mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-27 01:34:30 +03:00
Fix Cython lints
This commit is contained in:
parent
42fe4edfd7
commit
9b36729cbd
|
@ -41,10 +41,9 @@ cdef ActivationsC alloc_activations(SizesC n) nogil
|
|||
cdef void free_activations(const ActivationsC* A) nogil
|
||||
|
||||
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
||||
const WeightsC* W, SizesC n) nogil
|
||||
|
||||
const WeightsC* W, SizesC n) nogil
|
||||
|
||||
cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) nogil
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores, int O) nogil
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores, const float* costs,
|
||||
const int* is_valid, const float* scores, int O) nogil
|
||||
|
|
|
@ -13,7 +13,7 @@ from .. import util
|
|||
from ..errors import Errors
|
||||
|
||||
from ..pipeline._parser_internals.stateclass cimport StateClass
|
||||
from ..typedefs cimport class_t, hash_t, weight_t
|
||||
from ..typedefs cimport weight_t
|
||||
|
||||
|
||||
cdef WeightsC get_c_weights(model) except *:
|
||||
|
@ -78,31 +78,31 @@ cdef void resize_activations(ActivationsC* A, SizesC n) nogil:
|
|||
A._max_size = n.states
|
||||
else:
|
||||
A.token_ids = <int*>realloc(A.token_ids,
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
n.states * n.feats * sizeof(A.token_ids[0]))
|
||||
A.scores = <float*>realloc(A.scores,
|
||||
n.states * n.classes * sizeof(A.scores[0]))
|
||||
n.states * n.classes * sizeof(A.scores[0]))
|
||||
A.unmaxed = <float*>realloc(A.unmaxed,
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
n.states * n.hiddens * n.pieces * sizeof(A.unmaxed[0]))
|
||||
A.hiddens = <float*>realloc(A.hiddens,
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
n.states * n.hiddens * sizeof(A.hiddens[0]))
|
||||
A.is_valid = <int*>realloc(A.is_valid,
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
n.states * n.classes * sizeof(A.is_valid[0]))
|
||||
A._max_size = n.states
|
||||
A._curr_size = n.states
|
||||
|
||||
|
||||
cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
||||
const WeightsC* W, SizesC n) nogil:
|
||||
cdef double one = 1.0
|
||||
const WeightsC* W, SizesC n) nogil:
|
||||
resize_activations(A, n)
|
||||
for i in range(n.states):
|
||||
states[i].set_context_tokens(&A.token_ids[i*n.feats], n.feats)
|
||||
memset(A.unmaxed, 0, n.states * n.hiddens * n.pieces * sizeof(float))
|
||||
memset(A.hiddens, 0, n.states * n.hiddens * sizeof(float))
|
||||
sum_state_features(cblas, A.unmaxed,
|
||||
W.feat_weights, A.token_ids, n.states, n.feats, n.hiddens * n.pieces)
|
||||
sum_state_features(cblas, A.unmaxed, W.feat_weights, A.token_ids, n.states,
|
||||
n.feats, n.hiddens * n.pieces)
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1, &A.unmaxed[i*n.hiddens*n.pieces], 1)
|
||||
saxpy(cblas)(n.hiddens * n.pieces, 1., W.feat_bias, 1,
|
||||
&A.unmaxed[i*n.hiddens*n.pieces], 1)
|
||||
for j in range(n.hiddens):
|
||||
index = i * n.hiddens * n.pieces + j * n.pieces
|
||||
which = _arg_max(&A.unmaxed[index], n.pieces)
|
||||
|
@ -112,10 +112,10 @@ cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
