mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 17:24:41 +03:00
💫 Document Cython API (#2433)
## Description This PR adds the most relevant documentation of spaCy's Cython API. (Todo for when we publish this: rewrite `/api/#section-cython` and `/api/#cython` to `/api/cython#conventions`.) ### Types of change docs ## Checklist <!--- Before you submit the PR, go over this checklist and make sure you can tick off all the boxes. [] -> [x] --> - [x] I have submitted the spaCy Contributor Agreement. - [x] I ran the tests, and all new and existing tests passed. - [x] My changes don't require a change to the documentation, or if they do, I've added all required information.
This commit is contained in:
parent
72d7e80f94
commit
968f6f0bda
|
@ -124,6 +124,12 @@ mixin help(tooltip, icon_size)
|
|||
+icon("help_o", icon_size || 16).o-icon--inline
|
||||
|
||||
|
||||
//- Abbreviation
|
||||
|
||||
mixin abbr(title)
|
||||
abbr.o-abbr(data-tooltip=title data-tooltip-style="code" aria-label=title)&attributes(attributes)
|
||||
block
|
||||
|
||||
//- Aside wrapper
|
||||
label - [string] aside label
|
||||
|
||||
|
|
|
@ -9,7 +9,7 @@ menu.c-sidebar.js-sidebar.u-text
|
|||
each url, item in items
|
||||
- var is_current = CURRENT == url || (CURRENT == "index" && url == "./")
|
||||
li.c-sidebar__item
|
||||
+a(url)(class=is_current ? "is-active" : null tabindex=is_current ? "-1" : null)=item
|
||||
+a(url)(class=is_current ? "is-active" : null tabindex=is_current ? "-1" : null data-sidebar-active=is_current ? "" : null)=item
|
||||
|
||||
if is_current
|
||||
if IS_MODELS && CURRENT_MODELS.length
|
||||
|
|
|
@ -1,115 +0,0 @@
|
|||
//- 💫 DOCS > API > ARCHITECTURE > CYTHON
|
||||
|
||||
+aside("What's Cython?")
|
||||
| #[+a("http://cython.org/") Cython] is a language for writing
|
||||
| C extensions for Python. Most Python code is also valid Cython, but
|
||||
| you can add type declarations to get efficient memory-managed code
|
||||
| just like C or C++.
|
||||
|
||||
p
|
||||
| spaCy's core data structures are implemented as
|
||||
| #[+a("http://cython.org/") Cython] #[code cdef] classes. Memory is
|
||||
| managed through the #[+a(gh("cymem")) #[code cymem]]
|
||||
| #[code cymem.Pool] class, which allows you
|
||||
| to allocate memory which will be freed when the #[code Pool] object
|
||||
| is garbage collected. This means you usually don't have to worry
|
||||
| about freeing memory. You just have to decide which Python object
|
||||
| owns the memory, and make it own the #[code Pool]. When that object
|
||||
| goes out of scope, the memory will be freed. You do have to take
|
||||
| care that no pointers outlive the object that owns them — but this
|
||||
| is generally quite easy.
|
||||
|
||||
p
|
||||
| All Cython modules should have the #[code # cython: infer_types=True]
|
||||
| compiler directive at the top of the file. This makes the code much
|
||||
| cleaner, as it avoids the need for many type declarations. If
|
||||
| possible, you should prefer to declare your functions #[code nogil],
|
||||
| even if you don't especially care about multi-threading. The reason
|
||||
| is that #[code nogil] functions help the Cython compiler reason about
|
||||
| your code quite a lot — you're telling the compiler that no Python
|
||||
| dynamics are possible. This lets many errors be raised, and ensures
|
||||
| your function will run at C speed.
|
||||
|
||||
|
||||
p
|
||||
| Cython gives you many choices of sequences: you could have a Python
|
||||
| list, a numpy array, a memory view, a C++ vector, or a pointer.
|
||||
| Pointers are preferred, because they are fastest, have the most
|
||||
| explicit semantics, and let the compiler check your code more
|
||||
| strictly. C++ vectors are also great — but you should only use them
|
||||
| internally in functions. It's less friendly to accept a vector as an
|
||||
| argument, because that asks the user to do much more work. Here's
|
||||
| how to get a pointer from a numpy array, memory view or vector:
|
||||
|
||||
+code.
|
||||
cdef void get_pointers(np.ndarray[int, mode='c'] numpy_array, vector[int] cpp_vector, int[::1] memory_view) nogil:
|
||||
pointer1 = <int*>numpy_array.data
|
||||
pointer2 = cpp_vector.data()
|
||||
pointer3 = &memory_view[0]
|
||||
|
||||
p
|
||||
| Both C arrays and C++ vectors reassure the compiler that no Python
|
||||
| operations are possible on your variable. This is a big advantage:
|
||||
| it lets the Cython compiler raise many more errors for you.
|
||||
|
||||
p
|
||||
| When getting a pointer from a numpy array or memoryview, take care
|
||||
| that the data is actually stored in C-contiguous order — otherwise
|
||||
| you'll get a pointer to nonsense. The type-declarations in the code
|
||||
| above should generate runtime errors if buffers with incorrect
|
||||
| memory layouts are passed in. To iterate over the array, the
|
||||
| following style is preferred:
|
||||
|
||||
+code.
|
||||
cdef int c_total(const int* int_array, int length) nogil:
|
||||
total = 0
|
||||
for item in int_array[:length]:
|
||||
total += item
|
||||
return total
|
||||
|
||||
p
|
||||
| If this is confusing, consider that the compiler couldn't deal with
|
||||
| #[code for item in int_array:] — there's no length attached to a raw
|
||||
| pointer, so how could we figure out where to stop? The length is
|
||||
| provided in the slice notation as a solution to this. Note that we
|
||||
| don't have to declare the type of #[code item] in the code above —
|
||||
| the compiler can easily infer it. This gives us tidy code that looks
|
||||
| quite like Python, but is exactly as fast as C — because we've made
|
||||
| sure the compilation to C is trivial.
|
||||
|
||||
p
|
||||
| Your functions cannot be declared #[code nogil] if they need to
|
||||
| create Python objects or call Python functions. This is perfectly
|
||||
| okay — you shouldn't torture your code just to get #[code nogil]
|
||||
| functions. However, if your function isn't #[code nogil], you should
|
||||
| compile your module with #[code cython -a --cplus my_module.pyx] and
|
||||
| open the resulting #[code my_module.html] file in a browser. This
|
||||
| will let you see how Cython is compiling your code. Calls into the
|
||||
| Python run-time will be in bright yellow. This lets you easily see
|
||||
| whether Cython is able to correctly type your code, or whether there
|
||||
| are unexpected problems.
|
||||
|
||||
p
|
||||
| Working in Cython is very rewarding once you're over the initial
|
||||
| learning curve. As with C and C++, the first way you write something
|
||||
| in Cython will often be the performance-optimal approach. In
|
||||
| contrast, Python optimisation generally requires a lot of
|
||||
| experimentation. Is it faster to have an #[code if item in my_dict]
|
||||
| check, or to use #[code .get()]? What about
|
||||
| #[code try]/#[code except]? Does this numpy operation create a copy?
|
||||
| There's no way to guess the answers to these questions, and you'll
|
||||
| usually be dissatisfied with your results — so there's no way to
|
||||
| know when to stop this process. In the worst case, you'll make a
|
||||
| mess that invites the next reader to try their luck too. This is
|
||||
| like one of those
|
||||
| #[+a("http://www.wemjournal.org/article/S1080-6032%2809%2970088-2/abstract") volcanic gas-traps],
|
||||
| where the rescuers keep passing out from low oxygen, causing
|
||||
| another rescuer to follow — only to succumb themselves. In short,
|
||||
| just say no to optimizing your Python. If it's not fast enough the
|
||||
| first time, just switch to Cython.
|
||||
|
||||
+infobox("Resources")
|
||||
+list.o-no-block
|
||||
+item #[+a("http://docs.cython.org/en/latest/") Official Cython documentation] (cython.org)
|
||||
+item #[+a("https://explosion.ai/blog/writing-c-in-cython", true) Writing C in Cython] (explosion.ai)
|
||||
+item #[+a("https://explosion.ai/blog/multithreading-with-cython") Multi-threading spaCy’s parser and named entity recogniser] (explosion.ai)
|
|
@ -1,149 +0,0 @@
|
|||
//- 💫 DOCS > API > ARCHITECTURE > NN MODEL ARCHITECTURE
|
||||
|
||||
p
|
||||
| spaCy's statistical models have been custom-designed to give a
|
||||
| high-performance mix of speed and accuracy. The current architecture
|
||||
| hasn't been published yet, but in the meantime we prepared a video that
|
||||
| explains how the models work, with particular focus on NER.
|
||||
|
||||
+youtube("sqDHBH9IjRU")
|
||||
|
||||
p
|
||||
| The parsing model is a blend of recent results. The two recent
|
||||
| inspirations have been the work of Eli Klipperwasser and Yoav Goldberg at
|
||||
| Bar Ilan#[+fn(1)], and the SyntaxNet team from Google. The foundation of
|
||||
| the parser is still based on the work of Joakim Nivre#[+fn(2)], who
|
||||
| introduced the transition-based framework#[+fn(3)], the arc-eager
|
||||
| transition system, and the imitation learning objective. The model is
|
||||
| implemented using #[+a(gh("thinc")) Thinc], spaCy's machine learning
|
||||
| library. We first predict context-sensitive vectors for each word in the
|
||||
| input:
|
||||
|
||||
+code.
|
||||
(embed_lower | embed_prefix | embed_suffix | embed_shape)
|
||||
>> Maxout(token_width)
|
||||
>> convolution ** 4
|
||||
|
||||
p
|
||||
| This convolutional layer is shared between the tagger, parser and NER,
|
||||
| and will also be shared by the future neural lemmatizer. Because the
|
||||
| parser shares these layers with the tagger, the parser does not require
|
||||
| tag features. I got this trick from David Weiss's "Stack Combination"
|
||||
| paper#[+fn(4)].
