mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-12 10:16:27 +03:00
💫 Allow passing of config parameters to specific pipeline components (#3386)
* Add component_cfg kwarg to begin_training * Document component_cfg arg to begin_training * Update docs and auto-format * Support component_cfg across Language * Format * Update docs and docstrings [ci skip] * Fix begin_training
This commit is contained in:
parent
8dbf1e9037
commit
98acf5ffe4
|
@ -106,6 +106,7 @@ class Language(object):
|
|||
|
||||
DOCS: https://spacy.io/api/language
|
||||
"""
|
||||
|
||||
Defaults = BaseDefaults
|
||||
lang = None
|
||||
|
||||
|
@ -344,13 +345,15 @@ class Language(object):
|
|||
raise ValueError(Errors.E001.format(name=name, opts=self.pipe_names))
|
||||
return self.pipeline.pop(self.pipe_names.index(name))
|
||||
|
||||
def __call__(self, text, disable=[]):
|
||||
def __call__(self, text, disable=[], component_cfg=None):
|
||||
"""Apply the pipeline to some text. The text can span multiple sentences,
|
||||
and can contain arbtrary whitespace. Alignment into the original string
|
||||
is preserved.
|
||||
|
||||
text (unicode): The text to be processed.
|
||||
disable (list): Names of the pipeline components to disable.
|
||||
component_cfg (dict): An optional dictionary with extra keyword arguments
|
||||
for specific components.
|
||||
RETURNS (Doc): A container for accessing the annotations.
|
||||
|
||||
EXAMPLE:
|
||||
|
@ -363,12 +366,14 @@ class Language(object):
|
|||
Errors.E088.format(length=len(text), max_length=self.max_length)
|
||||
)
|
||||
doc = self.make_doc(text)
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
for name, proc in self.pipeline:
|
||||
if name in disable:
|
||||
continue
|
||||
if not hasattr(proc, "__call__"):
|
||||
raise ValueError(Errors.E003.format(component=type(proc), name=name))
|
||||
doc = proc(doc)
|
||||
doc = proc(doc, **component_cfg.get(name, {}))
|
||||
if doc is None:
|
||||
raise ValueError(Errors.E005.format(name=name))
|
||||
return doc
|
||||
|
@ -396,7 +401,7 @@ class Language(object):
|
|||
def make_doc(self, text):
|
||||
return self.tokenizer(text)
|
||||
|
||||
def update(self, docs, golds, drop=0.0, sgd=None, losses=None):
|
||||
def update(self, docs, golds, drop=0.0, sgd=None, losses=None, component_cfg=None):
|
||||
"""Update the models in the pipeline.
|
||||
|
||||
docs (iterable): A batch of `Doc` objects.
|
||||
|
@ -443,11 +448,15 @@ class Language(object):
|
|||
|
||||
pipes = list(self.pipeline)
|
||||
random.shuffle(pipes)
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
for name, proc in pipes:
|
||||
if not hasattr(proc, "update"):
|
||||
continue
|
||||
grads = {}
|
||||
proc.update(docs, golds, drop=drop, sgd=get_grads, losses=losses)
|
||||
kwargs = component_cfg.get(name, {})
|
||||
kwargs.setdefault("drop", drop)
|
||||
proc.update(docs, golds, sgd=get_grads, losses=losses, **kwargs)
|
||||
for key, (W, dW) in grads.items():
|
||||
sgd(W, dW, key=key)
|
||||
|
||||
|
@ -517,11 +526,12 @@ class Language(object):
|
|||
for doc, gold in docs_golds:
|
||||
yield doc, gold
|
||||
|
||||
def begin_training(self, get_gold_tuples=None, sgd=None, **cfg):
|
||||
def begin_training(self, get_gold_tuples=None, sgd=None, component_cfg=None, **cfg):
|
||||
"""Allocate models, pre-process training data and acquire a trainer and
|
||||
optimizer. Used as a contextmanager.
|
||||
|
||||
get_gold_tuples (function): Function returning gold data
|
||||
component_cfg (dict): Config parameters for specific components.
