgd (Optimizer): An optimizer.
|
||||
losses (Dict[str, float]): Dictionary to update with the loss, keyed by component.
|
||||
losses (Dict[str, float]): Dictionary to update with the loss, keyed by
|
||||
component.
|
||||
component_cfg (Dict[str, Dict]): Config parameters for specific pipeline
|
||||
components, keyed by component name.
|
||||
exclude (Iterable[str]): Names of components that shouldn't be updated.
|
||||
annotates (Iterable[str]): Names of components that should set
|
||||
annotations on the predicted examples after updating.
|
||||
RETURNS (Dict[str, float]): The updated losses dictionary
|
||||
|
||||
DOCS: https://spacy.io/api/language#update
|
||||
|
@ -1103,15 +1107,16 @@ class Language:
|
|||
sgd = self._optimizer
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
pipe_kwargs = {}
|
||||
for i, (name, proc) in enumerate(self.pipeline):
|
||||
component_cfg.setdefault(name, {})
|
||||
pipe_kwargs[name] = deepcopy(component_cfg[name])
|
||||
component_cfg[name].setdefault("drop", drop)
|
||||
pipe_kwargs[name].setdefault("batch_size", self.batch_size)
|
||||
for name, proc in self.pipeline:
|
||||
if name in exclude or not hasattr(proc, "update"):
|
||||
continue
|
||||
if name not in exclude and hasattr(proc, "update"):
|
||||
proc.update(examples, sgd=None, losses=losses, **component_cfg[name])
|
||||
if sgd not in (None, False):
|
||||
for name, proc in self.pipeline:
|
||||
if (
|
||||
name not in exclude
|
||||
and hasattr(proc, "is_trainable")
|
||||
|
@ -1119,6 +1124,18 @@ class Language:
|
|||
and proc.model not in (True, False, None)
|
||||
):
|
||||
proc.finish_update(sgd)
|
||||
if name in annotates:
|
||||
for doc, eg in zip(
|
||||
_pipe(
|
||||
(eg.predicted for eg in examples),
|
||||
proc=proc,
|
||||
name=name,
|
||||
default_error_handler=self.default_error_handler,
|
||||
kwargs=pipe_kwargs[name],
|
||||
),
|
||||
examples,
|
||||
):
|
||||
eg.predicted = doc
|
||||
return losses
|
||||
|
||||
def rehearse(
|
||||
|
|
|
@ -313,6 +313,7 @@ class ConfigSchemaTraining(BaseModel):
|
|||
optimizer: Optimizer = Field(..., title="The optimizer to use")
|
||||
logger: Logger = Field(..., title="The logger to track training progress")
|
||||
frozen_components: List[str] = Field(..., title="Pipeline components that shouldn't be updated during training")
|
||||
annotating_components: List[str] = Field(..., title="Pipeline components that should set annotations during training")
|
||||
before_to_disk: Optional[Callable[["Language"], "Language"]] = Field(..., title="Optional callback to modify nlp object after training, before it's saved to disk")
|
||||
# fmt: on
|
||||
|
||||
|
|
113
spacy/tests/pipeline/test_annotates_on_update.py
Normal file
113
spacy/tests/pipeline/test_annotates_on_update.py
Normal file
|
@ -0,0 +1,113 @@
|
|||
from typing import Callable, Iterable, Iterator
|
||||
import pytest
|
||||
import io
|
||||
|
||||
from thinc.api import Config
|
||||
from spacy.language import Language
|
||||
from spacy.training import Example
|
||||
from spacy.training.loop import train
|
||||
from spacy.lang.en import English
|
||||
from spacy.util import registry, load_model_from_config
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def config_str():
|
||||
return """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["sentencizer","assert_sents"]
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
|
||||
[components]
|
||||
|
||||
[components.assert_sents]
|
||||
factory = "assert_sents"
|
||||
|
||||
[components.sentencizer]
|
||||
factory = "sentencizer"
|
||||
punct_chars = null
|
||||
|
||||
[training]
|
||||
dev_corpus = "corpora.dev"
|
||||
train_corpus = "corpora.train"
|
||||
annotating_components = ["sentencizer"]
|
||||
max_steps = 2
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "unannotated_corpus"
|
||||
|
||||
[corpora.train]
|
||||
@readers = "unannotated_corpus"
|
||||
"""
|
||||
|
||||
|
||||
def test_annotates_on_update():
|
||||
# The custom component checks for sentence annotation
|
||||
@Language.factory("assert_sents", default_config={})
|
||||
def assert_sents(nlp, name):
|
||||
return AssertSents(name)
|
||||
|
||||
class AssertSents:
|
||||
def __init__(self, name, **cfg):
|
||||
self.name = name
|
||||
pass
|
||||
|
||||
def __call__(self, doc):
|
||||
if not doc.has_annotation("SENT_START"):
|
||||
raise ValueError("No sents")
|
||||
return doc
|
||||
|
||||
def update(self, examples, *, drop=0.0, sgd=None, losses=None):
|
||||
for example in examples:
|
||||
if not example.predicted.has_annotation("SENT_START"):
|
||||
raise ValueError("No sents")
|
||||
return {}
|
||||
|
||||
nlp = English()
|
||||
nlp.add_pipe("sentencizer")
|
||||
nlp.add_pipe("assert_sents")
|
||||
|
||||
# When the pipeline runs, annotations are set
|
||||
doc = nlp("This is a sentence.")
