mirror of
https://github.com/explosion/spaCy.git
synced 2025-04-04 09:14:12 +03:00
Merge 3dadad8d55
into b3c46c315e
This commit is contained in:
commit
97f02fad9f
|
@ -5,7 +5,6 @@ from libc.math cimport exp
|
|||
from libc.stdlib cimport calloc, free, realloc
|
||||
from libc.string cimport memcpy, memset
|
||||
from thinc.backends.cblas cimport saxpy, sgemm
|
||||
from thinc.backends.linalg cimport Vec, VecVec
|
||||
|
||||
import numpy
|
||||
import numpy.random
|
||||
|
@ -116,14 +115,10 @@ cdef void predict_states(
|
|||
n.hiddens * n.pieces
|
||||
)
|
||||
for i in range(n.states):
|
||||
VecVec.add_i(
|
||||
&A.unmaxed[i*n.hiddens*n.pieces],
|
||||
W.feat_bias, 1.,
|
||||
n.hiddens * n.pieces
|
||||
)
|
||||
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
|
||||
for j in range(n.hiddens):
|
||||
index = i * n.hiddens * n.pieces + j * n.pieces
|
||||
which = Vec.arg_max(&A.unmaxed[index], n.pieces)
|
||||
which = _arg_max(&A.unmaxed[index], n.pieces)
|
||||
A.hiddens[i*n.hiddens + j] = A.unmaxed[index + which]
|
||||
memset(A.scores, 0, n.states * n.classes * sizeof(float))
|
||||
if W.hidden_weights == NULL:
|
||||
|
@ -138,7 +133,7 @@ cdef void predict_states(
|
|||
)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
VecVec.add_i(&A.scores[i*n.classes], W.hidden_bias, 1., n.classes)
|
||||
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &A.scores[i*n.classes], 1)
|
||||
# Set unseen classes to minimum value
|
||||
i = 0
|
||||
min_ = A.scores[0]
|
||||
|
@ -187,7 +182,7 @@ cdef void cpu_log_loss(
|
|||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
guess = Vec.arg_max(scores, O)
|
||||
guess = _arg_max(scores, O)
|
||||
if best == -1 or guess == -1:
|
||||
# These shouldn't happen, but if they do, we want to make sure we don't
|
||||
# cause an OOB access.
|
||||
|
@ -232,6 +227,17 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
|
|||
best = i
|
||||
return best
|
||||
|
||||
cdef int _arg_max(const float* scores, const int n_classes) nogil:
|
||||
cdef int i
|
||||
cdef int best = 0
|
||||
cdef float mode = scores[0]
|
||||
|
||||
for i in range(1, n_classes):
|
||||
if scores[i] > mode:
|
||||
mode = scores[i]
|
||||
best = i
|
||||
|
||||
return best
|
||||
|
||||
class ParserStepModel(Model):
|
||||
def __init__(
|
||||
|
@ -531,3 +537,4 @@ cdef class precompute_hiddens:
|
|||
return d_best.reshape((d_best.shape + (1,)))
|
||||
|
||||
return state_vector, backprop_relu
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user