Update docs [ci skip]

This commit is contained in:
Ines Montani 2020-08-29 18:43:19 +02:00
parent d73f7229c0
commit 9b86312bab
7 changed files with 183 additions and 141 deletions

View File

@ -12,7 +12,8 @@ The attribute ruler lets you set token attributes for tokens identified by
[`Matcher` patterns](/usage/rule-based-matching#matcher). The attribute ruler is
typically used to handle exceptions for token attributes and to map values
between attributes such as mapping fine-grained POS tags to coarse-grained POS
tags.
tags. See the [usage guide](/usage/linguistic-features/#mappings-exceptions) for
examples.
## Config and implementation {#config}

View File

@ -12,19 +12,16 @@ is then passed on to the next component.
> - **Creates:** Objects, attributes and properties modified and set by the
> component.
| Name | Component | Creates | Description |
| -------------- | ------------------------------------------- | --------------------------------------------------------- | -------------------------------- |
| **tokenizer** | [`Tokenizer`](/api/tokenizer) | `Doc` | Segment text into tokens. |
| **tagger** | [`Tagger`](/api/tagger) | `Token.tag` | Assign part-of-speech tags. |
| **parser** | [`DependencyParser`](/api/dependencyparser) | `Token.head`, `Token.dep`, `Doc.sents`, `Doc.noun_chunks` | Assign dependency labels. |
| **ner** | [`EntityRecognizer`](/api/entityrecognizer) | `Doc.ents`, `Token.ent_iob`, `Token.ent_type` | Detect and label named entities. |
| **lemmatizer** | [`Lemmatizer`](/api/lemmatizer) | `Token.lemma` | Assign base forms. |
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** |
[custom components](/usage/processing-pipelines#custom-components) |
`Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or
properties. |
| Name | Component | Creates | Description |
| --------------------- | ------------------------------------------------------------------ | --------------------------------------------------------- | ------------------------------------------------ |
| **tokenizer** | [`Tokenizer`](/api/tokenizer) | `Doc` | Segment text into tokens. |
| _processing pipeline_ | | |
| **tagger** | [`Tagger`](/api/tagger) | `Token.tag` | Assign part-of-speech tags. |
| **parser** | [`DependencyParser`](/api/dependencyparser) | `Token.head`, `Token.dep`, `Doc.sents`, `Doc.noun_chunks` | Assign dependency labels. |
| **ner** | [`EntityRecognizer`](/api/entityrecognizer) | `Doc.ents`, `Token.ent_iob`, `Token.ent_type` | Detect and label named entities. |
| **lemmatizer** | [`Lemmatizer`](/api/lemmatizer) | `Token.lemma` | Assign base forms. |
| **textcat** | [`TextCategorizer`](/api/textcategorizer) | `Doc.cats` | Assign document labels. |
| **custom** | [custom components](/usage/processing-pipelines#custom-components) | `Doc._.xxx`, `Token._.xxx`, `Span._.xxx` | Assign custom attributes, methods or properties. |
The processing pipeline always **depends on the statistical model** and its
capabilities. For example, a pipeline can only include an entity recognizer

View File

@ -57,41 +57,50 @@ create a surface form. Here are some examples:
Morphological features are stored in the [`MorphAnalysis`](/api/morphanalysis)
under `Token.morph`, which allows you to access individual morphological
features. The attribute `Token.morph_` provides the morphological analysis in
the Universal Dependencies FEATS format.
the Universal Dependencies
[FEATS](https://universaldependencies.org/format.html#morphological-annotation)
format.
> #### 📝 Things to try
>
> 1. Change "I" to "She". You should see that the morphological features change
> and express that it's a pronoun in the third person.
> 2. Inspect `token.morph_` for the other tokens.