|
||||
|
||||
p
|
||||
| To boost the representation, the tagger actually predicts a "super tag"
|
||||
| with POS, morphology and dependency label#[+fn(5)]. The tagger predicts
|
||||
| these supertags by adding a softmax layer onto the convolutional layer –
|
||||
| so, we're teaching the convolutional layer to give us a representation
|
||||
| that's one affine transform from this informative lexical information.
|
||||
| This is obviously good for the parser (which backprops to the
|
||||
| convolutions too). The parser model makes a state vector by concatenating
|
||||
| the vector representations for its context tokens. The current context
|
||||
| tokens:
|
||||
|
||||
+table
|
||||
+row
|
||||
+cell #[code S0], #[code S1], #[code S2]
|
||||
+cell Top three words on the stack.
|
||||
|
||||
+row
|
||||
+cell #[code B0], #[code B1]
|
||||
+cell First two words of the buffer.
|
||||
|
||||
+row
|
||||
+cell
|
||||
| #[code S0L1], #[code S1L1], #[code S2L1], #[code B0L1],
|
||||
| #[code B1L1]#[br]
|
||||
| #[code S0L2], #[code S1L2], #[code S2L2], #[code B0L2],
|
||||
| #[code B1L2]
|
||||
+cell
|
||||
| Leftmost and second leftmost children of #[code S0], #[code S1],
|
||||
| #[code S2], #[code B0] and #[code B1].
|
||||
|
||||
+row
|
||||
+cell
|
||||
| #[code S0R1], #[code S1R1], #[code S2R1], #[code B0R1],
|
||||
| #[code B1R1]#[br]
|
||||
| #[code S0R2], #[code S1R2], #[code S2R2], #[code B0R2],
|
||||
| #[code B1R2]
|
||||
+cell
|
||||
| Rightmost and second rightmost children of #[code S0], #[code S1],
|
||||
| #[code S2], #[code B0] and #[code B1].
|
||||
|
||||
p
|
||||
| This makes the state vector quite long: #[code 13*T], where #[code T] is
|
||||
| the token vector width (128 is working well). Fortunately, there's a way
|
||||
| to structure the computation to save some expense (and make it more
|
||||
| GPU-friendly).
|
||||
|
||||
p
|
||||
| The parser typically visits #[code 2*N] states for a sentence of length
|
||||
| #[code N] (although it may visit more, if it back-tracks with a
|
||||
| non-monotonic transition#[+fn(4)]). A naive implementation would require
|
||||
| #[code 2*N (B, 13*T) @ (13*T, H)] matrix multiplications for a batch of
|
||||
| size #[code B]. We can instead perform one #[code (B*N, T) @ (T, 13*H)]
|
||||
| multiplication, to pre-compute the hidden weights for each positional
|
||||
| feature with respect to the words in the batch. (Note that our token
|
||||
| vectors come from the CNN — so we can't play this trick over the
|
||||
| vocabulary. That's how Stanford's NN parser#[+fn(3)] works — and why its
|
||||
| model is so big.)
|
||||
|
||||
p
|
||||
| This pre-computation strategy allows a nice compromise between
|
||||
| GPU-friendliness and implementation simplicity. The CNN and the wide
|
||||
| lower layer are computed on the GPU, and then the precomputed hidden
|
||||
| weights are moved to the CPU, before we start the transition-based
|
||||
| parsing process. This makes a lot of things much easier. We don't have to
|
||||
| worry about variable-length batch sizes, and we don't have to implement
|
||||
| the dynamic oracle in CUDA to train.
|
||||
|
||||
p
|
||||
| Currently the parser's loss function is multilabel log loss#[+fn(6)], as
|
||||
| the dynamic oracle allows multiple states to be 0 cost. This is defined
|
||||
| as follows, where #[code gZ] is the sum of the scores assigned to gold
|
||||
| classes:
|
||||
|
||||
+code.
|
||||
(exp(score) / Z) - (exp(score) / gZ)
|
||||
|
||||
+bibliography
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Simple-and-Accurate-Dependency-Parsing-Using-Bidir-Kiperwasser-Goldberg/3cf31ecb2724b5088783d7c96a5fc0d5604cbf41") Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations]
|
||||
br
|
||||
| Eliyahu Kiperwasser, Yoav Goldberg. (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/A-Dynamic-Oracle-for-Arc-Eager-Dependency-Parsing-Goldberg-Nivre/22697256ec19ecc3e14fcfc63624a44cf9c22df4") A Dynamic Oracle for Arc-Eager Dependency Parsing]
|
||||
br
|
||||
| Yoav Goldberg, Joakim Nivre (2012)
|
||||
|
||||
+item
|
||||
| #[+a("https://explosion.ai/blog/parsing-english-in-python") Parsing English in 500 Lines of Python]
|
||||
br
|
||||
| Matthew Honnibal (2013)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Stack-propagation-Improved-Representation-Learning-Zhang-Weiss/0c133f79b23e8c680891d2e49a66f0e3d37f1466") Stack-propagation: Improved Representation Learning for Syntax]
|
||||
br
|
||||
| Yuan Zhang, David Weiss (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Deep-multi-task-learning-with-low-level-tasks-supe-S%C3%B8gaard-Goldberg/03ad06583c9721855ccd82c3d969a01360218d86") Deep multi-task learning with low level tasks supervised at lower layers]
|
||||
br
|
||||
| Anders Søgaard, Yoav Goldberg (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/An-Improved-Non-monotonic-Transition-System-for-De-Honnibal-Johnson/4094cee47ade13b77b5ab4d2e6cb9dd2b8a2917c") An Improved Non-monotonic Transition System for Dependency Parsing]
|
||||
br
|
||||
| Matthew Honnibal, Mark Johnson (2015)
|
||||
|
||||
+item
|
||||
| #[+a("http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf") A Fast and Accurate Dependency Parser using Neural Networks]
|
||||
br
|
||||
| Danqi Cheng, Christopher D. Manning (2014)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Parsing-the-Wall-Street-Journal-using-a-Lexical-Fu-Riezler-King/0ad07862a91cd59b7eb5de38267e47725a62b8b2") Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative Estimation Techniques]
|
||||
br
|
||||
| Stefan Riezler et al. (2002)
|
71
website/api/_cython/_doc.jade
Normal file
71
website/api/_cython/_doc.jade
Normal file
|
@ -0,0 +1,71 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > DOC
|
||||
|
||||
p
|
||||
| The #[code Doc] object holds an array of
|
||||
| #[+api("cython-structs#tokenc") #[code TokenC]] structs.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("doc") #[code Doc]].
|
||||
|
||||
+h(3, "doc_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code mem]
|
||||
+cell #[code cymem.Pool]
|
||||
+cell
|
||||
| A memory pool. Allocated memory will be freed once the
|
||||
| #[code Doc] object is garbage collected.
|
||||
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[code Vocab]
|
||||
+cell A reference to the shared #[code Vocab] object.
|
||||
|
||||
+row
|
||||
+cell #[code c]
|
||||
+cell #[code TokenC*]
|
||||
+cell
|
||||
| A pointer to a #[+api("cython-structs#tokenc") #[code TokenC]]
|
||||
| struct.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[code int]
|
||||
+cell The number of tokens in the document.
|
||||
|
||||
+row
|
||||
+cell #[code max_length]
|
||||
+cell #[code int]
|
||||
+cell The underlying size of the #[code Doc.c] array.
|
||||
|
||||
+h(3, "doc_push_back") Doc.push_back
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Append a token to the #[code Doc]. The token can be provided as a
|
||||
| #[+api("cython-structs#lexemec") #[code LexemeC]] or
|
||||
| #[+api("cython-structs#tokenc") #[code TokenC]] pointer, using Cython's
|
||||
| #[+a("http://cython.readthedocs.io/en/latest/src/userguide/fusedtypes.html") fused types].
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens cimport Doc
|
||||
from spacy.vocab cimport Vocab
|
||||
|
||||
doc = Doc(Vocab())
|
||||
lexeme = doc.vocab.get(u'hello')
|
||||
doc.push_back(lexeme, True)
|
||||
assert doc.text == u'hello '
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lex_or_tok]
|
||||
+cell #[code LexemeOrToken]
|
||||
+cell The word to append to the #[code Doc].
|
||||
|
||||
+row
|
||||
+cell #[code has_space]
|
||||
+cell #[code bint]
|
||||
+cell Whether the word has trailing whitespace.
|
30
website/api/_cython/_lexeme.jade
Normal file
30
website/api/_cython/_lexeme.jade
Normal file
|
@ -0,0 +1,30 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > LEXEME
|
||||
|
||||
p
|
||||
| A Cython class providing access and methods for an entry in the
|
||||
| vocabulary.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("lexeme") #[code Lexeme]].
|
||||
|
||||
+h(3, "lexeme_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code c]
|
||||
+cell #[code LexemeC*]
|
||||
+cell
|
||||
| A pointer to a #[+api("cython-structs#lexemec") #[code LexemeC]]
|
||||
| struct.
|
||||
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[code Vocab]
|
||||
+cell A reference to the shared #[code Vocab] object.
|
||||
|
||||
+row
|
||||
+cell #[code orth]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell ID of the verbatim text content.
|
200
website/api/_cython/_lexemec.jade
Normal file
200
website/api/_cython/_lexemec.jade
Normal file
|
@ -0,0 +1,200 @@
|
|||
//- 💫 DOCS > API > CYTHON > STRUCTS > LEXEMEC
|
||||
|
||||
p
|
||||
| Struct holding information about a lexical type. #[code LexemeC]
|
||||
| structs are usually owned by the #[code Vocab], and accessed through a
|
||||
| read-only pointer on the #[code TokenC] struct.
|
||||
|
||||
+aside-code("Example").
|
||||
lex = doc.c[3].lex
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code flags]
|
||||
+cell #[+abbr("uint64_t") #[code flags_t]]
|
||||
+cell Bit-field for binary lexical flag values.
|
||||
|
||||
+row
|
||||
+cell #[code id]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell
|
||||
| Usually used to map lexemes to rows in a matrix, e.g. for word
|
||||
| vectors. Does not need to be unique, so currently misnamed.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Number of unicode characters in the lexeme.
|
||||
|
||||
+row
|
||||
+cell #[code orth]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell ID of the verbatim text content.
|
||||
|
||||
+row
|
||||
+cell #[code lower]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell ID of the lowercase form of the lexeme.