|
||||
**cfg: Config parameters.
|
||||
RETURNS: An optimizer
|
||||
"""
|
||||
|
@ -543,10 +553,17 @@ class Language(object):
|
|||
if sgd is None:
|
||||
sgd = create_default_optimizer(Model.ops)
|
||||
self._optimizer = sgd
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "begin_training"):
|
||||
kwargs = component_cfg.get(name, {})
|
||||
kwargs.update(cfg)
|
||||
proc.begin_training(
|
||||
get_gold_tuples, pipeline=self.pipeline, sgd=self._optimizer, **cfg
|
||||
get_gold_tuples,
|
||||
pipeline=self.pipeline,
|
||||
sgd=self._optimizer,
|
||||
**kwargs
|
||||
)
|
||||
return self._optimizer
|
||||
|
||||
|
@ -574,20 +591,27 @@ class Language(object):
|
|||
proc._rehearsal_model = deepcopy(proc.model)
|
||||
return self._optimizer
|
||||
|
||||
def evaluate(self, docs_golds, verbose=False, batch_size=256):
|
||||
scorer = Scorer()
|
||||
def evaluate(
|
||||
self, docs_golds, verbose=False, batch_size=256, scorer=None, component_cfg=None
|
||||
):
|
||||
if scorer is None:
|
||||
scorer = Scorer()
|
||||
docs, golds = zip(*docs_golds)
|
||||
docs = list(docs)
|
||||
golds = list(golds)
|
||||
for name, pipe in self.pipeline:
|
||||
kwargs = component_cfg.get(name, {})
|
||||
kwargs.setdefault("batch_size", batch_size)
|
||||
if not hasattr(pipe, "pipe"):
|
||||
docs = (pipe(doc) for doc in docs)
|
||||
docs = (pipe(doc, **kwargs) for doc in docs)
|
||||
else:
|
||||
docs = pipe.pipe(docs, batch_size=batch_size)
|
||||
docs = pipe.pipe(docs, **kwargs)
|
||||
for doc, gold in zip(docs, golds):
|
||||
if verbose:
|
||||
print(doc)
|
||||
scorer.score(doc, gold, verbose=verbose)
|
||||
kwargs = component_cfg.get("scorer", {})
|
||||
kwargs.setdefault("verbose", verbose)
|
||||
scorer.score(doc, gold, **kwargs)
|
||||
return scorer
|
||||
|
||||
@contextmanager
|
||||
|
@ -630,6 +654,7 @@ class Language(object):
|
|||
batch_size=1000,
|
||||
disable=[],
|
||||
cleanup=False,
|
||||
component_cfg=None,
|
||||
):
|
||||
"""Process texts as a stream, and yield `Doc` objects in order.
|
||||
|
||||
|
@ -643,6 +668,8 @@ class Language(object):
|
|||
disable (list): Names of the pipeline components to disable.
|
||||
cleanup (bool): If True, unneeded strings are freed,
|
||||
to control memory use. Experimental.
|
||||
component_cfg (dict): An optional dictionary with extra keyword arguments
|
||||
for specific components.
|
||||
YIELDS (Doc): Documents in the order of the original text.
|
||||
|
||||
EXAMPLE:
|
||||
|
@ -655,20 +682,30 @@ class Language(object):
|
|||
texts = (tc[0] for tc in text_context1)
|
||||
contexts = (tc[1] for tc in text_context2)
|
||||
docs = self.pipe(
|
||||
texts, n_threads=n_threads, batch_size=batch_size, disable=disable
|
||||
texts,
|
||||
n_threads=n_threads,
|
||||
batch_size=batch_size,
|
||||
disable=disable,
|
||||
component_cfg=component_cfg,
|
||||
)
|
||||
for doc, context in izip(docs, contexts):
|
||||
yield (doc, context)
|
||||
return
|
||||
docs = (self.make_doc(text) for text in texts)
|
||||
if component_cfg is None:
|
||||
component_cfg = {}
|
||||
for name, proc in self.pipeline:
|
||||
if name in disable:
|
||||
continue
|
||||
kwargs = component_cfg.get(name, {})
|
||||
# Allow component_cfg to overwrite the top-level kwargs.
|
||||
kwargs.setdefault("batch_size", batch_size)
|
||||
kwargs.setdefault("n_threads", n_threads)
|
||||
if hasattr(proc, "pipe"):
|
||||
docs = proc.pipe(docs, n_threads=n_threads, batch_size=batch_size)
|
||||
docs = proc.pipe(docs, **kwargs)
|
||||
else:
|
||||
# Apply the function, but yield the doc
|
||||
docs = _pipe(proc, docs)
|
||||
docs = _pipe(proc, docs, kwargs)
|
||||
# Track weakrefs of "recent" documents, so that we can see when they
|
||||
# expire from memory. When they do, we know we don't need old strings.
|
||||
# This way, we avoid maintaining an unbounded growth in string entries
|
||||
|
@ -861,7 +898,7 @@ class DisabledPipes(list):
|
|||
self[:] = []
|
||||
|
||||
|
||||
def _pipe(func, docs):
|
||||
def _pipe(func, docs, kwargs):
|
||||
for doc in docs:
|
||||
doc = func(doc)
|
||||
doc = func(doc, **kwargs)
|
||||
yield doc
|
||||
|
|
|
@ -91,13 +91,14 @@ multiprocessing.
