separate entity encoder to get 64D descriptions

This commit is contained in:
svlandeg 2019-06-05 00:09:46 +02:00
parent fb37cdb2d3
commit 9abbd0899f
4 changed files with 152 additions and 21 deletions

View File

@ -0,0 +1,113 @@
from random import shuffle
from examples.pipeline.wiki_entity_linking import kb_creator
import numpy as np
from spacy._ml import zero_init, create_default_optimizer
from spacy.cli.pretrain import get_cossim_loss
from thinc.v2v import Model
from thinc.api import chain
from thinc.neural._classes.affine import Affine
class EntityEncoder:
INPUT_DIM = 300 # dimension of pre-trained vectors
DESC_WIDTH = 64
DROP = 0
EPOCHS = 5
STOP_THRESHOLD = 0.05
BATCH_SIZE = 1000
def __init__(self, kb, nlp):
self.nlp = nlp
self.kb = kb
def run(self, entity_descr_output):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
processed, loss = self._train_model(entity_descr_output, id_to_descr)
print("Trained on", processed, "entities across", self.EPOCHS, "epochs")
print("Final loss:", loss)
print()
# TODO: apply and write to file afterwards !
# self._apply_encoder(id_to_descr)
def _train_model(self, entity_descr_output, id_to_descr):
# TODO: when loss gets too low, a 'mean of empty slice' warning is thrown by numpy
self._build_network(self.INPUT_DIM, self.DESC_WIDTH)
processed = 0
loss = 1
for i in range(self.EPOCHS):
entity_keys = list(id_to_descr.keys())
shuffle(entity_keys)
batch_nr = 0
start = 0
stop = min(self.BATCH_SIZE, len(entity_keys))
while loss > self.STOP_THRESHOLD and start < len(entity_keys):
batch = []
for e in entity_keys[start:stop]:
descr = id_to_descr[e]
doc = self.nlp(descr)
doc_vector = self._get_doc_embedding(doc)
batch.append(doc_vector)
loss = self.update(batch)
print(i, batch_nr, loss)
processed += len(batch)
batch_nr += 1
start = start + self.BATCH_SIZE
stop = min(stop + self.BATCH_SIZE, len(entity_keys))
return processed, loss
def _apply_encoder(self, id_to_descr):
for id, descr in id_to_descr.items():
doc = self.nlp(descr)
doc_vector = self._get_doc_embedding(doc)
encoding = self.encoder(np.asarray([doc_vector]))
@staticmethod
def _get_doc_embedding(doc):
indices = np.zeros((len(doc),), dtype="i")
for i, word in enumerate(doc):
if word.orth in doc.vocab.vectors.key2row:
indices[i] = doc.vocab.vectors.key2row[word.orth]
else:
indices[i] = 0
word_vectors = doc.vocab.vectors.data[indices]
doc_vector = np.mean(word_vectors, axis=0) # TODO: min? max?
return doc_vector
def _build_network(self, orig_width, hidden_with):
with Model.define_operators({">>": chain}):
self.encoder = (
Affine(hidden_with, orig_width)
)
self.model = self.encoder >> zero_init(Affine(orig_width, hidden_with, drop_factor=0.0))
self.sgd = create_default_optimizer(self.model.ops)
def update(self, vectors):
predictions, bp_model = self.model.begin_update(np.asarray(vectors), drop=self.DROP)
loss, d_scores = self.get_loss(scores=predictions, golds=np.asarray(vectors))
bp_model(d_scores, sgd=self.sgd)
return loss / len(vectors)
@staticmethod
def get_loss(golds, scores):
loss, gradients = get_cossim_loss(scores, golds)
return loss, gradients