|
||||
|
||||
examples = []
|
||||
for text in ["a a", "b b", "c c"]:
|
||||
examples.append(Example(nlp.make_doc(text), nlp(text)))
|
||||
|
||||
for example in examples:
|
||||
assert not example.predicted.has_annotation("SENT_START")
|
||||
|
||||
# If updating without setting annotations, assert_sents will raise an error
|
||||
with pytest.raises(ValueError):
|
||||
nlp.update(examples)
|
||||
|
||||
# Updating while setting annotations for the sentencizer succeeds
|
||||
nlp.update(examples, annotates=["sentencizer"])
|
||||
|
||||
|
||||
def test_annotating_components_from_config(config_str):
|
||||
@registry.readers("unannotated_corpus")
|
||||
def create_unannotated_corpus() -> Callable[[Language], Iterable[Example]]:
|
||||
return UnannotatedCorpus()
|
||||
|
||||
class UnannotatedCorpus:
|
||||
def __call__(self, nlp: Language) -> Iterator[Example]:
|
||||
for text in ["a a", "b b", "c c"]:
|
||||
doc = nlp.make_doc(text)
|
||||
yield Example(doc, doc)
|
||||
|
||||
orig_config = Config().from_str(config_str)
|
||||
nlp = load_model_from_config(orig_config, auto_fill=True, validate=True)
|
||||
assert nlp.config["training"]["annotating_components"] == ["sentencizer"]
|
||||
train(nlp)
|
||||
|
||||
nlp.config["training"]["annotating_components"] = []
|
||||
with pytest.raises(ValueError):
|
||||
train(nlp)
|
|
@ -1,7 +1,9 @@
|
|||
import pytest
|
||||
from spacy.language import Language
|
||||
from spacy.pipeline import TrainablePipe
|
||||
from spacy.training import Example
|
||||
from spacy.util import SimpleFrozenList, get_arg_names
|
||||
from spacy.lang.en import English
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
|
@ -417,3 +419,41 @@ def test_pipe_methods_initialize():
|
|||
assert "test" in nlp.config["initialize"]["components"]
|
||||
nlp.remove_pipe("test")
|
||||
assert "test" not in nlp.config["initialize"]["components"]
|
||||
|
||||
|
||||
def test_update_with_annotates():
|
||||
name = "test_with_annotates"
|
||||
results = {}
|
||||
|
||||
def make_component(name):
|
||||
results[name] = ""
|
||||
|
||||
def component(doc):
|
||||
nonlocal results
|
||||
results[name] += doc.text
|
||||
return doc
|
||||
|
||||
return component
|
||||
|
||||
c1 = Language.component(f"{name}1", func=make_component(f"{name}1"))
|
||||
c2 = Language.component(f"{name}2", func=make_component(f"{name}2"))
|
||||
|
||||
components = set([f"{name}1", f"{name}2"])
|
||||
|
||||
nlp = English()
|
||||
texts = ["a", "bb", "ccc"]
|
||||
examples = []
|
||||
for text in texts:
|
||||
examples.append(Example(nlp.make_doc(text), nlp.make_doc(text)))
|
||||
|
||||
for components_to_annotate in [[], [f"{name}1"], [f"{name}1", f"{name}2"], [f"{name}2", f"{name}1"]]:
|
||||
for key in results:
|
||||
results[key] = ""
|
||||
nlp = English(vocab=nlp.vocab)
|
||||
nlp.add_pipe(f"{name}1")
|
||||
nlp.add_pipe(f"{name}2")
|
||||
nlp.update(examples, annotates=components_to_annotate)
|
||||
for component in components_to_annotate:
|
||||
assert results[component] == "".join(eg.predicted.text for eg in examples)
|
||||
for component in components - set(components_to_annotate):
|
||||
assert results[component] == ""
|
||||
|
|
|
@ -74,6 +74,8 @@ def train(
|
|||
|
||||
# Components that shouldn't be updated during training
|
||||
frozen_components = T["frozen_components"]
|
||||
# Components that should set annotations on update
|
||||
annotating_components = T["annotating_components"]