|
||||
|
||||
+row
|
||||
+cell #[code norm]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell ID of the lexeme's norm, i.e. a normalised form of the text.
|
||||
|
||||
+row
|
||||
+cell #[code shape]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Transform of the lexeme's string, to show orthographic features.
|
||||
|
||||
+row
|
||||
+cell #[code prefix]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell
|
||||
| Length-N substring from the start of the lexeme. Defaults to
|
||||
| #[code N=1].
|
||||
|
||||
+row
|
||||
+cell #[code suffix]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell
|
||||
| Length-N substring from the end of the lexeme. Defaults to
|
||||
| #[code N=3].
|
||||
|
||||
+row
|
||||
+cell #[code cluster]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Brown cluster ID.
|
||||
|
||||
+row
|
||||
+cell #[code prob]
|
||||
+cell #[code float]
|
||||
+cell Smoothed log probability estimate of the lexeme's type.
|
||||
|
||||
+row
|
||||
+cell #[code sentiment]
|
||||
+cell #[code float]
|
||||
+cell A scalar value indicating positivity or negativity.
|
||||
|
||||
+h(3, "lexeme_get_struct_attr", "spacy/lexeme.pxd") Lexeme.get_struct_attr
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Get the value of an attribute from the #[code LexemeC] struct by attribute ID.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport IS_ALPHA
|
||||
from spacy.lexeme cimport Lexeme
|
||||
|
||||
lexeme = doc.c[3].lex
|
||||
is_alpha = Lexeme.get_struct_attr(lexeme, IS_ALPHA)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lex]
|
||||
+cell #[code const LexemeC*]
|
||||
+cell A pointer to a #[code LexemeC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code feat_name]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the attribute to look up. The attributes are
|
||||
| enumerated in #[code spacy.typedefs].
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell The value of the attribute.
|
||||
|
||||
+h(3, "lexeme_set_struct_attr", "spacy/lexeme.pxd") Lexeme.set_struct_attr
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Set the value of an attribute of the #[code LexemeC] struct by attribute ID.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport NORM
|
||||
from spacy.lexeme cimport Lexeme
|
||||
|
||||
lexeme = doc.c[3].lex
|
||||
Lexeme.set_struct_attr(lexeme, NORM, lexeme.lower)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lex]
|
||||
+cell #[code const LexemeC*]
|
||||
+cell A pointer to a #[code LexemeC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code feat_name]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the attribute to look up. The attributes are
|
||||
| enumerated in #[code spacy.typedefs].
|
||||
|
||||
+row
|
||||
+cell #[code value]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell The value to set.
|
||||
|
||||
+h(3, "lexeme_c_check_flag", "spacy/lexeme.pxd") Lexeme.c_check_flag
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Check the value of a binary flag attribute.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport IS_STOP
|
||||
from spacy.lexeme cimport Lexeme
|
||||
|
||||
lexeme = doc.c[3].lex
|
||||
is_stop = Lexeme.c_check_flag(lexeme, IS_STOP)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lexeme]
|
||||
+cell #[code const LexemeC*]
|
||||
+cell A pointer to a #[code LexemeC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code flag_id]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the flag to look up. The flag IDs are enumerated in
|
||||
| #[code spacy.typedefs].
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code bint]
|
||||
+cell The boolean value of the flag.
|
||||
|
||||
+h(3, "lexeme_c_set_flag", "spacy/lexeme.pxd") Lexeme.c_set_flag
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Set the value of a binary flag attribute.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport IS_STOP
|
||||
from spacy.lexeme cimport Lexeme
|
||||
|
||||
lexeme = doc.c[3].lex
|
||||
Lexeme.c_set_flag(lexeme, IS_STOP, 0)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lexeme]
|
||||
+cell #[code const LexemeC*]
|
||||
+cell A pointer to a #[code LexemeC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code flag_id]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the flag to look up. The flag IDs are enumerated in
|
||||
| #[code spacy.typedefs].
|
||||
|
||||
+row
|
||||
+cell #[code value]
|
||||
+cell #[code bint]
|
||||
+cell The value to set.
|
43
website/api/_cython/_span.jade
Normal file
43
website/api/_cython/_span.jade
Normal file
|
@ -0,0 +1,43 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > SPAN
|
||||
|
||||
p
|
||||
| A Cython class providing access and methods for a slice of a #[code Doc]
|
||||
| object.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("span") #[code Span]].
|
||||
|
||||
+h(3, "span_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The parent document.
|
||||
|
||||
+row
|
||||
+cell #[code start]
|
||||
+cell #[code int]
|
||||
+cell The index of the first token of the span.
|
||||
|
||||
+row
|
||||
+cell #[code end]
|
||||
+cell #[code int]
|
||||
+cell The index of the first token after the span.
|
||||
|
||||
+row
|
||||
+cell #[code start_char]
|
||||
+cell #[code int]
|
||||
+cell The index of the first character of the span.
|
||||
|
||||
+row
|
||||
+cell #[code end_char]
|
||||
+cell #[code int]
|
||||
+cell The index of the last character of the span.
|
||||
|
||||
+row
|
||||
+cell #[code label]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell A label to attach to the span, e.g. for named entities.
|
23
website/api/_cython/_stringstore.jade
Normal file
23
website/api/_cython/_stringstore.jade
Normal file
|
@ -0,0 +1,23 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > STRINGSTORE
|
||||
|
||||
p A lookup table to retrieve strings by 64-bit hashes.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("stringstore") #[code StringStore]].
|
||||
|
||||
+h(3, "stringstore_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code mem]
|
||||
+cell #[code cymem.Pool]
|
||||
+cell
|
||||
| A memory pool. Allocated memory will be freed once the
|
||||
| #[code StringStore] object is garbage collected.
|
||||
|
||||
+row
|
||||
+cell #[code keys]
|
||||
+cell #[+abbr("vector[uint64_t]") #[code vector[hash_t]]]
|
||||
+cell A list of hash values in the #[code StringStore].
|
73
website/api/_cython/_token.jade
Normal file
73
website/api/_cython/_token.jade
Normal file
|
@ -0,0 +1,73 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > TOKEN
|
||||
|
||||
p
|
||||
| A Cython class providing access and methods for a
|
||||
| #[+api("cython-structs#tokenc") #[code TokenC]] struct. Note that the
|
||||
| #[code Token] object does not own the struct. It only receives a pointer
|
||||
| to it.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("token") #[code Token]].
|
||||
|
||||
+h(3, "token_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[code Vocab]
|
||||
+cell A reference to the shared #[code Vocab] object.
|
||||
|
||||
+row
|
||||
+cell #[code c]
|
||||
+cell #[code TokenC*]
|
||||
+cell
|
||||
| A pointer to a #[+api("cython-structs#tokenc") #[code TokenC]]
|
||||
| struct.
|
||||
|
||||
+row
|
||||
+cell #[code i]
|
||||
+cell #[code int]
|
||||
+cell The offset of the token within the document.
|
||||
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The parent document.
|
||||
|
||||
+h(3, "token_cinit") Token.cinit
|
||||
+tag method
|
||||
|
||||
p Create a #[code Token] object from a #[code TokenC*] pointer.
|
||||
|
||||
+aside-code("Example").
|
||||
token = Token.cinit(&doc.c[3], doc, 3)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code vocab]
|
||||
+cell #[code Vocab]
|
||||
+cell A reference to the shared #[code Vocab].
|
||||
|
||||
+row
|
||||
+cell #[code c]
|
||||
+cell #[code TokenC*]
|
||||
+cell
|
||||
| A pointer to a #[+api("cython-structs#tokenc") #[code TokenC]]
|
||||
| struct.
|
||||
|
||||
+row
|
||||
+cell #[code offset]
|
||||
+cell #[code int]
|
||||
+cell The offset of the token within the document.
|
||||
|
||||
+row
|
||||
+cell #[code doc]
|
||||
+cell #[code Doc]
|
||||
+cell The parent document.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code Token]
|
||||
+cell The newly constructed object.
|
270
website/api/_cython/_tokenc.jade
Normal file
270
website/api/_cython/_tokenc.jade
Normal file
|
@ -0,0 +1,270 @@
|
|||
//- 💫 DOCS > API > CYTHON > STRUCTS > TOKENC
|
||||
|
||||
p
|
||||
| Cython data container for the #[code Token] object.
|
||||
|
||||
+aside-code("Example").
|
||||
token = &doc.c[3]
|
||||
token_ptr = &doc.c[3]
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code lex]
|
||||
+cell #[code const LexemeC*]
|
||||
+cell A pointer to the lexeme for the token.
|
||||
|
||||
+row
|
||||
+cell #[code morph]
|
||||
+cell #[code uint64_t]
|
||||
+cell An ID allowing lookup of morphological attributes.
|
||||
|
||||
+row
|
||||
+cell #[code pos]
|
||||
+cell #[code univ_pos_t]
|
||||
+cell Coarse-grained part-of-speech tag.
|
||||
|
||||
+row
|
||||
+cell #[code spacy]
|
||||
+cell #[code bint]
|
||||
+cell A binary value indicating whether the token has trailing whitespace.
|
||||
|
||||
+row
|
||||
+cell #[code tag]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Fine-grained part-of-speech tag.
|
||||
|
||||
+row
|
||||
+cell #[code idx]
|
||||
+cell #[code int]
|
||||
+cell The character offset of the token within the parent document.
|
||||
|
||||
+row
|
||||
+cell #[code lemma]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Base form of the token, with no inflectional suffixes.
|
||||
|
||||
+row
|
||||
+cell #[code sense]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Space for storing a word sense ID, currently unused.
|
||||
|
||||
+row
|
||||
+cell #[code head]
|
||||
+cell #[code int]
|
||||
+cell Offset of the syntactic parent relative to the token.
|
||||
|
||||
+row
|
||||
+cell #[code dep]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Syntactic dependency relation.
|
||||
|
||||
+row
|
||||
+cell #[code l_kids]
|
||||
+cell #[code uint32_t]
|
||||
+cell Number of left children.
|
||||
|
||||
+row
|
||||
+cell #[code r_kids]
|
||||
+cell #[code uint32_t]
|
||||
+cell Number of right children.
