mirror of
https://github.com/explosion/spaCy.git
synced 2025-08-04 20:30:24 +03:00
Improve unit tests readability
This commit is contained in:
parent
3279e7051a
commit
97a9c03398
|
@ -202,10 +202,10 @@ depth = 4
|
||||||
window_size = 1
|
window_size = 1
|
||||||
"""
|
"""
|
||||||
|
|
||||||
TEXTCAT_LISTENER_CONFIG = """
|
NER_LISTENER_CONFIG = """
|
||||||
[nlp]
|
[nlp]
|
||||||
lang = "en"
|
lang = "en"
|
||||||
pipeline = ["tok2vec","textcat"]
|
pipeline = ["tok2vec","ner"]
|
||||||
batch_size = 1000
|
batch_size = 1000
|
||||||
|
|
||||||
[components]
|
[components]
|
||||||
|
@ -221,86 +221,32 @@ factory = "tok2vec"
|
||||||
width = ${components.tok2vec.model.encode.width}
|
width = ${components.tok2vec.model.encode.width}
|
||||||
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
attrs = ["NORM", "PREFIX", "SUFFIX", "SHAPE"]
|
||||||
rows = [5000, 1000, 2500, 2500]
|
rows = [5000, 1000, 2500, 2500]
|
||||||
include_static_vectors = true
|
include_static_vectors = false
|
||||||
|
|
||||||
[components.tok2vec.model.encode]
|
[components.tok2vec.model.encode]
|
||||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
||||||
width = 256
|
width = 96
|
||||||
depth = 8
|
depth = 4
|
||||||
window_size = 1
|
window_size = 1
|
||||||
maxout_pieces = 3
|
maxout_pieces = 3
|
||||||
|
|
||||||
[components.textcat]
|
[components.ner]
|
||||||
factory = "textcat"
|
factory = "ner"
|
||||||
|
|
||||||
[components.textcat.model]
|
[components.ner.model]
|
||||||
@architectures = "spacy.TextCatEnsemble.v2"
|
@architectures = "spacy.TransitionBasedParser.v2"
|
||||||
|
state_type = "ner"
|
||||||
|
extra_state_tokens = false
|
||||||
|
hidden_width = 64
|
||||||
|
maxout_pieces = 2
|
||||||
|
use_upper = true
|
||||||
nO = null
|
nO = null
|
||||||
|
|
||||||
[components.textcat.model.tok2vec]
|
[components.ner.model.tok2vec]
|
||||||
@architectures = "spacy.Tok2VecListener.v1"
|
@architectures = "spacy.Tok2VecListener.v1"
|
||||||
width = ${components.tok2vec.model.encode.width}
|
width = ${components.tok2vec.model.encode.width}
|
||||||
|
|
||||||
[components.textcat.model.linear_model]
|
|
||||||
@architectures = "spacy.TextCatBOW.v2"
|
|
||||||
exclusive_classes = true
|
|
||||||
ngram_size = 1
|
|
||||||
no_output_layer = false
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
TEXTCAT_CONFIG = """
|
|
||||||
[nlp]
|
|
||||||
lang = "en"
|
|
||||||
pipeline = ["textcat"]
|
|
||||||
disabled = []
|
|
||||||
before_creation = null
|
|
||||||
after_creation = null
|
|
||||||
after_pipeline_creation = null
|
|
||||||
batch_size = 1000
|
|
||||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
|
||||||
|
|
||||||
[components]
|
|
||||||
|
|
||||||
[components.textcat]
|
|
||||||
factory = "textcat"
|
|
||||||
threshold = 0.5
|
|
||||||
|
|
||||||
[components.textcat.model]
|
|
||||||
@architectures = "spacy.TextCatEnsemble.v2"
|
|
||||||
nO = null
|
|
||||||
|
|
||||||
[components.textcat.model.linear_model]
|
|
||||||
@architectures = "spacy.TextCatBOW.v1"
|
|
||||||
exclusive_classes = true
|
|
||||||
ngram_size = 1
|
|
||||||
no_output_layer = false
|
|
||||||
nO = null
|
|
||||||
|
|
||||||
[components.textcat.model.tok2vec]
|
|
||||||
@architectures = "spacy.Tok2Vec.v2"
|
|
||||||
|
|
||||||
[components.textcat.model.tok2vec.embed]
|
|
||||||
@architectures = "spacy.MultiHashEmbed.v1"
|
|
||||||
width = 64
|
|
||||||
rows = [2000,2000,1000,1000,1000,1000]
|
|
||||||
attrs = ["ORTH","LOWER","PREFIX","SUFFIX","SHAPE","ID"]
|
|
||||||
include_static_vectors = false
|
|
||||||
|
|
||||||
[components.textcat.model.tok2vec.encode]
|
|
||||||
@architectures = "spacy.MaxoutWindowEncoder.v2"
|
|
||||||
width = 64
|
|
||||||