```python
### {executable="true"}
import spacy
nlp = spacy.load("en_core_web_sm")
print("Pipeline:", nlp.pipe_names)
doc = nlp("I was reading the paper.")
token = doc[0] # "I"
assert token.morph_ == "Case=Nom|Number=Sing|Person=1|PronType=Prs"
assert token.morph.get("PronType") == ["Prs"]
token = doc[0] # 'I'
print(token.morph_) # 'Case=Nom|Number=Sing|Person=1|PronType=Prs'
print(token.morph.get("PronType")) # ['Prs']
```
### Statistical morphology {#morphologizer new="3" model="morphologizer"}
spaCy v3 includes a statistical morphologizer component that assigns the
morphological features and POS as `Token.morph` and `Token.pos`.
spaCy's statistical [`Morphologizer`](/api/morphologizer) component assigns the
morphological features and coarse-grained part-of-speech tags as `Token.morph`
and `Token.pos`.
```python
### {executable="true"}
import spacy
nlp = spacy.load("de_core_news_sm")
doc = nlp("Wo bist du?") # 'Where are you?'
assert doc[2].morph_ == "Case=Nom|Number=Sing|Person=2|PronType=Prs"
assert doc[2].pos_ == "PRON"
doc = nlp("Wo bist du?") # English: 'Where are you?'
print(doc[2].morph_) # 'Case=Nom|Number=Sing|Person=2|PronType=Prs'
print(doc[2].pos_) # 'PRON'
```
### Rule-based morphology {#rule-based-morphology}
For languages with relatively simple morphological systems like English, spaCy
can assign morphological features through a rule-based approach, which uses the
token text and fine-grained part-of-speech tags to produce coarse-grained
part-of-speech tags and morphological features.
**token text** and **fine-grained part-of-speech tags** to produce
coarse-grained part-of-speech tags and morphological features.
1. The part-of-speech tagger assigns each token a **fine-grained part-of-speech
tag**. In the API, these tags are known as `Token.tag`. They express the
@ -108,16 +117,16 @@ import spacy
nlp = spacy.load("en_core_web_sm")
doc = nlp("Where are you?")
assert doc[2].morph_ == "Case=Nom|Person=2|PronType=Prs"
assert doc[2].pos_ == "PRON"
print(doc[2].morph_) # 'Case=Nom|Person=2|PronType=Prs'
print(doc[2].pos_) # 'PRON'
```
## Lemmatization {#lemmatization model="lemmatizer" new="3"}
The [`Lemmatizer`](/api/lemmatizer) is a pipeline component that provides lookup
and rule-based lemmatization methods in a configurable component. An individual
language can extend the `Lemmatizer` as part of its [language
data](#language-data).
language can extend the `Lemmatizer` as part of its
[language data](#language-data).
```python
### {executable="true"}
@ -126,36 +135,38 @@ import spacy
# English models include a rule-based lemmatizer
nlp = spacy.load("en_core_web_sm")
lemmatizer = nlp.get_pipe("lemmatizer")
assert lemmatizer.mode == "rule"
print(lemmatizer.mode) # 'rule'
doc = nlp("I was reading the paper.")
assert doc[1].lemma_ == "be"
assert doc[2].lemma_ == "read"
print([token.lemma_ for token in doc])
# ['I', 'be', 'read', 'the', 'paper', '.']
```
<Infobox title="Important note" variant="warning">
<Infobox title="Changed in v3.0" variant="warning">
Unlike spaCy v2, spaCy v3 models do not provide lemmas by default or switch
automatically between lookup and rule-based lemmas depending on whether a
tagger is in the pipeline. To have lemmas in a `Doc`, the pipeline needs to
include a `lemmatizer` component. A `lemmatizer` is configured to use a single
mode such as `"lookup"` or `"rule"` on initialization. The `"rule"` mode
requires `Token.pos` to be set by a previous component.
Unlike spaCy v2, spaCy v3 models do _not_ provide lemmas by default or switch
automatically between lookup and rule-based lemmas depending on whether a tagger
is in the pipeline. To have lemmas in a `Doc`, the pipeline needs to include a
[`Lemmatizer`](/api/lemmatizer) component. The lemmatizer component is
configured to use a single mode such as `"lookup"` or `"rule"` on
initialization. The `"rule"` mode requires `Token.pos` to be set by a previous
component.
</Infobox>
The data for spaCy's lemmatizers is distributed in the package
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
provided models already include all the required tables, but if you are
creating new models, you'll probably want to install `spacy-lookups-data` to
provide the data when the lemmatizer is initialized.
provided models already include all the required tables, but if you are creating
new models, you'll probably want to install `spacy-lookups-data` to provide the
data when the lemmatizer is initialized.