|
||||
|
||||
+row
|
||||
+cell #[code l_edge]
|
||||
+cell #[code uint32_t]
|
||||
+cell Offset of the leftmost token of this token's syntactic descendents.
|
||||
|
||||
+row
|
||||
+cell #[code r_edge]
|
||||
+cell #[code uint32_t]
|
||||
+cell Offset of the rightmost token of this token's syntactic descendents.
|
||||
|
||||
+row
|
||||
+cell #[code sent_start]
|
||||
+cell #[code int]
|
||||
+cell
|
||||
| Ternary value indicating whether the token is the first word of
|
||||
| a sentence. #[code 0] indicates a missing value, #[code -1]
|
||||
| indicates #[code False] and #[code 1] indicates #[code True]. The default value, 0,
|
||||
| is interpretted as no sentence break. Sentence boundary detectors will usually
|
||||
| set 0 for all tokens except tokens that follow a sentence boundary.
|
||||
|
||||
+row
|
||||
+cell #[code ent_iob]
|
||||
+cell #[code int]
|
||||
+cell
|
||||
| IOB code of named entity tag. #[code 0] indicates a missing
|
||||
| value, #[code 1] indicates #[code I], #[code 2] indicates
|
||||
| #[code 0] and #[code 3] indicates #[code B].
|
||||
|
||||
+row
|
||||
+cell #[code ent_type]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell Named entity type.
|
||||
|
||||
+row
|
||||
+cell #[code ent_id]
|
||||
+cell #[+abbr("uint64_t") #[code hash_t]]
|
||||
+cell
|
||||
| ID of the entity the token is an instance of, if any. Currently
|
||||
| not used, but potentially for coreference resolution.
|
||||
|
||||
+h(3, "token_get_struct_attr", "spacy/tokens/token.pxd") Token.get_struct_attr
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Get the value of an attribute from the #[code TokenC] struct by attribute ID.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport IS_ALPHA
|
||||
from spacy.tokens cimport Token
|
||||
|
||||
is_alpha = Token.get_struct_attr(&doc.c[3], IS_ALPHA)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code token]
|
||||
+cell #[code const TokenC*]
|
||||
+cell A pointer to a #[code TokenC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code feat_name]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the attribute to look up. The attributes are
|
||||
| enumerated in #[code spacy.typedefs].
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell The value of the attribute.
|
||||
|
||||
+h(3, "token_set_struct_attr", "spacy/tokens/token.pxd") Token.set_struct_attr
|
||||
+tag staticmethod
|
||||
+tag nogil
|
||||
|
||||
p Set the value of an attribute of the #[code TokenC] struct by attribute ID.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.attrs cimport TAG
|
||||
from spacy.tokens cimport Token
|
||||
|
||||
token = &doc.c[3]
|
||||
Token.set_struct_attr(token, TAG, 0)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code token]
|
||||
+cell #[code const TokenC*]
|
||||
+cell A pointer to a #[code TokenC] struct.
|
||||
|
||||
+row
|
||||
+cell #[code feat_name]
|
||||
+cell #[code attr_id_t]
|
||||
+cell
|
||||
| The ID of the attribute to look up. The attributes are
|
||||
| enumerated in #[code spacy.typedefs].
|
||||
|
||||
+row
|
||||
+cell #[code value]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell The value to set.
|
||||
|
||||
+h(3, "token_by_start", "spacy/tokens/doc.pxd") token_by_start
|
||||
+tag function
|
||||
|
||||
p Find a token in a #[code TokenC*] array by the offset of its first character.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens.doc cimport Doc, token_by_start
|
||||
from spacy.vocab cimport Vocab
|
||||
|
||||
doc = Doc(Vocab(), words=[u'hello', u'world'])
|
||||
assert token_by_start(doc.c, doc.length, 6) == 1
|
||||
assert token_by_start(doc.c, doc.length, 4) == -1
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code tokens]
|
||||
+cell #[code const TokenC*]
|
||||
+cell A #[code TokenC*] array.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[code int]
|
||||
+cell The number of tokens in the array.
|
||||
|
||||
+row
|
||||
+cell #[code start_char]
|
||||
+cell #[code int]
|
||||
+cell The start index to search for.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code int]
|
||||
+cell The index of the token in the array or #[code -1] if not found.
|
||||
|
||||
+h(3, "token_by_end", "spacy/tokens/doc.pxd") token_by_end
|
||||
+tag function
|
||||
|
||||
p Find a token in a #[code TokenC*] array by the offset of its final character.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens.doc cimport Doc, token_by_end
|
||||
from spacy.vocab cimport Vocab
|
||||
|
||||
doc = Doc(Vocab(), words=[u'hello', u'world'])
|
||||
assert token_by_end(doc.c, doc.length, 5) == 0
|
||||
assert token_by_end(doc.c, doc.length, 1) == -1
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code tokens]
|
||||
+cell #[code const TokenC*]
|
||||
+cell A #[code TokenC*] array.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[code int]
|
||||
+cell The number of tokens in the array.
|
||||
|
||||
+row
|
||||
+cell #[code end_char]
|
||||
+cell #[code int]
|
||||
+cell The end index to search for.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code int]
|
||||
+cell The index of the token in the array or #[code -1] if not found.
|
||||
|
||||
+h(3, "set_children_from_heads", "spacy/tokens/doc.pxd") set_children_from_heads
|
||||
+tag function
|
||||
|
||||
p
|
||||
| Set attributes that allow lookup of syntactic children on a
|
||||
| #[code TokenC*] array. This function must be called after making changes
|
||||
| to the #[code TokenC.head] attribute, in order to make the parse tree
|
||||
| navigation consistent.
|
||||
|
||||
+aside-code("Example").
|
||||
from spacy.tokens.doc cimport Doc, set_children_from_heads
|
||||
from spacy.vocab cimport Vocab
|
||||
|
||||
doc = Doc(Vocab(), words=[u'Baileys', u'from', u'a', u'shoe'])
|
||||
doc.c[0].head = 0
|
||||
doc.c[1].head = 0
|
||||
doc.c[2].head = 3
|
||||
doc.c[3].head = 1
|
||||
set_children_from_heads(doc.c, doc.length)
|
||||
assert doc.c[3].l_kids == 1
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code tokens]
|
||||
+cell #[code const TokenC*]
|
||||
+cell A #[code TokenC*] array.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[code int]
|
||||
+cell The number of tokens in the array.
|
88
website/api/_cython/_vocab.jade
Normal file
88
website/api/_cython/_vocab.jade
Normal file
|
@ -0,0 +1,88 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES > VOCAB
|
||||
|
||||
p
|
||||
| A Cython class providing access and methods for a vocabulary and other
|
||||
| data shared across a language.
|
||||
|
||||
+infobox
|
||||
| This section documents the extra C-level attributes and methods that
|
||||
| can't be accessed from Python. For the Python documentation, see
|
||||
| #[+api("vocab") #[code Vocab]].
|
||||
|
||||
+h(3, "vocab_attributes") Attributes
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code mem]
|
||||
+cell #[code cymem.Pool]
|
||||
+cell
|
||||
| A memory pool. Allocated memory will be freed once the
|
||||
| #[code Vocab] object is garbage collected.
|
||||
|
||||
+row
|
||||
+cell #[code strings]
|
||||
+cell #[code StringStore]
|
||||
+cell
|
||||
| A #[code StringStore] that maps string to hash values and vice
|
||||
| versa.
|
||||
|
||||
+row
|
||||
+cell #[code length]
|
||||
+cell #[code int]
|
||||
+cell The number of entries in the vocabulary.
|
||||
|
||||
+h(3, "vocab_get") Vocab.get
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Retrieve a #[+api("cython-structs#lexemec") #[code LexemeC*]] pointer
|
||||
| from the vocabulary.
|
||||
|
||||
+aside-code("Example").
|
||||
lexeme = vocab.get(vocab.mem, u'hello')
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code mem]
|
||||
+cell #[code cymem.Pool]
|
||||
+cell
|
||||
| A memory pool. Allocated memory will be freed once the
|
||||
| #[code Vocab] object is garbage collected.
|
||||
|
||||
+row
|
||||
+cell #[code string]
|
||||
+cell #[code unicode]
|
||||
+cell The string of the word to look up.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code const LexemeC*]
|
||||
+cell The lexeme in the vocabulary.
|
||||
|
||||
+h(3, "vocab_get_by_orth") Vocab.get_by_orth
|
||||
+tag method
|
||||
|
||||
p
|
||||
| Retrieve a #[+api("cython-structs#lexemec") #[code LexemeC*]] pointer
|
||||
| from the vocabulary.
|
||||
|
||||
+aside-code("Example").
|
||||
lexeme = vocab.get_by_orth(doc[0].lex.norm)
|
||||
|
||||
+table(["Name", "Type", "Description"])
|
||||
+row
|
||||
+cell #[code mem]
|
||||
+cell #[code cymem.Pool]
|
||||
+cell
|
||||
| A memory pool. Allocated memory will be freed once the
|
||||
| #[code Vocab] object is garbage collected.
|
||||
|
||||
+row
|
||||
+cell #[code orth]
|
||||
+cell #[+abbr("uint64_t") #[code attr_t]]
|
||||
+cell ID of the verbatim text content.
|
||||
|
||||
+row("foot")
|
||||
+cell returns
|
||||
+cell #[code const LexemeC*]
|
||||
+cell The lexeme in the vocabulary.