|
||||
# Create iterator, which yields out info after each optimization step.
|
||||
training_step_iterator = train_while_improving(
|
||||
nlp,
|
||||
|
@ -86,11 +88,17 @@ def train(
|
|||
max_steps=T["max_steps"],
|
||||
eval_frequency=T["eval_frequency"],
|
||||
exclude=frozen_components,
|
||||
annotating_components=annotating_components,
|
||||
)
|
||||
clean_output_dir(output_path)
|
||||
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
|
||||
if frozen_components:
|
||||
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
||||
if annotating_components:
|
||||
stdout.write(
|
||||
msg.info(f"Set annotations on update for: {annotating_components}")
|
||||
+ "\n"
|
||||
)
|
||||
stdout.write(msg.info(f"Initial learn rate: {optimizer.learn_rate}") + "\n")
|
||||
with nlp.select_pipes(disable=frozen_components):
|
||||
log_step, finalize_logger = train_logger(nlp, stdout, stderr)
|
||||
|
@ -142,6 +150,7 @@ def train_while_improving(
|
|||
patience: int,
|
||||
max_steps: int,
|
||||
exclude: List[str],
|
||||
annotating_components: List[str],
|
||||
):
|
||||
"""Train until an evaluation stops improving. Works as a generator,
|
||||
with each iteration yielding a tuple `(batch, info, is_best_checkpoint)`,
|
||||
|
@ -193,7 +202,12 @@ def train_while_improving(
|
|||
dropout = next(dropouts)
|
||||
for subbatch in subdivide_batch(batch, accumulate_gradient):
|
||||
nlp.update(
|
||||
subbatch, drop=dropout, losses=losses, sgd=False, exclude=exclude
|
||||
subbatch,
|
||||
drop=dropout,
|
||||
losses=losses,
|
||||
sgd=False,
|
||||
exclude=exclude,
|
||||
annotates=annotating_components,
|
||||
)
|
||||
# TODO: refactor this so we don't have to run it separately in here
|
||||
for name, proc in nlp.pipeline:
|
||||
|
|
|
@ -183,7 +183,7 @@ This section defines settings and controls for the training and evaluation
|
|||
process that are used when you run [`spacy train`](/api/cli#train).
|
||||
|
||||
| Name | Description |
|
||||
| --------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| ----------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `accumulate_gradient` | Whether to divide the batch up into substeps. Defaults to `1`. ~~int~~ |
|
||||
| `batcher` | Callable that takes an iterator of [`Doc`](/api/doc) objects and yields batches of `Doc`s. Defaults to [`batch_by_words`](/api/top-level#batch_by_words). ~~Callable[[Iterator[Doc], Iterator[List[Doc]]]]~~ |
|
||||
| `before_to_disk` | Optional callback to modify `nlp` object right before it is saved to disk during and after training. Can be used to remove or reset config values or disable components. Defaults to `null`. ~~Optional[Callable[[Language], Language]]~~ |
|
||||
|
@ -191,6 +191,7 @@ process that are used when you run [`spacy train`](/api/cli#train).
|
|||
| `dropout` | The dropout rate. Defaults to `0.1`. ~~float~~ |
|
||||
| `eval_frequency` | How often to evaluate during training (steps). Defaults to `200`. ~~int~~ |
|
||||
| `frozen_components` | Pipeline component names that are "frozen" and shouldn't be initialized or updated during training. See [here](/usage/training#config-components) for details. Defaults to `[]`. ~~List[str]~~ |
|
||||
| `annotating_components` | Pipeline component names that should set annotations on the predicted docs during training. See [here](/usage/training#annotating-components) for details. Defaults to `[]`. ~~List[str]~~ |
|
||||
| `gpu_allocator` | Library for cupy to route GPU memory allocation to. Can be `"pytorch"` or `"tensorflow"`. Defaults to variable `${system.gpu_allocator}`. ~~str~~ |
|
||||
| `logger` | Callable that takes the `nlp` and stdout and stderr `IO` objects, sets up the logger, and returns two new callables to log a training step and to finalize the logger. Defaults to [`ConsoleLogger`](/api/top-level#ConsoleLogger). ~~Callable[[Language, IO, IO], [Tuple[Callable[[Dict[str, Any]], None], Callable[[], None]]]]~~ |
|
||||
| `max_epochs` | Maximum number of epochs to train for. `0` means an unlimited number of epochs. `-1` means that the train corpus should be streamed rather than loaded into memory with no shuffling within the training loop. Defaults to `0`. ~~int~~ |
|
||||
|
|
|
@ -246,7 +246,7 @@ and call the optimizer, while the others simply increment the gradients.