|||
memcpy(A.scores, A.hiddens, n.states * n.classes * sizeof(float))
|
||||
else:
|
||||
# Compute hidden-to-output
|
||||
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens,
|
||||
1.0, <const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens,
|
||||
0.0, A.scores, n.classes)
|
||||
sgemm(cblas)(False, True, n.states, n.classes, n.hiddens, 1.0,
|
||||
<const float *>A.hiddens, n.hiddens,
|
||||
<const float *>W.hidden_weights, n.hiddens, 0.0,
|
||||
A.scores, n.classes)
|
||||
# Add bias
|
||||
for i in range(n.states):
|
||||
saxpy(cblas)(n.classes, 1., W.hidden_bias, 1, &A.scores[i*n.classes], 1)
|
||||
|
@ -131,9 +131,9 @@ cdef void predict_states(CBlas cblas, ActivationsC* A, StateC** states,
|
|||
A.scores[i*n.classes+j] = min_
|
||||
|
||||
|
||||
cdef void sum_state_features(CBlas cblas, float* output,
|
||||
const float* cached, const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f, i
|
||||
cdef void sum_state_features(CBlas cblas, float* output, const float* cached,
|
||||
const int* token_ids, int B, int F, int O) nogil:
|
||||
cdef int idx, b, f
|
||||
cdef const float* feature
|
||||
padding = cached
|
||||
cached += F * O
|
||||
|
@ -150,9 +150,8 @@ cdef void sum_state_features(CBlas cblas, float* output,
|
|||
token_ids += F
|
||||
|
||||
|
||||
cdef void cpu_log_loss(float* d_scores,
|
||||
const float* costs, const int* is_valid, const float* scores,
|
||||
int O) nogil:
|
||||
cdef void cpu_log_loss(float* d_scores, const float* costs, const int* is_valid,
|
||||
const float* scores, int O) nogil:
|
||||
"""Do multi-label log loss"""
|
||||
cdef double max_, gmax, Z, gZ
|
||||
best = arg_max_if_gold(scores, costs, is_valid, O)
|
||||
|
@ -178,7 +177,7 @@ cdef void cpu_log_loss(float* d_scores,
|
|||
|
||||
|
||||
cdef int arg_max_if_gold(const weight_t* scores, const weight_t* costs,
|
||||
const int* is_valid, int n) nogil:
|
||||
const int* is_valid, int n) nogil:
|
||||
# Find minimum cost
|
||||
cdef float cost = 1
|
||||
for i in range(n):
|
||||
|
@ -202,10 +201,9 @@ cdef int arg_max_if_valid(const weight_t* scores, const int* is_valid, int n) no
|
|||
return best
|
||||
|
||||
|
||||
|
||||
class ParserStepModel(Model):
|
||||
def __init__(self, docs, layers, *, has_upper, unseen_classes=None, train=True,
|
||||
dropout=0.1):
|
||||
dropout=0.1):
|
||||
Model.__init__(self, name="parser_step_model", forward=step_forward)
|
||||
self.attrs["has_upper"] = has_upper
|
||||
self.attrs["dropout_rate"] = dropout
|
||||
|
@ -267,7 +265,7 @@ class ParserStepModel(Model):
|
|||
|
||||
def backprop_step(self, token_ids, d_vector, get_d_tokvecs):
|
||||
if isinstance(self.state2vec.ops, CupyOps) \
|
||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||
and not isinstance(token_ids, self.state2vec.ops.xp.ndarray):
|
||||
# Move token_ids and d_vector to GPU, asynchronously
|
||||
self.backprops.append((
|
||||
util.get_async(self.cuda_stream, token_ids),
|
||||
|
@ -277,7 +275,6 @@ class ParserStepModel(Model):
|
|||
else:
|
||||
self.backprops.append((token_ids, d_vector, get_d_tokvecs))
|
||||
|
||||
|
||||
def finish_steps(self, golds):