|
|
@ -33,6 +33,12 @@
|
|||
"Vectors": "vectors",
|
||||
"GoldParse": "goldparse",
|
||||
"GoldCorpus": "goldcorpus"
|
||||
},
|
||||
|
||||
"Cython": {
|
||||
"Architecture": "cython",
|
||||
"Structs": "cython-structs",
|
||||
"Classes": "cython-classes"
|
||||
}
|
||||
},
|
||||
|
||||
|
@ -41,8 +47,7 @@
|
|||
"next": "annotation",
|
||||
"menu": {
|
||||
"Basics": "basics",
|
||||
"Neural Network Model": "nn-model",
|
||||
"Cython Conventions": "cython"
|
||||
"Neural Network Model": "nn-model"
|
||||
}
|
||||
},
|
||||
|
||||
|
@ -211,5 +216,36 @@
|
|||
"Named Entities": "named-entities",
|
||||
"Models & Training": "training"
|
||||
}
|
||||
},
|
||||
|
||||
"cython": {
|
||||
"title": "Cython Architecture",
|
||||
"next": "cython-structs",
|
||||
"menu": {
|
||||
"Overview": "overview",
|
||||
"Conventions": "conventions"
|
||||
}
|
||||
},
|
||||
|
||||
"cython-structs": {
|
||||
"title": "Cython Structs",
|
||||
"teaser": "C-language objects that let you group variables together in a single contiguous block.",
|
||||
"next": "cython-classes",
|
||||
"menu": {
|
||||
"TokenC": "tokenc",
|
||||
"LexemeC": "lexemec"
|
||||
}
|
||||
},
|
||||
|
||||
"cython-classes": {
|
||||
"title": "Cython Classes",
|
||||
"menu": {
|
||||
"Doc": "doc",
|
||||
"Token": "token",
|
||||
"Span": "span",
|
||||
"Lexeme": "lexeme",
|
||||
"Vocab": "vocab",
|
||||
"StringStore": "stringstore"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
39
website/api/cython-classes.jade
Normal file
39
website/api/cython-classes.jade
Normal file
|
@ -0,0 +1,39 @@
|
|||
//- 💫 DOCS > API > CYTHON > CLASSES
|
||||
|
||||
include ../_includes/_mixins
|
||||
|
||||
+section("doc")
|
||||
+h(2, "doc", "spacy/tokens/doc.pxd") Doc
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_doc
|
||||
|
||||
+section("token")
|
||||
+h(2, "token", "spacy/tokens/token.pxd") Token
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_token
|
||||
|
||||
+section("span")
|
||||
+h(2, "span", "spacy/tokens/span.pxd") Span
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_span
|
||||
|
||||
+section("lexeme")
|
||||
+h(2, "lexeme", "spacy/lexeme.pxd") Lexeme
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_lexeme
|
||||
|
||||
+section("vocab")
|
||||
+h(2, "vocab", "spacy/vocab.pxd") Vocab
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_vocab
|
||||
|
||||
+section("stringstore")
|
||||
+h(2, "stringstore", "spacy/strings.pxd") StringStore
|
||||
+tag cdef class
|
||||
|
||||
include _cython/_stringstore
|
15
website/api/cython-structs.jade
Normal file
15
website/api/cython-structs.jade
Normal file
|
@ -0,0 +1,15 @@
|
|||
//- 💫 DOCS > API > CYTHON > STRUCTS
|
||||
|
||||
include ../_includes/_mixins
|
||||
|
||||
+section("tokenc")
|
||||
+h(2, "tokenc", "spacy/structs.pxd") TokenC
|
||||
+tag C struct
|
||||
|
||||
include _cython/_tokenc
|
||||
|
||||
+section("lexemec")
|
||||
+h(2, "lexemec", "spacy/structs.pxd") LexemeC
|
||||
+tag C struct
|
||||
|
||||
include _cython/_lexemec
|
176
website/api/cython.jade
Normal file
176
website/api/cython.jade
Normal file
|
@ -0,0 +1,176 @@
|
|||
//- 💫 DOCS > API > CYTHON > ARCHITECTURE
|
||||
|
||||
include ../_includes/_mixins
|
||||
|
||||
+section("overview")
|
||||
+aside("What's Cython?")
|
||||
| #[+a("http://cython.org/") Cython] is a language for writing
|
||||
| C extensions for Python. Most Python code is also valid Cython, but
|
||||
| you can add type declarations to get efficient memory-managed code
|
||||
| just like C or C++.
|
||||
|
||||
p
|
||||
| This section documents spaCy's C-level data structures and
|
||||
| interfaces, intended for use from Cython. Some of the attributes are
|
||||
| primarily for internal use, and all C-level functions and methods are
|
||||
| designed for speed over safety – if you make a mistake and access an
|
||||
| array out-of-bounds, the program may crash abruptly.
|
||||
|
||||
p
|
||||
| With Cython there are four ways of declaring complex data types.
|
||||
| Unfortunately we use all four in different places, as they all have
|
||||
| different utility:
|
||||
|
||||
+table(["Declaration", "Description", "Example"])
|
||||
+row
|
||||
+cell #[code class]
|
||||
+cell A normal Python class.
|
||||
+cell #[+api("language") #[code Language]]
|
||||
|
||||
+row
|
||||
+cell #[code cdef class]
|
||||
+cell
|
||||
| A Python extension type. Differs from a normal Python class
|
||||
| in that its attributes can be defined on the underlying
|
||||
| struct. Can have C-level objects as attributes (notably
|
||||
| structs and pointers), and can have methods which have
|
||||
| C-level objects as arguments or return types.
|
||||
+cell #[+api("cython-classes#lexeme") #[code Lexeme]]
|
||||
|
||||
+row
|
||||
+cell #[code cdef struct]
|
||||
+cell
|
||||
| A struct is just a collection of variables, sort of like a
|
||||
| named tuple, except the memory is contiguous. Structs can't
|
||||
| have methods, only attributes.
|
||||
+cell #[+api("cython-structs#lexemec") #[code LexemeC]]
|
||||
|
||||
+row
|
||||
+cell #[code cdef cppclass]
|
||||
+cell
|
||||
| A C++ class. Like a struct, this can be allocated on the
|
||||
| stack, but can have methods, a constructor and a destructor.
|
||||
| Differs from `cdef class` in that it can be created and
|
||||
| destroyed without acquiring the Python global interpreter
|
||||
| lock. This style is the most obscure.
|
||||
+cell #[+src(gh("spacy", "spacy/syntax/_state.pxd")) #[code StateC]]
|
||||
|
||||
p
|
||||
| The most important classes in spaCy are defined as #[code cdef class]
|
||||
| objects. The underlying data for these objects is usually gathered
|
||||
| into a struct, which is usually named #[code c]. For instance, the
|
||||
| #[+api("cython-classses#lexeme") #[code Lexeme]] class holds a
|
||||
| #[+api("cython-structs#lexemec") #[code LexemeC]] struct, at
|
||||
| #[code Lexeme.c]. This lets you shed the Python container, and pass
|
||||
| a pointer to the underlying data into C-level functions.
|
||||
|
||||
+section("conventions")
|
||||
+h(2, "conventions") Conventions
|
||||
|
||||
p
|
||||
| spaCy's core data structures are implemented as
|
||||
| #[+a("http://cython.org/") Cython] #[code cdef] classes. Memory is
|
||||
| managed through the #[+a(gh("cymem")) #[code cymem]]
|
||||
| #[code cymem.Pool] class, which allows you
|
||||
| to allocate memory which will be freed when the #[code Pool] object
|
||||
| is garbage collected. This means you usually don't have to worry
|
||||
| about freeing memory. You just have to decide which Python object
|
||||
| owns the memory, and make it own the #[code Pool]. When that object
|
||||
| goes out of scope, the memory will be freed. You do have to take
|
||||
| care that no pointers outlive the object that owns them — but this
|
||||
| is generally quite easy.
|
||||
|
||||
p
|
||||
| All Cython modules should have the #[code # cython: infer_types=True]
|
||||
| compiler directive at the top of the file. This makes the code much
|
||||
| cleaner, as it avoids the need for many type declarations. If
|
||||
| possible, you should prefer to declare your functions #[code nogil],
|
||||
| even if you don't especially care about multi-threading. The reason
|
||||
| is that #[code nogil] functions help the Cython compiler reason about
|
||||
| your code quite a lot — you're telling the compiler that no Python
|
||||
| dynamics are possible. This lets many errors be raised, and ensures
|
||||
| your function will run at C speed.
|
||||
|
||||
|
||||
p
|
||||
| Cython gives you many choices of sequences: you could have a Python
|
||||
| list, a numpy array, a memory view, a C++ vector, or a pointer.
|
||||
| Pointers are preferred, because they are fastest, have the most
|
||||
| explicit semantics, and let the compiler check your code more
|
||||
| strictly. C++ vectors are also great — but you should only use them
|
||||
| internally in functions. It's less friendly to accept a vector as an
|
||||
| argument, because that asks the user to do much more work. Here's
|
||||
| how to get a pointer from a numpy array, memory view or vector:
|
||||
|
||||
+code.
|
||||
cdef void get_pointers(np.ndarray[int, mode='c'] numpy_array, vector[int] cpp_vector, int[::1] memory_view) nogil:
|
||||
pointer1 = <int*>numpy_array.data
|
||||
pointer2 = cpp_vector.data()
|
||||
pointer3 = &memory_view[0]
|
||||
|
||||
p
|
||||
| Both C arrays and C++ vectors reassure the compiler that no Python
|
||||
| operations are possible on your variable. This is a big advantage:
|
||||
| it lets the Cython compiler raise many more errors for you.
|
||||
|
||||
p
|
||||
| When getting a pointer from a numpy array or memoryview, take care
|
||||
| that the data is actually stored in C-contiguous order — otherwise
|
||||
| you'll get a pointer to nonsense. The type-declarations in the code
|
||||
| above should generate runtime errors if buffers with incorrect
|
||||
| memory layouts are passed in. To iterate over the array, the
|
||||
| following style is preferred:
|
||||
|
||||
+code.
|
||||
cdef int c_total(const int* int_array, int length) nogil:
|
||||
total = 0
|
||||
for item in int_array[:length]:
|
||||
total += item
|
||||
return total
|
||||
|
||||
p
|
||||
| If this is confusing, consider that the compiler couldn't deal with
|
||||
| #[code for item in int_array:] — there's no length attached to a raw
|
||||
| pointer, so how could we figure out where to stop? The length is
|
||||
| provided in the slice notation as a solution to this. Note that we
|
||||
| don't have to declare the type of #[code item] in the code above —
|
||||
| the compiler can easily infer it. This gives us tidy code that looks
|
||||
| quite like Python, but is exactly as fast as C — because we've made
|
||||
| sure the compilation to C is trivial.