|
|||
> ```
|
||||
|
||||
| Name | Description |
|
||||
| ----------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| -------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `examples` | A batch of [`Example`](/api/example) objects. Only the [`Example.predicted`](/api/example#predicted) `Doc` object is used, the reference `Doc` is ignored. ~~Iterable[Example]~~ |
|
||||
| _keyword-only_ | |
|
||||
| `drop` | The dropout rate. ~~float~~ |
|
||||
|
@ -493,6 +493,11 @@ This requires sentence boundaries to be set (e.g. by the
|
|||
depending on the sentence lengths. However, it does provide the transformer with
|
||||
more meaningful windows to attend over.
|
||||
|
||||
To set sentence boundaries with the `sentencizer` during training, add a
|
||||
`sentencizer` to the beginning of the pipeline and include it in
|
||||
[`[training.annotating_components]`](/usage/training#annotating-components) to
|
||||
have it set the sentence boundaries before the `transformer` component runs.
|
||||
|
||||
### strided_spans.v1 {#strided_spans tag="registered function"}
|
||||
|
||||
> #### Example config
|
||||
|
|
|
@ -414,11 +414,11 @@ as-is. They are also excluded when calling
|
|||
> #### Note on frozen components
|
||||
>
|
||||
> Even though frozen components are not **updated** during training, they will
|
||||
> still **run** during training and evaluation. This is very important, because
|
||||
> they may still impact your model's performance – for instance, a sentence
|
||||
> boundary detector can impact what the parser or entity recognizer considers a
|
||||
> valid parse. So the evaluation results should always reflect what your
|
||||
> pipeline will produce at runtime.
|
||||
> still **run** during evaluation. This is very important, because they may
|
||||
> still impact your model's performance – for instance, a sentence boundary
|
||||
> detector can impact what the parser or entity recognizer considers a valid
|
||||
> parse. So the evaluation results should always reflect what your pipeline will
|
||||
> produce at runtime.
|
||||
|
||||
```ini
|
||||
[nlp]
|
||||
|
@ -455,6 +455,64 @@ replace_listeners = ["model.tok2vec"]
|
|||
|
||||
</Infobox>
|
||||
|
||||
### Using predictions from preceding components {#annotating-components new="3.1"}
|
||||
|
||||
By default, components are updated in isolation during training, which means
|
||||
that they don't see the predictions of any earlier components in the pipeline. A
|
||||
component receives [`Example.predicted`](/api/example) as input and compares its
|
||||
predictions to [`Example.reference`](/api/example) without saving its
|
||||
annotations in the `predicted` doc.
|
||||
|
||||
Instead, if certain components should **set their annotations** during training,
|
||||
use the setting `annotating_components` in the `[training]` block to specify a
|
||||
list of components. For example, the feature `DEP` from the parser could be used
|
||||
as a tagger feature by including `DEP` in the tok2vec `attrs` and including
|
||||
`parser` in `annotating_components`:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt) {highlight="7,12"}
|
||||
[nlp]
|
||||
pipeline = ["parser", "tagger"]
|
||||
|
||||
[components.tagger.model.tok2vec.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tagger.model.tok2vec.encode.width}
|
||||
attrs = ["NORM","DEP"]
|
||||
rows = [5000,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[training]
|
||||
annotating_components = ["parser"]
|
||||
```
|
||||
|
||||
Any component in the pipeline can be included as an annotating component,
|
||||
including frozen components. Frozen components can set annotations during
|
||||
training just as they would set annotations during evaluation or when the final
|
||||
pipeline is run. The config excerpt below shows how a frozen `ner` component and
|
||||
a `sentencizer` can provide the required `doc.sents` and `doc.ents` for the
|
||||
entity linker during training:
|
||||
|
||||
```ini
|
||||
### config.cfg (excerpt)
|
||||
[nlp]
|
||||
pipeline = ["sentencizer", "ner", "entity_linker"]
|
||||
|
||||
[components.ner]
|
||||
source = "en_core_web_sm"
|
||||
|
||||
[training]
|
||||
frozen_components = ["ner"]
|
||||
annotating_components = ["sentencizer", "ner"]
|
||||
```
|
||||
|
||||
<Infobox variant="warning" title="Training speed with annotating components" id="annotating-components-speed">
|
||||
|
||||
Be aware that non-frozen annotating components with statistical models will
|
||||
**run twice** on each batch, once to update the model and once to apply the
|
||||
now-updated model to the predicted docs.
|
||||
|
||||
</Infobox>
|
||||
|
||||
### Using registered functions {#config-functions}
|
||||
|
||||
The training configuration defined in the config file doesn't have to only
|
||||
|
|
Loading…
Reference in New Issue
Block a user