|
||||
# Add a padding vector to the d_tokvecs gradient, so that missing
|
||||
# values don't affect the real gradient.
|
||||
|
@ -290,14 +287,15 @@ class ParserStepModel(Model):
|
|||
ids = ids.flatten()
|
||||
d_state_features = d_state_features.reshape(
|
||||
(ids.size, d_state_features.shape[2]))
|
||||
self.ops.scatter_add(d_tokvecs, ids,
|
||||
d_state_features)
|
||||
self.ops.scatter_add(d_tokvecs, ids, d_state_features)
|
||||
# Padded -- see update()
|
||||
self.bp_tokvecs(d_tokvecs[:-1])
|
||||
return d_tokvecs
|
||||
|
||||
|
||||
NUMPY_OPS = NumpyOps()
|
||||
|
||||
|
||||
def step_forward(model: ParserStepModel, states, is_train):
|
||||
token_ids = model.get_token_ids(states)
|
||||
vector, get_d_tokvecs = model.state2vec(token_ids, is_train)
|
||||
|
@ -310,7 +308,7 @@ def step_forward(model: ParserStepModel, states, is_train):
|
|||
scores, get_d_vector = model.vec2scores(vector, is_train)
|
||||
else:
|
||||
scores = NumpyOps().asarray(vector)
|
||||
get_d_vector = lambda d_scores: d_scores
|
||||
def get_d_vector(d_scores): return d_scores
|
||||
# If the class is unseen, make sure its score is minimum
|
||||
scores[:, model._class_mask == 0] = numpy.nanmin(scores)
|
||||
|
||||
|
@ -445,8 +443,8 @@ cdef class precompute_hiddens:
|
|||
feat_weights = self.get_feat_weights()
|
||||
cdef int[:, ::1] ids = token_ids
|
||||
sum_state_features(cblas, <float*>state_vector.data,
|
||||
feat_weights, &ids[0,0],
|
||||
token_ids.shape[0], self.nF, self.nO*self.nP)
|
||||
feat_weights, &ids[0, 0], token_ids.shape[0],
|
||||
self.nF, self.nO*self.nP)
|
||||
state_vector += self.bias
|
||||
state_vector, bp_nonlinearity = self._nonlinearity(state_vector)
|
||||
|
||||
|
@ -471,7 +469,7 @@ cdef class precompute_hiddens:
|
|||
|
||||
def backprop_maxout(d_best):
|
||||
return self.ops.backprop_maxout(d_best, mask, self.nP)
|
||||
|
||||
|
||||
return state_vector, backprop_maxout
|
||||
|
||||
def _relu_nonlinearity(self, state_vector):
|
||||
|
@ -485,7 +483,7 @@ cdef class precompute_hiddens:
|
|||
def backprop_relu(d_best):
|
||||
d_best *= mask
|
||||
return d_best.reshape((d_best.shape + (1,)))
|
||||
|
||||
|
||||
return state_vector, backprop_relu
|
||||
|
||||
cdef inline int _arg_max(const float* scores, const int n_classes) nogil:
|
||||
|
|
|
@ -156,7 +156,7 @@ cdef class BiluoPushDown(TransitionSystem):
|
|||
if token.ent_type:
|
||||
labels.add(token.ent_type_)
|
||||
return labels
|
||||
|
||||
|
||||
def move_name(self, int move, attr_t label):
|
||||
if move == OUT:
|
||||
return 'O'
|
||||
|
@ -641,7 +641,7 @@ cdef class Unit:
|
|||
cost += 1
|
||||
break
|
||||
return cost
|
||||
|
||||
|
||||
|
||||
cdef class Out:
|
||||
@staticmethod
|
||||
|
|
|
@ -127,6 +127,7 @@ def make_parser(
|
|||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_parser",
|
||||
assigns=["token.dep", "token.head", "token.is_sent_start", "doc.sents"],
|
||||
|
|
|
@ -15,7 +15,7 @@ from ._parser_internals.ner cimport BiluoPushDown
|
|||
from .transition_parser cimport Parser
|
||||
|
||||
from ..language import Language
|
||||
from ..scorer import PRFScore, get_ner_prf
|
||||
from ..scorer import get_ner_prf
|
||||
from ..training import remove_bilu_prefix
|
||||
from ..util import registry
|
||||
|
||||
|
@ -105,6 +105,7 @@ def make_ner(
|
|||
scorer=scorer,
|
||||