|
||||
|
||||
p
|
||||
| Your functions cannot be declared #[code nogil] if they need to
|
||||
| create Python objects or call Python functions. This is perfectly
|
||||
| okay — you shouldn't torture your code just to get #[code nogil]
|
||||
| functions. However, if your function isn't #[code nogil], you should
|
||||
| compile your module with #[code cython -a --cplus my_module.pyx] and
|
||||
| open the resulting #[code my_module.html] file in a browser. This
|
||||
| will let you see how Cython is compiling your code. Calls into the
|
||||
| Python run-time will be in bright yellow. This lets you easily see
|
||||
| whether Cython is able to correctly type your code, or whether there
|
||||
| are unexpected problems.
|
||||
|
||||
p
|
||||
| Working in Cython is very rewarding once you're over the initial
|
||||
| learning curve. As with C and C++, the first way you write something
|
||||
| in Cython will often be the performance-optimal approach. In
|
||||
| contrast, Python optimisation generally requires a lot of
|
||||
| experimentation. Is it faster to have an #[code if item in my_dict]
|
||||
| check, or to use #[code .get()]? What about
|
||||
| #[code try]/#[code except]? Does this numpy operation create a copy?
|
||||
| There's no way to guess the answers to these questions, and you'll
|
||||
| usually be dissatisfied with your results — so there's no way to
|
||||
| know when to stop this process. In the worst case, you'll make a
|
||||
| mess that invites the next reader to try their luck too. This is
|
||||
| like one of those
|
||||
| #[+a("http://www.wemjournal.org/article/S1080-6032%2809%2970088-2/abstract") volcanic gas-traps],
|
||||
| where the rescuers keep passing out from low oxygen, causing
|
||||
| another rescuer to follow — only to succumb themselves. In short,
|
||||
| just say no to optimizing your Python. If it's not fast enough the
|
||||
| first time, just switch to Cython.
|
||||
|
||||
+infobox("Resources")
|
||||
+list.o-no-block
|
||||
+item #[+a("http://docs.cython.org/en/latest/") Official Cython documentation] (cython.org)
|
||||
+item #[+a("https://explosion.ai/blog/writing-c-in-cython", true) Writing C in Cython] (explosion.ai)
|
||||
+item #[+a("https://explosion.ai/blog/multithreading-with-cython") Multi-threading spaCy’s parser and named entity recogniser] (explosion.ai)
|
|
@ -7,8 +7,151 @@ include ../_includes/_mixins
|
|||
|
||||
+section("nn-model")
|
||||
+h(2, "nn-model") Neural network model architecture
|
||||
include _architecture/_nn-model
|
||||
|
||||
+section("cython")
|
||||
+h(2, "cython") Cython conventions
|
||||
include _architecture/_cython
|
||||
p
|
||||
| spaCy's statistical models have been custom-designed to give a
|
||||
| high-performance mix of speed and accuracy. The current architecture
|
||||
| hasn't been published yet, but in the meantime we prepared a video that
|
||||
| explains how the models work, with particular focus on NER.
|
||||
|
||||
+youtube("sqDHBH9IjRU")
|
||||
|
||||
p
|
||||
| The parsing model is a blend of recent results. The two recent
|
||||
| inspirations have been the work of Eli Klipperwasser and Yoav Goldberg at
|
||||
| Bar Ilan#[+fn(1)], and the SyntaxNet team from Google. The foundation of
|
||||
| the parser is still based on the work of Joakim Nivre#[+fn(2)], who
|
||||
| introduced the transition-based framework#[+fn(3)], the arc-eager
|
||||
| transition system, and the imitation learning objective. The model is
|
||||
| implemented using #[+a(gh("thinc")) Thinc], spaCy's machine learning
|
||||
| library. We first predict context-sensitive vectors for each word in the
|
||||
| input:
|
||||
|
||||
+code.
|
||||
(embed_lower | embed_prefix | embed_suffix | embed_shape)
|
||||
>> Maxout(token_width)
|
||||
>> convolution ** 4
|
||||
|
||||
p
|
||||
| This convolutional layer is shared between the tagger, parser and NER,
|
||||
| and will also be shared by the future neural lemmatizer. Because the
|
||||
| parser shares these layers with the tagger, the parser does not require
|
||||
| tag features. I got this trick from David Weiss's "Stack Combination"
|
||||
| paper#[+fn(4)].
|
||||
|
||||
p
|
||||
| To boost the representation, the tagger actually predicts a "super tag"
|
||||
| with POS, morphology and dependency label#[+fn(5)]. The tagger predicts
|
||||
| these supertags by adding a softmax layer onto the convolutional layer –
|
||||
| so, we're teaching the convolutional layer to give us a representation
|
||||
| that's one affine transform from this informative lexical information.
|
||||
| This is obviously good for the parser (which backprops to the
|
||||
| convolutions too). The parser model makes a state vector by concatenating
|
||||
| the vector representations for its context tokens. The current context
|
||||
| tokens:
|
||||
|
||||
+table
|
||||
+row
|
||||
+cell #[code S0], #[code S1], #[code S2]
|
||||
+cell Top three words on the stack.
|
||||
|
||||
+row
|
||||
+cell #[code B0], #[code B1]
|
||||
+cell First two words of the buffer.
|
||||
|
||||
+row
|
||||
+cell
|
||||
| #[code S0L1], #[code S1L1], #[code S2L1], #[code B0L1],
|
||||
| #[code B1L1]#[br]
|
||||
| #[code S0L2], #[code S1L2], #[code S2L2], #[code B0L2],
|
||||
| #[code B1L2]
|
||||
+cell
|
||||
| Leftmost and second leftmost children of #[code S0], #[code S1],
|
||||
| #[code S2], #[code B0] and #[code B1].
|
||||
|
||||
+row
|
||||
+cell
|
||||
| #[code S0R1], #[code S1R1], #[code S2R1], #[code B0R1],
|
||||
| #[code B1R1]#[br]
|
||||
| #[code S0R2], #[code S1R2], #[code S2R2], #[code B0R2],
|
||||
| #[code B1R2]
|
||||
+cell
|
||||
| Rightmost and second rightmost children of #[code S0], #[code S1],
|
||||
| #[code S2], #[code B0] and #[code B1].
|
||||
|
||||
p
|
||||
| This makes the state vector quite long: #[code 13*T], where #[code T] is
|
||||
| the token vector width (128 is working well). Fortunately, there's a way
|
||||
| to structure the computation to save some expense (and make it more
|
||||
| GPU-friendly).
|
||||
|
||||
p
|
||||
| The parser typically visits #[code 2*N] states for a sentence of length
|
||||
| #[code N] (although it may visit more, if it back-tracks with a
|
||||
| non-monotonic transition#[+fn(4)]). A naive implementation would require
|
||||
| #[code 2*N (B, 13*T) @ (13*T, H)] matrix multiplications for a batch of
|
||||
| size #[code B]. We can instead perform one #[code (B*N, T) @ (T, 13*H)]
|
||||
| multiplication, to pre-compute the hidden weights for each positional
|
||||
| feature with respect to the words in the batch. (Note that our token
|
||||
| vectors come from the CNN — so we can't play this trick over the
|
||||
| vocabulary. That's how Stanford's NN parser#[+fn(3)] works — and why its
|
||||
| model is so big.)
|
||||
|
||||
p
|
||||
| This pre-computation strategy allows a nice compromise between
|
||||
| GPU-friendliness and implementation simplicity. The CNN and the wide
|
||||
| lower layer are computed on the GPU, and then the precomputed hidden
|
||||
| weights are moved to the CPU, before we start the transition-based
|
||||
| parsing process. This makes a lot of things much easier. We don't have to
|
||||
| worry about variable-length batch sizes, and we don't have to implement
|
||||
| the dynamic oracle in CUDA to train.
|
||||
|
||||
p
|
||||
| Currently the parser's loss function is multilabel log loss#[+fn(6)], as
|
||||
| the dynamic oracle allows multiple states to be 0 cost. This is defined
|
||||
| as follows, where #[code gZ] is the sum of the scores assigned to gold
|
||||
| classes:
|
||||
|
||||
+code.
|
||||
(exp(score) / Z) - (exp(score) / gZ)
|
||||
|
||||
+bibliography
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Simple-and-Accurate-Dependency-Parsing-Using-Bidir-Kiperwasser-Goldberg/3cf31ecb2724b5088783d7c96a5fc0d5604cbf41") Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations]
|
||||
br
|
||||
| Eliyahu Kiperwasser, Yoav Goldberg. (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/A-Dynamic-Oracle-for-Arc-Eager-Dependency-Parsing-Goldberg-Nivre/22697256ec19ecc3e14fcfc63624a44cf9c22df4") A Dynamic Oracle for Arc-Eager Dependency Parsing]
|
||||
br
|
||||
| Yoav Goldberg, Joakim Nivre (2012)
|
||||
|
||||
+item
|
||||
| #[+a("https://explosion.ai/blog/parsing-english-in-python") Parsing English in 500 Lines of Python]
|
||||
br
|
||||
| Matthew Honnibal (2013)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Stack-propagation-Improved-Representation-Learning-Zhang-Weiss/0c133f79b23e8c680891d2e49a66f0e3d37f1466") Stack-propagation: Improved Representation Learning for Syntax]
|
||||
br
|
||||
| Yuan Zhang, David Weiss (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Deep-multi-task-learning-with-low-level-tasks-supe-S%C3%B8gaard-Goldberg/03ad06583c9721855ccd82c3d969a01360218d86") Deep multi-task learning with low level tasks supervised at lower layers]
|
||||
br
|
||||
| Anders Søgaard, Yoav Goldberg (2016)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/An-Improved-Non-monotonic-Transition-System-for-De-Honnibal-Johnson/4094cee47ade13b77b5ab4d2e6cb9dd2b8a2917c") An Improved Non-monotonic Transition System for Dependency Parsing]
|
||||
br
|
||||
| Matthew Honnibal, Mark Johnson (2015)
|
||||
|
||||
+item
|
||||
| #[+a("http://cs.stanford.edu/people/danqi/papers/emnlp2014.pdf") A Fast and Accurate Dependency Parser using Neural Networks]
|
||||
br
|
||||
| Danqi Cheng, Christopher D. Manning (2014)
|
||||
|
||||
+item
|
||||
| #[+a("https://www.semanticscholar.org/paper/Parsing-the-Wall-Street-Journal-using-a-Lexical-Fu-Riezler-King/0ad07862a91cd59b7eb5de38267e47725a62b8b2") Parsing the Wall Street Journal using a Lexical-Functional Grammar and Discriminative Estimation Techniques]
|
||||
br
|
||||
| Stefan Riezler et al. (2002)
|
||||
|
|
|
@ -573,15 +573,15 @@ p The L2 norm of the token's vector representation.