### Lookup lemmatizer {#lemmatizer-lookup}
For models without a tagger or morphologizer, a lookup lemmatizer can be added
to the pipeline as long as a lookup table is provided, typically through
`spacy-lookups-data`. The lookup lemmatizer looks up the token surface form in
the lookup table without reference to the token's part-of-speech or context.
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data). The
lookup lemmatizer looks up the token surface form in the lookup table without
reference to the token's part-of-speech or context.
```python
# pip install spacy-lookups-data
@ -168,19 +179,18 @@ nlp.add_pipe("lemmatizer", config={"mode": "lookup"})
### Rule-based lemmatizer {#lemmatizer-rule}
When training models that include a component that assigns POS (a morphologizer
or a tagger with a [POS mapping](#mappings-exceptions)), a rule-based
lemmatizer can be added using rule tables from `spacy-lookups-data`:
or a tagger with a [POS mapping](#mappings-exceptions)), a rule-based lemmatizer
can be added using rule tables from
[`spacy-lookups-data`](https://github.com/explosion/spacy-lookups-data):
```python
# pip install spacy-lookups-data
import spacy
nlp = spacy.blank("de")
# morphologizer (note: model is not yet trained!)
# Morphologizer (note: model is not yet trained!)
nlp.add_pipe("morphologizer")
# rule-based lemmatizer
# Rule-based lemmatizer
nlp.add_pipe("lemmatizer", config={"mode": "rule"})
```
@ -1734,25 +1744,26 @@ print("After:", [sent.text for sent in doc.sents])
## Mappings & Exceptions {#mappings-exceptions new="3"}
The [`AttributeRuler`](/api/attributeruler) manages rule-based mappings and
exceptions for all token-level attributes. As the number of pipeline components
has grown from spaCy v2 to v3, handling rules and exceptions in each component
individually has become impractical, so the `AttributeRuler` provides a single
component with a unified pattern format for all token attribute mappings and
exceptions.
The [`AttributeRuler`](/api/attributeruler) manages **rule-based mappings and
exceptions** for all token-level attributes. As the number of
[pipeline components](/api/#architecture-pipeline) has grown from spaCy v2 to
v3, handling rules and exceptions in each component individually has become
impractical, so the `AttributeRuler` provides a single component with a unified
pattern format for all token attribute mappings and exceptions.
The `AttributeRuler` uses [`Matcher`
patterns](/usage/rule-based-matching#adding-patterns) to identify tokens and
then assigns them the provided attributes. If needed, the `Matcher` patterns
can include context around the target token. For example, the `AttributeRuler`
can:
The `AttributeRuler` uses
[`Matcher` patterns](/usage/rule-based-matching#adding-patterns) to identify
tokens and then assigns them the provided attributes. If needed, the
[`Matcher`](/api/matcher) patterns can include context around the target token.
For example, the attribute ruler can:
- provide exceptions for any token attributes
- map fine-grained tags to coarse-grained tags for languages without statistical
morphologizers (replacing the v2 tag map in the language data)
- map token surface form + fine-grained tags to morphological features
(replacing the v2 morph rules in the language data)
- specify the tags for space tokens (replacing hard-coded behavior in the
- provide exceptions for any **token attributes**
- map **fine-grained tags** to **coarse-grained tags** for languages without
statistical morphologizers (replacing the v2.x `tag_map` in the
[language data](#language-data))
- map token **surface form + fine-grained tags** to **morphological features**
(replacing the v2.x `morph_rules` in the [language data](#language-data))
- specify the **tags for space tokens** (replacing hard-coded behavior in the
tagger)
The following example shows how the tag and POS `NNP`/`PROPN` can be specified
@ -1765,41 +1776,42 @@ import spacy
nlp = spacy.load("en_core_web_sm")
text = "I saw The Who perform. Who did you see?"
