diff --git a/website/setup/quickstart_training_gpu.jinja b/website/setup/quickstart_training_gpu.jinja new file mode 100644 index 000000000..989af980a --- /dev/null +++ b/website/setup/quickstart_training_gpu.jinja @@ -0,0 +1,139 @@ +{# Template for "CPU" configs. The transformer will use a different template. #} +# This is an auto-generated partial config for training a model. +# To use it for training, auto-fill it with all default values. +# python -m spacy init config config.cfg --base base_config.cfg +[paths] +train = "" +dev = "" + +[nlp] +lang = "{{ lang }}" +pipeline = {{ pipeline|safe }} +vectors = null +tokenizer = {"@tokenizers": "spacy.Tokenizer.v1"} + +[components] + +[components.transformer] +factory = "transformer" + +[components.transformer.model] +@architectures = "spacy-transformers.TransformerModel.v1" +{#- name = {{ transformer_info["name"] }} #} +name = "roberta-base" +tokenizer_config = {"use_fast": true} + +[components.transformer.model.get_spans] +@span_getters = "strided_spans.v1" +window = 128 +stride = 96 + +{% if "tagger" in components %} +[components.tagger] +factory = "tagger" + +[components.tagger.model] +@architectures = "spacy.Tagger.v1" +nO = null + +[components.tagger.model.tok2vec] +@architectures = "spacy-transformers.TransformerListener.v1" +grad_factor = 1.0 + +[components.ner.model.tok2vec.pooling] +@layers = "reduce_mean.v1" +{%- endif %} + +{% if "parser" in components -%} +[components.parser] +factory = "parser" + +[components.parser.model] +@architectures = "spacy.TransitionBasedParser.v1" +nr_feature_tokens = 8 +hidden_width = 128 +maxout_pieces = 3 +use_upper = false +nO = null + +[components.parser.model.tok2vec] +@architectures = "spacy-transformers.TransformerListener.v1" +grad_factor = 1.0 + +[components.ner.model.tok2vec.pooling] +@layers = "reduce_mean.v1" +{%- endif %} + +{% if "ner" in components -%} +[components.ner] +factory = "ner" + +[components.ner.model] +@architectures = "spacy.TransitionBasedParser.v1" +nr_feature_tokens = 3 +hidden_width = 64 +maxout_pieces = 2 +use_upper = false +nO = null + +[components.ner.model.tok2vec] +@architectures = "spacy-transformers.TransformerListener.v1" +grad_factor = 1.0 + +[components.parser.model.tok2vec.pooling] +@layers = "reduce_mean.v1" +{% endif -%} + +[training] +{#- accumulate_gradient = {{ transformer_info["size_factor"] }} #} +accumulate_gradient = 3 + +[training.optimizer] +@optimizers = "Adam.v1" +beta1 = 0.9 +beta2 = 0.999 +L2_is_weight_decay = true +L2 = 0.01 +grad_clip = 1.0 +use_averages = false +eps = 1e-8 + +[training.optimizer.learn_rate] +@schedules = "warmup_linear.v1" +warmup_steps = 250 +total_steps = 20000 +initial_rate = 5e-5 + +[training.train_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:train} +gold_preproc = false +max_length = 500 +limit = 0 + +[training.dev_corpus] +@readers = "spacy.Corpus.v1" +path = ${paths:dev} +gold_preproc = false +max_length = 0 +limit = 0 + +[training.batcher] +@batchers = "batch_by_padded.v1" +discard_oversize = true +batch_size = 2000 + +[training.score_weights] +{%- if "tagger" in components %} +tag_acc = {{ (1.0 / components|length)|round(2) }} +{%- endif -%} +{%- if "parser" in components %} +dep_uas = 0.0 +dep_las = {{ (1.0 / components|length)|round(2) }} +sents_f = 0.0 +{%- endif %} +{%- if "ner" in components %} +ents_f = {{ (1.0 / components|length)|round(2) }} +ents_p = 0.0 +ents_r = 0.0 +{%- endif -%}