|
|||
> assert doc.is_parsed
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------ | ----- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `texts` | - | A sequence of unicode objects. |
|
||||
| `as_tuples` | bool | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. |
|
||||
| `batch_size` | int | The number of texts to buffer. |
|
||||
| `disable` | list | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). |
|
||||
| **YIELDS** | `Doc` | Documents in the order of the original text. |
|
||||
| Name | Type | Description |
|
||||
| -------------------------------------------- | ----- | ---------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `texts` | - | A sequence of unicode objects. |
|
||||
| `as_tuples` | bool | If set to `True`, inputs should be a sequence of `(text, context)` tuples. Output will then be a sequence of `(doc, context)` tuples. Defaults to `False`. |
|
||||
| `batch_size` | int | The number of texts to buffer. |
|
||||
| `disable` | list | Names of pipeline components to [disable](/usage/processing-pipelines#disabling). |
|
||||
| `component_cfg` <Tag variant="new">2.1</Tag> | dict | Config parameters for specific pipeline components, keyed by component name. |
|
||||
| **YIELDS** | `Doc` | Documents in the order of the original text. |
|
||||
|
||||
## Language.update {#update tag="method"}
|
||||
|
||||
|
@ -112,13 +113,14 @@ Update the models in the pipeline.
|
|||
> nlp.update([doc], [gold], drop=0.5, sgd=optimizer)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ----------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `docs` | iterable | A batch of `Doc` objects or unicode. If unicode, a `Doc` object will be created from the text. |
|
||||
| `golds` | iterable | A batch of `GoldParse` objects or dictionaries. Dictionaries will be used to create [`GoldParse`](/api/goldparse) objects. For the available keys and their usage, see [`GoldParse.__init__`](/api/goldparse#init). |
|
||||
| `drop` | float | The dropout rate. |
|
||||
| `sgd` | callable | An optimizer. |
|
||||
| **RETURNS** | dict | Results from the update. |
|
||||
| Name | Type | Description |
|
||||
| -------------------------------------------- | -------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `docs` | iterable | A batch of `Doc` objects or unicode. If unicode, a `Doc` object will be created from the text. |
|
||||
| `golds` | iterable | A batch of `GoldParse` objects or dictionaries. Dictionaries will be used to create [`GoldParse`](/api/goldparse) objects. For the available keys and their usage, see [`GoldParse.__init__`](/api/goldparse#init). |
|
||||
| `drop` | float | The dropout rate. |
|
||||
| `sgd` | callable | An optimizer. |
|
||||
| `component_cfg` <Tag variant="new">2.1</Tag> | dict | Config parameters for specific pipeline components, keyed by component name. |
|
||||
| **RETURNS** | dict | Results from the update. |
|
||||
|
||||
## Language.begin_training {#begin_training tag="method"}
|
||||
|
||||
|
@ -130,11 +132,12 @@ Allocate models, pre-process training data and acquire an optimizer.
|
|||
> optimizer = nlp.begin_training(gold_tuples)
|
||||
> ```
|
||||
|
||||
| Name | Type | Description |
|
||||
| ------------- | -------- | ---------------------------- |
|
||||
| `gold_tuples` | iterable | Gold-standard training data. |
|
||||
| `**cfg` | - | Config parameters. |
|
||||
| **RETURNS** | callable | An optimizer. |
|
||||
| Name | Type | Description |
|
||||
| -------------------------------------------- | -------- | ---------------------------------------------------------------------------- |
|
||||
| `gold_tuples` | iterable | Gold-standard training data. |
|
||||
| `component_cfg` <Tag variant="new">2.1</Tag> | dict | Config parameters for specific pipeline components, keyed by component name. |
|
||||
| `**cfg` | - | Config parameters (sent to all components). |
|
||||
| **RETURNS** | callable | An optimizer. |
|
||||
|
||||
## Language.use_params {#use_params tag="contextmanager, method"}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user