)
|
||||
|
||||
|
||||
@Language.factory(
|
||||
"beam_ner",
|
||||
assigns=["doc.ents", "token.ent_iob", "token.ent_type"],
|
||||
|
|
|
@ -15,7 +15,7 @@ cdef class Parser(TrainablePipe):
|
|||
cdef object _cpu_ops
|
||||
|
||||
cdef void _parseC(self, CBlas cblas, StateC** states,
|
||||
WeightsC weights, SizesC sizes) nogil
|
||||
WeightsC weights, SizesC sizes) nogil
|
||||
|
||||
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil
|
||||
int nr_class, int batch_size) nogil
|
||||
|
|
|
@ -9,7 +9,7 @@ from cymem.cymem cimport Pool
|
|||
from itertools import islice
|
||||
|
||||
from libc.stdlib cimport calloc, free
|
||||
from libc.string cimport memcpy, memset
|
||||
from libc.string cimport memset
|
||||
from libcpp.vector cimport vector
|
||||
|
||||
import random
|
||||
|
@ -22,14 +22,13 @@ from thinc.api import (
|
|||
NumpyOps,
|
||||
Optimizer,
|
||||
chain,
|
||||
get_array_module,
|
||||
get_ops,
|
||||
set_dropout_rate,
|
||||
softmax_activation,
|
||||
use_ops,
|
||||
)
|
||||
from thinc.legacy import LegacySequenceCategoricalCrossentropy
|
||||
from thinc.types import Floats2d, Ints1d
|
||||
from thinc.types import Floats2d
|
||||
|
||||
from ..ml.parser_model cimport (
|
||||
ActivationsC,
|
||||
|
@ -44,7 +43,6 @@ from ..ml.parser_model cimport (
|
|||
predict_states,
|
||||
)
|
||||
from ..tokens.doc cimport Doc
|
||||
from ._parser_internals.search cimport Beam
|
||||
from ._parser_internals.stateclass cimport StateClass
|
||||
|
||||
from .trainable_pipe import TrainablePipe
|
||||
|
@ -54,11 +52,10 @@ from ._parser_internals cimport _beam_utils
|
|||
from ._parser_internals import _beam_utils
|
||||
|
||||
from ..tokens.doc cimport Doc
|
||||
from ..typedefs cimport weight_t
|
||||
from ..vocab cimport Vocab
|
||||
from ._parser_internals cimport _beam_utils
|
||||
from ._parser_internals.stateclass cimport StateC, StateClass
|
||||
from ._parser_internals.transition_system cimport Transition, TransitionSystem
|
||||
from ._parser_internals.transition_system cimport Transition
|
||||
from .trainable_pipe cimport TrainablePipe
|
||||
|
||||
from .. import util
|
||||
|
@ -289,7 +286,7 @@ cdef class Parser(TrainablePipe):
|
|||
with use_ops("numpy"):
|
||||
teacher_model = chain(teacher_step_model, softmax_activation())
|
||||
student_model = chain(student_step_model, softmax_activation())
|
||||
|
||||
|
||||
max_moves = self.cfg["update_with_oracle_cut_size"]
|
||||
if max_moves >= 1:
|
||||
# Chop sequences into lengths of this many words, to make the
|
||||
|
@ -434,8 +431,6 @@ cdef class Parser(TrainablePipe):
|
|||
return batch
|
||||
|
||||
def beam_parse(self, docs, int beam_width, float drop=0., beam_density=0.):
|
||||
cdef Beam beam
|
||||
cdef Doc doc
|
||||
self._ensure_labels_are_added(docs)
|
||||
batch = _beam_utils.BeamBatch(
|
||||
self.moves,
|
||||
|
@ -456,15 +451,15 @@ cdef class Parser(TrainablePipe):
|
|||
return list(batch)
|
||||
|
||||
cdef void _parseC(self, CBlas cblas, StateC** states,
|
||||
WeightsC weights, SizesC sizes) nogil:
|
||||
cdef int i, j
|
||||
WeightsC weights, SizesC sizes) nogil:
|
||||
cdef int i
|
||||
cdef vector[StateC*] unfinished
|
||||
cdef ActivationsC activations = alloc_activations(sizes)
|
||||
while sizes.states >= 1:
|
||||
predict_states(cblas, &activations, states, &weights, sizes)