doc1 = nlp(text)
assert doc1[2].tag_ == "DT"
assert doc1[2].pos_ == "DET"
assert doc1[3].tag_ == "WP"
assert doc1[3].pos_ == "PRON"
print(doc1[2].tag_, doc1[2].pos_) # DT DET
print(doc1[3].tag_, doc1[3].pos_) # WP PRON
# add a new exception for "The Who" as NNP/PROPN NNP/PROPN
# Add attribute ruler with exception for "The Who" as NNP/PROPN NNP/PROPN
ruler = nlp.get_pipe("attribute_ruler")
# pattern to match "The Who"
# Pattern to match "The Who"
patterns = [[{"LOWER": "the"}, {"TEXT": "Who"}]]
# the attributes to assign to the matched token
# The attributes to assign to the matched token
attrs = {"TAG": "NNP", "POS": "PROPN"}
# add rule for "The" in "The Who"
ruler.add(patterns=patterns, attrs=attrs, index=0)
# add rule for "Who" in "The Who"
ruler.add(patterns=patterns, attrs=attrs, index=1)
# Add rules to the attribute ruler
ruler.add(patterns=patterns, attrs=attrs, index=0) # "The" in "The Who"
ruler.add(patterns=patterns, attrs=attrs, index=1) # "Who" in "The Who"
doc2 = nlp(text)
assert doc2[2].tag_ == "NNP"
assert doc2[3].tag_ == "NNP"
assert doc2[2].pos_ == "PROPN"
assert doc2[3].pos_ == "PROPN"
# the second "Who" remains unmodified
assert doc2[5].tag_ == "WP"
assert doc2[5].pos_ == "PRON"
print(doc2[2].tag_, doc2[2].pos_) # NNP PROPN
print(doc2[3].tag_, doc2[3].pos_) # NNP PROPN
# The second "Who" remains unmodified
print(doc2[5].tag_, doc2[5].pos_) # WP PRON
```
For easy migration from from spaCy v2 to v3, the `AttributeRuler` can import v2
`TAG_MAP` and `MORPH_RULES` data with the methods
[`AttributerRuler.load_from_tag_map`](/api/attributeruler#load_from_tag_map) and
[`AttributeRuler.load_from_morph_rules`](/api/attributeruler#load_from_morph_rules).
<Infobox variant="warning" title="Migrating from spaCy v2.x">
For easy migration from from spaCy v2 to v3, the
[`AttributeRuler`](/api/attributeruler) can import a **tag map and morph rules**
in the v2 format with the methods
[`load_from_tag_map`](/api/attributeruler#load_from_tag_map) and
[`load_from_morph_rules`](/api/attributeruler#load_from_morph_rules).
```diff
nlp = spacy.blank("en")
+ ruler = nlp.add_pipe("attribute_ruler")
+ ruler.load_from_tag_map(YOUR_TAG_MAP)
```
</Infobox>
## Word vectors and semantic similarity {#vectors-similarity}

View File

@ -250,26 +250,26 @@ in your config and see validation errors if the argument values don't match.
The following methods, attributes and commands are new in spaCy v3.0.
| Name | Description |
| ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
| [`Token.morph`](/api/token#attributes) [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
| [`Language.disable_pipe`](/api/language#disable_pipe) [`Language.enable_pipe`](/api/language#enable_pipe) | Disable or enable a loaded pipeline component (but don't remove it). |
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a pretrained model and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
| [`@Language.factory`](/api/language#factory) [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class.s |
| [`Language.get_factory_meta`](/api/language#get_factory_meta) [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
| [`Language.components`](/api/language#attributes) [`Language.component_names`](/api/language#attributes) | All available components and component names, including disabled components that are not run as part of the pipeline. |
| [`Language.disabled`](/api/language#attributes) | Names of disabled components that are not run as part of the pipeline. |
| [`Pipe.score`](/api/pipe#score) | Method on pipeline components that returns a dictionary of evaluation scores. |
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
| [`util.load_meta`](/api/top-level#util.load_meta) [`util.load_config`](/api/top-level#util.load_config) | Updated helpers for loading a model's [`meta.json`](/api/data-formats#meta) and [`config.cfg`](/api/data-formats#config). |
| [`util.get_installed_models`](/api/top-level#util.get_installed_models) | Names of all models installed in the environment. |
| [`init config`](/api/cli#init-config) [`init fill-config`](/api/cli#init-fill-config) [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
| Name | Description |
| ------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| [`Token.lex`](/api/token#attributes) | Access a token's [`Lexeme`](/api/lexeme). |