|
|||
+cell #[code ent_id]
|
||||
+cell int
|
||||
+cell
|
||||
| ID of the entity the token is an instance of, if any. Usually
|
||||
| assigned by patterns in the Matcher.
|
||||
| ID of the entity the token is an instance of, if any. Currently
|
||||
| not used, but potentially for coreference resolution.
|
||||
|
||||
+row
|
||||
+cell #[code ent_id_]
|
||||
+cell unicode
|
||||
+cell
|
||||
| ID of the entity the token is an instance of, if any. Usually
|
||||
| assigned by patterns in the Matcher.
|
||||
| ID of the entity the token is an instance of, if any. Currently
|
||||
| not used, but potentially for coreference resolution.
|
||||
|
||||
+row
|
||||
+cell #[code lemma]
|
||||
|
|
|
@ -231,3 +231,19 @@
|
|||
border: none
|
||||
text-align-last: center
|
||||
width: 100%
|
||||
|
||||
//- Abbreviations
|
||||
|
||||
.o-abbr
|
||||
+breakpoint(min, md)
|
||||
cursor: help
|
||||
border-bottom: 2px dotted $color-theme
|
||||
padding-bottom: 3px
|
||||
|
||||
+breakpoint(max, sm)
|
||||
&[data-tooltip]:before
|
||||
content: none
|
||||
|
||||
&:after
|
||||
content: " (" attr(aria-label) ")"
|
||||
color: $color-subtle-dark
|
||||
|
|
|
@ -58,7 +58,12 @@ import initUniverse from './universe.vue.js';
|
|||
const sectionAttr = 'data-section';
|
||||
const navAttr = 'data-nav';
|
||||
const activeClass = 'is-active';
|
||||
const sidebarAttr = 'data-sidebar-active';
|
||||
const sections = [...document.querySelectorAll(`[${navAttr}]`)];
|
||||
const currentItem = document.querySelector(`[${sidebarAttr}]`);
|
||||
if (currentItem && Element.prototype.scrollIntoView) {
|
||||
currentItem.scrollIntoView();
|
||||
}
|
||||
if (window.inView) {
|
||||
if (sections.length) { // highlight first item regardless
|
||||
sections[0].classList.add(activeClass);
|
||||
|
@ -69,6 +74,9 @@ import initUniverse from './universe.vue.js';
|
|||
if (el) {
|
||||
sections.forEach(el => el.classList.remove(activeClass));
|
||||
el.classList.add(activeClass);
|
||||
if (Element.prototype.scrollIntoView) {
|
||||
el.scrollIntoView();
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
|
2
website/assets/js/vendor/prism.min.js
vendored
2
website/assets/js/vendor/prism.min.js
vendored
|
@ -16,7 +16,7 @@ Prism.languages.json={property:/".*?"(?=\s*:)/gi,string:/"(?!:)(\\?[^"])*?"(?!:)
|
|||
!function(a){var e=/\\([^a-z()[\]]|[a-z\*]+)/i,n={"equation-command":{pattern:e,alias:"regex"}};a.languages.latex={comment:/%.*/m,cdata:{pattern:/(\\begin\{((?:verbatim|lstlisting)\*?)\})([\w\W]*?)(?=\\end\{\2\})/,lookbehind:!0},equation:[{pattern:/\$(?:\\?[\w\W])*?\$|\\\((?:\\?[\w\W])*?\\\)|\\\[(?:\\?[\w\W])*?\\\]/,inside:n,alias:"string"},{pattern:/(\\begin\{((?:equation|math|eqnarray|align|multline|gather)\*?)\})([\w\W]*?)(?=\\end\{\2\})/,lookbehind:!0,inside:n,alias:"string"}],keyword:{pattern:/(\\(?:begin|end|ref|cite|label|usepackage|documentclass)(?:\[[^\]]+\])?\{)[^}]+(?=\})/,lookbehind:!0},url:{pattern:/(\\url\{)[^}]+(?=\})/,lookbehind:!0},headline:{pattern:/(\\(?:part|chapter|section|subsection|frametitle|subsubsection|paragraph|subparagraph|subsubparagraph|subsubsubparagraph)\*?(?:\[[^\]]+\])?\{)[^}]+(?=\}(?:\[[^\]]+\])?)/,lookbehind:!0,alias:"class-name"},"function":{pattern:e,alias:"selector"},punctuation:/[[\]{}&]/}}(Prism);
|
||||
Prism.languages.makefile={comment:{pattern:/(^|[^\\])#(?:\\(?:\r\n|[\s\S])|.)*/,lookbehind:!0},string:/(["'])(?:\\(?:\r\n|[\s\S])|(?!\1)[^\\\r\n])*\1/,builtin:/\.[A-Z][^:#=\s]+(?=\s*:(?!=))/,symbol:{pattern:/^[^:=\r\n]+(?=\s*:(?!=))/m,inside:{variable:/\$+(?:[^(){}:#=\s]+|(?=[({]))/}},variable:/\$+(?:[^(){}:#=\s]+|\([@*%<^+?][DF]\)|(?=[({]))/,keyword:[/-include\b|\b(?:define|else|endef|endif|export|ifn?def|ifn?eq|include|override|private|sinclude|undefine|unexport|vpath)\b/,{pattern:/(\()(?:addsuffix|abspath|and|basename|call|dir|error|eval|file|filter(?:-out)?|findstring|firstword|flavor|foreach|guile|if|info|join|lastword|load|notdir|or|origin|patsubst|realpath|shell|sort|strip|subst|suffix|value|warning|wildcard|word(?:s|list)?)(?=[ \t])/,lookbehind:!0}],operator:/(?:::|[?:+!])?=|[|@]/,punctuation:/[:;(){}]/};
|
||||
Prism.languages.markdown=Prism.languages.extend("markup",{}),Prism.languages.insertBefore("markdown","prolog",{blockquote:{pattern:/^>(?:[\t ]*>)*/m,alias:"punctuation"},code:[{pattern:/^(?: {4}|\t).+/m,alias:"keyword"},{pattern:/``.+?``|`[^`\n]+`/,alias:"keyword"}],title:[{pattern:/\w+.*(?:\r?\n|\r)(?:==+|--+)/,alias:"important",inside:{punctuation:/==+$|--+$/}},{pattern:/(^\s*)#+.+/m,lookbehind:!0,alias:"important",inside:{punctuation:/^#+|#+$/}}],hr:{pattern:/(^\s*)([*-])([\t ]*\2){2,}(?=\s*$)/m,lookbehind:!0,alias:"punctuation"},list:{pattern:/(^\s*)(?:[*+-]|\d+\.)(?=[\t ].)/m,lookbehind:!0,alias:"punctuation"},"url-reference":{pattern:/!?\[[^\]]+\]:[\t ]+(?:\S+|<(?:\\.|[^>\\])+>)(?:[\t ]+(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\)))?/,inside:{variable:{pattern:/^(!?\[)[^\]]+/,lookbehind:!0},string:/(?:"(?:\\.|[^"\\])*"|'(?:\\.|[^'\\])*'|\((?:\\.|[^)\\])*\))$/,punctuation:/^[\[\]!:]|[<>]/},alias:"url"},bold:{pattern:/(^|[^\\])(\*\*|__)(?:(?:\r?\n|\r)(?!\r?\n|\r)|.)+?\2/,lookbehind:!0,inside:{punctuation:/^\*\*|^__|\*\*$|__$/}},italic:{pattern:/(^|[^\\])([*_])(?:(?:\r?\n|\r)(?!\r?\n|\r)|.)+?\2/,lookbehind:!0,inside:{punctuation:/^[*_]|[*_]$/}},url:{pattern:/!?\[[^\]]+\](?:\([^\s)]+(?:[\t ]+"(?:\\.|[^"\\])*")?\)| ?\[[^\]\n]*\])/,inside:{variable:{pattern:/(!?\[)[^\]]+(?=\]$)/,lookbehind:!0},string:{pattern:/"(?:\\.|[^"\\])*"(?=\)$)/}}}}),Prism.languages.markdown.bold.inside.url=Prism.util.clone(Prism.languages.markdown.url),Prism.languages.markdown.italic.inside.url=Prism.util.clone(Prism.languages.markdown.url),Prism.languages.markdown.bold.inside.italic=Prism.util.clone(Prism.languages.markdown.italic),Prism.languages.markdown.italic.inside.bold=Prism.util.clone(Prism.languages.markdown.bold);
|
||||
Prism.languages.python={"triple-quoted-string":{pattern:/"""[\s\S]+?"""|'''[\s\S]+?'''/,alias:"string"},comment:{pattern:/(^|[^\\])#.*/,lookbehind:!0},string:/("|')(?:\\?.)*?\1/,"function":{pattern:/((?:^|\s)def[ \t]+)[a-zA-Z_][a-zA-Z0-9_]*(?=\()/g,lookbehind:!0},"class-name":{pattern:/(\bclass\s+)[a-z0-9_]+/i,lookbehind:!0},keyword:/\b(?:as|assert|async|await|break|class|continue|def|del|elif|else|except|exec|finally|for|from|global|if|import|in|is|lambda|pass|print|raise|return|try|while|with|yield)\b/,"boolean":/\b(?:True|False|None)\b/,number:/\b-?(?:0[bo])?(?:(?:\d|0x[\da-f])[\da-f]*\.?\d*|\.\d+)(?:e[+-]?\d+)?j?\b/i,operator:/[-+%=]=?|!=|\*\*?=?|\/\/?=?|<[<=>]?|>[=>]?|[&|^~]|\b(?:or|and|not)\b/,punctuation:/[{}[\];(),.:]/,"constant":/\b[A-Z_]{2,}\b/};