|
||||
# Validate actions, argmax, take action.
|
||||
self.c_transition_batch(states,
|
||||
activations.scores, sizes.classes, sizes.states)
|
||||
self.c_transition_batch(states, activations.scores,
|
||||
sizes.classes, sizes.states)
|
||||
for i in range(sizes.states):
|
||||
if not states[i].is_final():
|
||||
unfinished.push_back(states[i])
|
||||
|
@ -493,7 +488,7 @@ cdef class Parser(TrainablePipe):
|
|||
return [state for state in states if not state.c.is_final()]
|
||||
|
||||
cdef void c_transition_batch(self, StateC** states, const float* scores,
|
||||
int nr_class, int batch_size) nogil:
|
||||
int nr_class, int batch_size) nogil:
|
||||
# n_moves should not be zero at this point, but make sure to avoid zero-length mem alloc
|
||||
with gil:
|
||||
assert self.moves.n_moves > 0, Errors.E924.format(name=self.name)
|
||||
|
@ -551,8 +546,7 @@ cdef class Parser(TrainablePipe):
|
|||
if not states:
|
||||
return losses
|
||||
model, backprop_tok2vec = self.model.begin_update([eg.x for eg in examples])
|
||||
|
||||
all_states = list(states)
|
||||
|
||||
states_golds = list(zip(states, golds))
|
||||
n_moves = 0
|
||||
while states_golds:
|
||||
|
@ -632,8 +626,8 @@ cdef class Parser(TrainablePipe):
|
|||
del tutor
|
||||
return losses
|
||||
|
||||
def update_beam(self, examples, *, beam_width,
|
||||
drop=0., sgd=None, losses=None, beam_density=0.0):
|
||||
def update_beam(self, examples, *, beam_width, drop=0., sgd=None,
|
||||
losses=None, beam_density=0.0):
|
||||
states, golds, _ = self.moves.init_gold_batch(examples)
|
||||
if not states:
|
||||
return losses
|
||||
|
@ -664,7 +658,7 @@ cdef class Parser(TrainablePipe):
|
|||
is_valid = <int*>mem.alloc(self.moves.n_moves, sizeof(int))
|
||||
costs = <float*>mem.alloc(self.moves.n_moves, sizeof(float))
|
||||
cdef np.ndarray d_scores = numpy.zeros((len(states), self.moves.n_moves),
|
||||
dtype='f', order='C')
|
||||
dtype='f', order='C')
|
||||
c_d_scores = <float*>d_scores.data
|
||||
unseen_classes = self.model.attrs["unseen_classes"]
|
||||
for i, (state, gold) in enumerate(zip(states, golds)):
|
||||
|
@ -674,8 +668,8 @@ cdef class Parser(TrainablePipe):
|
|||
for j in range(self.moves.n_moves):
|
||||
if costs[j] <= 0.0 and j in unseen_classes:
|
||||
unseen_classes.remove(j)
|
||||
cpu_log_loss(c_d_scores,
|
||||
costs, is_valid, &scores[i, 0], d_scores.shape[1])
|
||||
cpu_log_loss(c_d_scores, costs, is_valid, &scores[i, 0],
|
||||
d_scores.shape[1])
|
||||
c_d_scores += d_scores.shape[1]
|
||||
# Note that we don't normalize this. See comment in update() for why.
|
||||
if losses is not None:
|
||||
|
@ -785,10 +779,7 @@ cdef class Parser(TrainablePipe):
|
|||
long_doc[:N], and another representing long_doc[N:]. In contrast to
|
||||
_init_gold_batch, this version uses a teacher model to generate the
|
||||
cut sequences."""
|
||||
cdef:
|
||||
StateClass start_state
|
||||
StateClass state
|
||||
Transition action
|
||||
cdef StateClass state
|
||||
all_states = self.moves.init_batch(docs)
|
||||
states = []
|
||||
to_cut = []
|
||||
|
@ -810,7 +801,6 @@ cdef class Parser(TrainablePipe):
|
|||
length += 1
|
||||
return states
|
||||
|
||||
|
||||
def _init_gold_batch(self, examples, max_length):
|
||||
"""Make a square batch, of length equal to the shortest transition
|
||||
sequence or a cap. A long
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import warnings
|
||||
from collections.abc import Iterable as IterableInstance
|
||||
|
||||
import numpy
|
||||
|
|
Loading…
Reference in New Issue
Block a user