Update API docs

This commit is contained in:
Ines Montani 2020-07-08 13:34:35 +02:00
parent c94279ac1b
commit 9ae4040183
9 changed files with 137 additions and 1 deletions

View File

@ -4,4 +4,34 @@ teaser: Pre-defined model architectures included with the core library
source: spacy/ml/models
---
TODO: write
TODO: intro and how architectures work, link to
[`registry`](/api/top-level#registry),
[custom models](/usage/training#custom-models) usage etc.
## Parser architectures {source="spacy/ml/models/parser.py"}
### spacy.TransitionBasedParser.v1
<!-- TODO: intro -->
> #### Example Config
>
> ```ini
> [model]
> @architectures = "spacy.TransitionBasedParser.v1"
> nr_feature_tokens = 6
> hidden_width = 64
> maxout_pieces = 2
>
> [model.tok2vec]
> # ...
> ```
| Name | Type | Description |
| ------------------- | ------------------------------------------ | ----------- |
| `tok2vec` | [`Model`](https://thinc.ai/docs/api-model) | |
| `nr_feature_tokens` | int | |
| `hidden_width` | int | |
| `maxout_pieces` | int | |
| `use_upper` | bool | |
| `nO` | int | |

View File

@ -8,6 +8,18 @@ This class is a subclass of `Pipe` and follows the same API. The pipeline
component is available in the [processing pipeline](/usage/processing-pipelines)
via the ID `"parser"`.
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/parser_defaults.cfg
```
## DependencyParser.\_\_init\_\_ {#init tag="method"}
> #### Example

View File

@ -12,6 +12,18 @@ This class is a subclass of `Pipe` and follows the same API. The pipeline
component is available in the [processing pipeline](/usage/processing-pipelines)
via the ID `"entity_linker"`.
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/entity_linker_defaults.cfg
```
## EntityLinker.\_\_init\_\_ {#init tag="method"}
> #### Example

View File

@ -8,6 +8,18 @@ This class is a subclass of `Pipe` and follows the same API. The pipeline
component is available in the [processing pipeline](/usage/processing-pipelines)
via the ID `"ner"`.
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/ner_defaults.cfg
```
## EntityRecognizer.\_\_init\_\_ {#init tag="method"}
> #### Example

View File

@ -0,0 +1,23 @@
---
title: Morphologizer
tag: class
source: spacy/pipeline/morphologizer.pyx
new: 3
---
A trainable pipeline component to predict morphological features. This class is
a subclass of `Pipe` and follows the same API. The component is also available
via the string name `"morphologizer"`. After initialization, it is typically
added to the processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/morphologizer_defaults.cfg
```

View File

@ -11,6 +11,18 @@ subclass of `Pipe` and follows the same API. The component is also available via
the string name `"senter"`. After initialization, it is typically added to the
processing pipeline using [`nlp.add_pipe`](/api/language#add_pipe).
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/senter_defaults.cfg
```
## SentenceRecognizer.\_\_init\_\_ {#init tag="method"}
Initialize the sentence recognizer.

View File

@ -9,6 +9,20 @@ This class is a subclass of `Pipe` and follows the same API. The pipeline
component is available in the [processing pipeline](/usage/processing-pipelines)
via the ID `"textcat"`.
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/textcat_defaults.cfg
```
<!-- TODO: do we also need to document the other defaults here? -->
## TextCategorizer.\_\_init\_\_ {#init tag="method"}
> #### Example

View File

@ -0,0 +1,19 @@
---
title: Tok2Vec
source: spacy/pipeline/tok2vec.py
new: 3
---
TODO: document
## Default config {#config}
This is the default configuration used to initialize the model powering the
pipeline component. See the [model architectures](/api/architectures)
documentation for details on the architectures and their arguments and
hyperparameters. To learn more about how to customize the config and train
custom models, check out the [training config](/usage/training#config) docs.
```python
https://github.com/explosion/spaCy/blob/develop/spacy/pipeline/defaults/tok2vec_defaults.cfg
```

View File

@ -79,7 +79,9 @@
"items": [
{ "text": "Language", "url": "/api/language" },
{ "text": "Tokenizer", "url": "/api/tokenizer" },
{ "text": "Tok2Vec", "url": "/api/tok2vec" },
{ "text": "Lemmatizer", "url": "/api/lemmatizer" },
{ "text": "Morphologizer", "url": "/api/morphologizer" },
{ "text": "Tagger", "url": "/api/tagger" },
{ "text": "DependencyParser", "url": "/api/dependencyparser" },
{ "text": "EntityRecognizer", "url": "/api/entityrecognizer" },