|
||||
Prism.languages.python={"triple-quoted-string":{pattern:/"""[\s\S]+?"""|'''[\s\S]+?'''/,alias:"string"},comment:{pattern:/(^|[^\\])#.*/,lookbehind:!0},string:/("|')(?:\\?.)*?\1/,"function":{pattern:/((?:^|\s)def[ \t]+)[a-zA-Z_][a-zA-Z0-9_]*(?=\()/g,lookbehind:!0},"class-name":{pattern:/(\bclass\s+)[a-z0-9_]+/i,lookbehind:!0},keyword:/\b(?:as|assert|async|await|break|class|continue|def|del|elif|else|except|exec|finally|for|from|global|if|import|in|is|lambda|pass|print|raise|return|try|while|with|yield|cimport)\b/,"boolean":/\b(?:True|False|None)\b/,number:/\b-?(?:0[bo])?(?:(?:\d|0x[\da-f])[\da-f]*\.?\d*|\.\d+)(?:e[+-]?\d+)?j?\b/i,operator:/[-+%=]=?|!=|\*\*?=?|\/\/?=?|<[<=>]?|>[=>]?|[&|^~]|\b(?:or|and|not)\b/,punctuation:/[{}[\];(),.:]/,"constant":/\b[A-Z_]{2,}\b/};
|
||||
Prism.languages.rest={table:[{pattern:/(\s*)(?:\+[=-]+)+\+(?:\r?\n|\r)(?:\1(?:[+|].+)+[+|](?:\r?\n|\r))+\1(?:\+[=-]+)+\+/,lookbehind:!0,inside:{punctuation:/\||(?:\+[=-]+)+\+/}},{pattern:/(\s*)(?:=+ +)+=+((?:\r?\n|\r)\1.+)+(?:\r?\n|\r)\1(?:=+ +)+=+(?=(?:\r?\n|\r){2}|\s*$)/,lookbehind:!0,inside:{punctuation:/[=-]+/}}],"substitution-def":{pattern:/(^\s*\.\. )\|(?:[^|\s](?:[^|]*[^|\s])?)\| [^:]+::/m,lookbehind:!0,inside:{substitution:{pattern:/^\|(?:[^|\s]|[^|\s][^|]*[^|\s])\|/,alias:"attr-value",inside:{punctuation:/^\||\|$/}},directive:{pattern:/( +)[^:]+::/,lookbehind:!0,alias:"function",inside:{punctuation:/::$/}}}},"link-target":[{pattern:/(^\s*\.\. )\[[^\]]+\]/m,lookbehind:!0,alias:"string",inside:{punctuation:/^\[|\]$/}},{pattern:/(^\s*\.\. )_(?:`[^`]+`|(?:[^:\\]|\\.)+):/m,lookbehind:!0,alias:"string",inside:{punctuation:/^_|:$/}}],directive:{pattern:/(^\s*\.\. )[^:]+::/m,lookbehind:!0,alias:"function",inside:{punctuation:/::$/}},comment:{pattern:/(^\s*\.\.)(?:(?: .+)?(?:(?:\r?\n|\r).+)+| .+)(?=(?:\r?\n|\r){2}|$)/m,lookbehind:!0},title:[{pattern:/^(([!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~])\2+)(?:\r?\n|\r).+(?:\r?\n|\r)\1$/m,inside:{punctuation:/^[!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~]+|[!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~]+$/,important:/.+/}},{pattern:/(^|(?:\r?\n|\r){2}).+(?:\r?\n|\r)([!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~])\2+(?=\r?\n|\r|$)/,lookbehind:!0,inside:{punctuation:/[!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~]+$/,important:/.+/}}],hr:{pattern:/((?:\r?\n|\r){2})([!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~])\2{3,}(?=(?:\r?\n|\r){2})/,lookbehind:!0,alias:"punctuation"},field:{pattern:/(^\s*):[^:\r\n]+:(?= )/m,lookbehind:!0,alias:"attr-name"},"command-line-option":{pattern:/(^\s*)(?:[+-][a-z\d]|(?:\-\-|\/)[a-z\d-]+)(?:[ =](?:[a-z][a-z\d_-]*|<[^<>]+>))?(?:, (?:[+-][a-z\d]|(?:\-\-|\/)[a-z\d-]+)(?:[ =](?:[a-z][a-z\d_-]*|<[^<>]+>))?)*(?=(?:\r?\n|\r)? {2,}\S)/im,lookbehind:!0,alias:"symbol"},"literal-block":{pattern:/::(?:\r?\n|\r){2}([ \t]+).+(?:(?:\r?\n|\r)\1.+)*/,inside:{"literal-block-punctuation":{pattern:/^::/,alias:"punctuation"}}},"quoted-literal-block":{pattern:/::(?:\r?\n|\r){2}([!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~]).*(?:(?:\r?\n|\r)\1.*)*/,inside:{"literal-block-punctuation":{pattern:/^(?:::|([!"#$%&'()*+,\-.\/:;<=>?@\[\\\]^_`{|}~])\1*)/m,alias:"punctuation"}}},"list-bullet":{pattern:/(^\s*)(?:[*+\-•‣⁃]|\(?(?:\d+|[a-z]|[ivxdclm]+)\)|(?:\d+|[a-z]|[ivxdclm]+)\.)(?= )/im,lookbehind:!0,alias:"punctuation"},"doctest-block":{pattern:/(^\s*)>>> .+(?:(?:\r?\n|\r).+)*/m,lookbehind:!0,inside:{punctuation:/^>>>/}},inline:[{pattern:/(^|[\s\-:\/'"<(\[{])(?::[^:]+:`.*?`|`.*?`:[^:]+:|(\*\*?|``?|\|)(?!\s).*?[^\s]\2(?=[\s\-.,:;!?\\\/'")\]}]|$))/m,lookbehind:!0,inside:{bold:{pattern:/(^\*\*).+(?=\*\*$)/,lookbehind:!0},italic:{pattern:/(^\*).+(?=\*$)/,lookbehind:!0},"inline-literal":{pattern:/(^``).+(?=``$)/,lookbehind:!0,alias:"symbol"},role:{pattern:/^:[^:]+:|:[^:]+:$/,alias:"function",inside:{punctuation:/^:|:$/}},"interpreted-text":{pattern:/(^`).+(?=`$)/,lookbehind:!0,alias:"attr-value"},substitution:{pattern:/(^\|).+(?=\|$)/,lookbehind:!0,alias:"attr-value"},punctuation:/\*\*?|``?|\|/}}],link:[{pattern:/\[[^\]]+\]_(?=[\s\-.,:;!?\\\/'")\]}]|$)/,alias:"string",inside:{punctuation:/^\[|\]_$/}},{pattern:/(?:\b[a-z\d](?:[_.:+]?[a-z\d]+)*_?_|`[^`]+`_?_|_`[^`]+`)(?=[\s\-.,:;!?\\\/'")\]}]|$)/i,alias:"string",inside:{punctuation:/^_?`|`$|`?_?_$/}}],punctuation:{pattern:/(^\s*)(?:\|(?= |$)|(?:---?|—|\.\.|__)(?= )|\.\.$)/m,lookbehind:!0}};
|
||||
!function(e){e.languages.sass=e.languages.extend("css",{comment:{pattern:/^([ \t]*)\/[\/*].*(?:(?:\r?\n|\r)\1[ \t]+.+)*/m,lookbehind:!0}}),e.languages.insertBefore("sass","atrule",{"atrule-line":{pattern:/^(?:[ \t]*)[@+=].+/m,inside:{atrule:/(?:@[\w-]+|[+=])/m}}}),delete e.languages.sass.atrule;var a=/((\$[-_\w]+)|(#\{\$[-_\w]+\}))/i,t=[/[+*\/%]|[=!]=|<=?|>=?|\b(?:and|or|not)\b/,{pattern:/(\s+)-(?=\s)/,lookbehind:!0}];e.languages.insertBefore("sass","property",{"variable-line":{pattern:/^[ \t]*\$.+/m,inside:{punctuation:/:/,variable:a,operator:t}},"property-line":{pattern:/^[ \t]*(?:[^:\s]+ *:.*|:[^:\s]+.*)/m,inside:{property:[/[^:\s]+(?=\s*:)/,{pattern:/(:)[^:\s]+/,lookbehind:!0}],punctuation:/:/,variable:a,operator:t,important:e.languages.sass.important}}}),delete e.languages.sass.property,delete e.languages.sass.important,delete e.languages.sass.selector,e.languages.insertBefore("sass","punctuation",{selector:{pattern:/([ \t]*)\S(?:,?[^,\r\n]+)*(?:,(?:\r?\n|\r)\1[ \t]+\S(?:,?[^,\r\n]+)*)*/,lookbehind:!0}})}(Prism);
|
||||
Prism.languages.scss=Prism.languages.extend("css",{comment:{pattern:/(^|[^\\])(?:\/\*[\w\W]*?\*\/|\/\/.*)/,lookbehind:!0},atrule:{pattern:/@[\w-]+(?:\([^()]+\)|[^(])*?(?=\s+[{;])/,inside:{rule:/@[\w-]+/}},url:/(?:[-a-z]+-)*url(?=\()/i,selector:{pattern:/(?=\S)[^@;\{\}\(\)]?([^@;\{\}\(\)]|&|#\{\$[-_\w]+\})+(?=\s*\{(\}|\s|[^\}]+(:|\{)[^\}]+))/m,inside:{placeholder:/%[-_\w]+/}}}),Prism.languages.insertBefore("scss","atrule",{keyword:[/@(?:if|else(?: if)?|for|each|while|import|extend|debug|warn|mixin|include|function|return|content)/i,{pattern:/( +)(?:from|through)(?= )/,lookbehind:!0}]}),Prism.languages.insertBefore("scss","property",{variable:/\$[-_\w]+|#\{\$[-_\w]+\}/}),Prism.languages.insertBefore("scss","function",{placeholder:{pattern:/%[-_\w]+/,alias:"selector"},statement:/\B!(?:default|optional)\b/i,"boolean":/\b(?:true|false)\b/,"null":/\bnull\b/,operator:{pattern:/(\s)(?:[-+*\/%]|[=!]=|<=?|>=?|and|or|not)(?=\s)/,lookbehind:!0}}),Prism.languages.scss.atrule.inside.rest=Prism.util.clone(Prism.languages.scss);
|
||||
|
|
Loading…
Reference in New Issue
Block a user