| [`Token.morph`](/api/token#attributes), [`Token.morph_`](/api/token#attributes) | Access a token's morphological analysis. |
| [`Language.select_pipes`](/api/language#select_pipes) | Context manager for enabling or disabling specific pipeline components for a block. |
| [`Language.disable_pipe`](/api/language#disable_pipe), [`Language.enable_pipe`](/api/language#enable_pipe) | Disable or enable a loaded pipeline component (but don't remove it). |
| [`Language.analyze_pipes`](/api/language#analyze_pipes) | [Analyze](/usage/processing-pipelines#analysis) components and their interdependencies. |
| [`Language.resume_training`](/api/language#resume_training) | Experimental: continue training a pretrained model and initialize "rehearsal" for components that implement a `rehearse` method to prevent catastrophic forgetting. |
| [`@Language.factory`](/api/language#factory), [`@Language.component`](/api/language#component) | Decorators for [registering](/usage/processing-pipelines#custom-components) pipeline component factories and simple stateless component functions. |
| [`Language.has_factory`](/api/language#has_factory) | Check whether a component factory is registered on a language class.s |
| [`Language.get_factory_meta`](/api/language#get_factory_meta), [`Language.get_pipe_meta`](/api/language#get_factory_meta) | Get the [`FactoryMeta`](/api/language#factorymeta) with component metadata for a factory or instance name. |
| [`Language.config`](/api/language#config) | The [config](/usage/training#config) used to create the current `nlp` object. An instance of [`Config`](https://thinc.ai/docs/api-config#config) and can be saved to disk and used for training. |
| [`Language.components`](/api/language#attributes), [`Language.component_names`](/api/language#attributes) | All available components and component names, including disabled components that are not run as part of the pipeline. |
| [`Language.disabled`](/api/language#attributes) | Names of disabled components that are not run as part of the pipeline. |
| [`Pipe.score`](/api/pipe#score) | Method on pipeline components that returns a dictionary of evaluation scores. |
| [`registry`](/api/top-level#registry) | Function registry to map functions to string names that can be referenced in [configs](/usage/training#config). |
| [`util.load_meta`](/api/top-level#util.load_meta), [`util.load_config`](/api/top-level#util.load_config) | Updated helpers for loading a model's [`meta.json`](/api/data-formats#meta) and [`config.cfg`](/api/data-formats#config). |
| [`util.get_installed_models`](/api/top-level#util.get_installed_models) | Names of all models installed in the environment. |
| [`init config`](/api/cli#init-config), [`init fill-config`](/api/cli#init-fill-config), [`debug config`](/api/cli#debug-config) | CLI commands for initializing, auto-filling and debugging [training configs](/usage/training). |
| [`project`](/api/cli#project) | Suite of CLI commands for cloning, running and managing [spaCy projects](/usage/projects). |
### New and updated documentation {#new-docs}
@ -304,7 +304,10 @@ format for documenting argument and return types.
[Layers & Architectures](/usage/layers-architectures),
[Projects](/usage/projects),
[Custom pipeline components](/usage/processing-pipelines#custom-components),
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer)
[Custom tokenizers](/usage/linguistic-features#custom-tokenizer),
[Morphology](/usage/linguistic-features#morphology),
[Lemmatization](/usage/linguistic-features#lemmatization),
[Mapping & Exceptions](/usage/linguistic-features#mappings-exceptions)
- **API Reference: ** [Library architecture](/api),
[Model architectures](/api/architectures), [Data formats](/api/data-formats)
- **New Classes: ** [`Example`](/api/example), [`Tok2Vec`](/api/tok2vec),
@ -371,19 +374,25 @@ Note that spaCy v3.0 now requires **Python 3.6+**.
arguments). The `on_match` callback becomes an optional keyword argument.
- The `PRON_LEMMA` symbol and `-PRON-` as an indicator for pronoun lemmas has
been removed.
- The `TAG_MAP` and `MORPH_RULES` in the language data have been replaced by the
more flexible [`AttributeRuler`](/api/attributeruler).