window_size = 1
|
|
||||||
maxout_pieces = 3
|
|
||||||
depth = 2
|
|
||||||
"""
|
|
||||||
|
|
||||||
TEXTCAT_EXAMPLE_TEXTS = [
|
|
||||||
("This is a sentence for LABEL_A.", {"cats": {"LABEL_A": 1, "LABEL_B": 0}}),
|
|
||||||
("A sentence for the label LABEL_B.", {"cats": {"LABEL_A": 0, "LABEL_B": 1}}),
|
|
||||||
]
|
|
||||||
|
|
||||||
TEXTCAT_LABELS = ["LABEL_A", "LABEL_B"]
|
|
||||||
|
|
||||||
|
|
||||||
def _add_ner_label(ner, data):
|
def _add_ner_label(ner, data):
|
||||||
for _, annotations in data:
|
for _, annotations in data:
|
||||||
|
@ -368,57 +314,15 @@ def test_rehearse(component):
|
||||||
def test_rehearse_textcat_multilabel_listener():
|
def test_rehearse_textcat_multilabel_listener():
|
||||||
"""Test nlp.rehearse on a textcat_multilabel pipeline with a tok2vec listener"""
|
"""Test nlp.rehearse on a textcat_multilabel pipeline with a tok2vec listener"""
|
||||||
config = Config().from_str(TEXTCAT_MULTILABEL_LISTENER_CONFIG)
|
config = Config().from_str(TEXTCAT_MULTILABEL_LISTENER_CONFIG)
|
||||||
nlp = spacy.blank("en").from_config(config)
|
nlp = spacy.blank("en", config=config)
|
||||||
textcat_multilabel = nlp.get_pipe("textcat_multilabel")
|
nlp = _optimize(nlp, "textcat_multilabel", TRAIN_DATA, False)
|
||||||
for label in TEXTCAT_LABELS:
|
_optimize(nlp, "textcat_multilabel", REHEARSE_DATA, True)
|
||||||
textcat_multilabel.add_label(label)
|
|
||||||
nlp.initialize()
|
|
||||||
|
|
||||||
examples = []
|
|
||||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
|
||||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
|
||||||
examples.append(example)
|
|
||||||
nlp.update([example])
|
|
||||||
|
|
||||||
optimizer = nlp.resume_training()
|
|
||||||
nlp.rehearse(examples, sgd=optimizer)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.issue(12044)
|
@pytest.mark.issue(12044)
|
||||||
def test_rehearse_textcat_listener():
|
def test_rehearse_ner_listener():
|
||||||
"""Test nlp.rehearse on a textcat pipeline with a tok2vec listener"""
|
"""Test nlp.rehearse on a ner pipeline with a tok2vec listener"""
|
||||||
config = Config().from_str(TEXTCAT_LISTENER_CONFIG)
|
config = Config().from_str(NER_LISTENER_CONFIG)
|
||||||
nlp = spacy.blank("en").from_config(config)
|
nlp = spacy.blank("en", config=config)
|
||||||
textcat = nlp.get_pipe("textcat")
|
nlp = _optimize(nlp, "ner", TRAIN_DATA, False)
|
||||||
for label in TEXTCAT_LABELS:
|
_optimize(nlp, "ner", REHEARSE_DATA, True)
|
||||||
textcat.add_label(label)
|
|
||||||
nlp.initialize()
|
|
||||||
|
|
||||||
examples = []
|
|
||||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
|
||||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
|
||||||
examples.append(example)
|
|
||||||
nlp.update([example])
|
|
||||||
|
|
||||||
optimizer = nlp.resume_training()
|
|
||||||
nlp.rehearse(examples, sgd=optimizer)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.issue(12044)
|
|
||||||
def test_rehearse_textcat():
|
|
||||||
"""Test nlp.rehearse on a textcat pipeline with an inline tok2vec component"""
|
|
||||||
config = Config().from_str(TEXTCAT_CONFIG)
|
|
||||||
nlp = spacy.blank("en").from_config(config)
|
|
||||||
textcat = nlp.get_pipe("textcat")
|
|
||||||
for label in TEXTCAT_LABELS:
|
|
||||||
textcat.add_label(label)
|
|
||||||
nlp.initialize()
|
|
||||||
|
|
||||||
examples = []
|
|
||||||
for example in TEXTCAT_EXAMPLE_TEXTS:
|
|
||||||
example = Example.from_dict(nlp.make_doc(example[0]), example[1])
|
|
||||||
examples.append(example)
|
|
||||||
nlp.update([example])
|
|
||||||
|
|
||||||
optimizer = nlp.resume_training()
|
|
||||||
nlp.rehearse(examples, sgd=optimizer)
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user