View File

@ -31,7 +31,7 @@ class EL_Model:
PRINT_BATCH_LOSS = False
EPS = 0.0000000005
BATCH_SIZE = 5
BATCH_SIZE = 100
DOC_CUTOFF = 300 # number of characters from the doc context
INPUT_DIM = 300 # dimension of pre-trained vectors
@ -41,9 +41,9 @@ class EL_Model:
ARTICLE_WIDTH = 128
SENT_WIDTH = 64
DROP = 0.1
LEARN_RATE = 0.001
EPOCHS = 5
DROP = 0.4
LEARN_RATE = 0.005
EPOCHS = 10
L2 = 1e-6
name = "entity_linker"
@ -62,12 +62,14 @@ class EL_Model:
def train_model(self, training_dir, entity_descr_output, trainlimit=None, devlimit=None, to_print=True):
np.seterr(divide="raise", over="warn", under="ignore", invalid="raise")
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
train_ent, train_gold, train_desc, train_art, train_art_texts, train_sent, train_sent_texts = \
self._get_training_data(training_dir, entity_descr_output, False, trainlimit, to_print=False)
self._get_training_data(training_dir, id_to_descr, False, trainlimit, to_print=False)
train_clusters = list(train_ent.keys())
dev_ent, dev_gold, dev_desc, dev_art, dev_art_texts, dev_sent, dev_sent_texts = \
self._get_training_data(training_dir, entity_descr_output, True, devlimit, to_print=False)
self._get_training_data(training_dir, id_to_descr, True, devlimit, to_print=False)
dev_clusters = list(dev_ent.keys())
dev_pos_count = len([g for g in dev_gold.values() if g])
@ -386,9 +388,7 @@ class EL_Model:
bp_doc(doc_gradients, sgd=self.sgd_article)
bp_sent(sent_gradients, sgd=self.sgd_sent)
def _get_training_data(self, training_dir, entity_descr_output, dev, limit, to_print):
id_to_descr = kb_creator._get_id_to_description(entity_descr_output)
def _get_training_data(self, training_dir, id_to_descr, dev, limit, to_print):
correct_entries, incorrect_entries = training_set_creator.read_training_entities(training_output=training_dir,
collect_correct=True,
collect_incorrect=True)

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals
from examples.pipeline.wiki_entity_linking import wikipedia_processor as wp, kb_creator, training_set_creator, run_el
from examples.pipeline.wiki_entity_linking.train_descriptions import EntityEncoder
from examples.pipeline.wiki_entity_linking.train_el import EL_Model
import spacy
@ -38,11 +39,14 @@ if __name__ == "__main__":
to_read_kb = True
to_test_kb = False
# run entity description pre-training
run_desc_training = True
# create training dataset
create_wp_training = False
# run training
run_training = True
# run EL training
run_el_training = False
# apply named entity linking to the dev dataset
apply_to_dev = False
@ -101,17 +105,25 @@ if __name__ == "__main__":
run_el.run_el_toy_example(kb=my_kb, nlp=my_nlp)
print()
# STEP 4b : read KB back in from file, create entity descriptions
# TODO: write back to file
if run_desc_training:
print("STEP 4b: training entity descriptions", datetime.datetime.now())
my_nlp = spacy.load('en_core_web_md')
EntityEncoder(my_kb, my_nlp).run(entity_descr_output=ENTITY_DESCR)
print()
# STEP 5: create a training dataset from WP
if create_wp_training:
print("STEP 5: create training dataset", datetime.datetime.now())
training_set_creator.create_training(kb=my_kb, entity_def_input=ENTITY_DEFS, training_output=TRAINING_DIR)
# STEP 6: apply the EL algorithm on the training dataset
if run_training:
if run_el_training:
print("STEP 6: training", datetime.datetime.now())
my_nlp = spacy.load('en_core_web_md')
trainer = EL_Model(kb=my_kb, nlp=my_nlp)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=50, devlimit=20)
trainer.train_model(training_dir=TRAINING_DIR, entity_descr_output=ENTITY_DESCR, trainlimit=10000, devlimit=500)
print()
# STEP 7: apply the EL algorithm on the dev dataset

View File

@ -1177,6 +1177,8 @@ class EntityLinker(Pipe):
def predict(self, docs):
self.require_model()
final_entities = list()
final_kb_ids = list()
for i, article_doc in enumerate(docs):
doc_encoding = self.article_encoder([article_doc])
for ent in article_doc.ents:
@ -1188,23 +1190,27 @@ class EntityLinker(Pipe):
candidates = self.kb.get_candidates(ent.text)
if candidates:
highest_sim = -5
best_i = -1
with self.use_avg_params:
scores = list()
for c in candidates:
prior_prob = c.prior_prob
kb_id = c.entity_
description = self.id_to_descr.get(kb_id)
entity_encodings = self.entity_encoder([description]) # TODO: static entity vectors ?
sim = cosine(entity_encodings, mention_enc_t)
if sim >= highest_sim:
best_i = i
highest_sim = sim
score = prior_prob + sim - (prior_prob*sim) # TODO: weights ?
scores.append(score)
# TODO best_candidate = max(candidates, key=lambda c: c.prior_prob)
best_index = scores.index(max(scores))
best_candidate = candidates[best_index]
final_entities.append(ent)
final_kb_ids.append(best_candidate)
return final_entities, final_kb_ids
def set_annotations(self, docs, entities, kb_ids=None):
for token, kb_id in zip(entities, kb_ids):
token.ent_kb_id_ = kb_id
for entity, kb_id in zip(entities, kb_ids):
entity.ent_kb_id_ = kb_id
class Sentencizer(object):
"""Segment the Doc into sentences using a rule-based strategy.