- The [`Lemmatizer`](/api/lemmatizer) is now a standalone pipeline component and
doesn't provide lemmas by default or switch automatically between lookup and
rule-based lemmas. You can now add it to your pipeline explicitly and set its
mode on initialization.
### Removed or renamed API {#incompat-removed}
| Removed | Replacement |
| -------------------------------------------------------- | ------------------------------------------------------------------------------------------ |
| `Language.disable_pipes` | [`Language.select_pipes`](/api/language#select_pipes) |
| `GoldParse` | [`Example`](/api/example) |
| `GoldCorpus` | [`Corpus`](/api/corpus) |
| `KnowledgeBase.load_bulk`, `KnowledgeBase.dump` | [`KnowledgeBase.from_disk`](/api/kb#from_disk), [`KnowledgeBase.to_disk`](/api/kb#to_disk) |
| `spacy init-model` | [`spacy init model`](/api/cli#init-model) |
| `spacy debug-data` | [`spacy debug data`](/api/cli#debug-data) |
| `spacy profile` | [`spacy debug profile`](/api/cli#debug-profile) |
| `spacy link`, `util.set_data_path`, `util.get_data_path` | not needed, model symlinks are deprecated |
| Removed | Replacement |
| -------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------ |
| `Language.disable_pipes` | [`Language.select_pipes`](/api/language#select_pipes), [`Language.disable_pipe`](/api/language#disable_pipe) |
| `GoldParse` | [`Example`](/api/example) |
| `GoldCorpus` | [`Corpus`](/api/corpus) |
| `KnowledgeBase.load_bulk`, `KnowledgeBase.dump` | [`KnowledgeBase.from_disk`](/api/kb#from_disk), [`KnowledgeBase.to_disk`](/api/kb#to_disk) |
| `spacy init-model` | [`spacy init model`](/api/cli#init-model) |
| `spacy debug-data` | [`spacy debug data`](/api/cli#debug-data) |
| `spacy profile` | [`spacy debug profile`](/api/cli#debug-profile) |
| `spacy link`, `util.set_data_path`, `util.get_data_path` | not needed, model symlinks are deprecated |
The following deprecated methods, attributes and arguments were removed in v3.0.
Most of them have been **deprecated for a while** and many would previously
@ -557,6 +566,24 @@ patterns = [nlp("health care reform"), nlp("healthcare reform")]
+ matcher.add("HEALTH", patterns, on_match=on_match)
```
### Migrating tag maps and morph rules {#migrating-training-mappings-exceptions}
Instead of defining a `tag_map` and `morph_rules` in the language data, spaCy
v3.0 now manages mappings and exceptions with a separate and more flexible
pipeline component, the [`AttributeRuler`](/api/attributeruler). See the
[usage guide](/usage/linguistic-features#mappings-exceptions) for examples. The
`AttributeRuler` provides two handy helper methods
[`load_from_tag_map`](/api/attributeruler#load_from_tag_map) and
[`load_from_morph_rules`](/api/attributeruler#load_from_morph_rules) that let
you load in your existing tag map or morph rules:
```diff
nlp = spacy.blank("en")
- nlp.vocab.morphology.load_tag_map(YOUR_TAG_MAP)
+ ruler = nlp.add_pipe("attribute_ruler")
+ ruler.load_from_tag_map(YOUR_TAG_MAP)
```
### Training models {#migrating-training}
To train your models, you should now pretty much always use the
@ -602,8 +629,8 @@ If you've exported a starter config from our
values. You can then use the auto-generated `config.cfg` for training:
```diff
### {wrap="true"}
- python -m spacy train en ./output ./train.json ./dev.json --pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
- python -m spacy train en ./output ./train.json ./dev.json
--pipeline tagger,parser --cnn-window 1 --bilstm-depth 0
+ python -m spacy train ./config.cfg --output ./output
```

View File

@ -169,7 +169,13 @@ function formatCode(html, lang, prompt) {
}
const result = html
.split('\n')
.map((line, i) => (prompt ? replacePrompt(line, prompt, i === 0) : line))
.map((line, i) => {
let newLine = prompt ? replacePrompt(line, prompt, i === 0) : line
if (lang === 'diff' && !line.startsWith('<')) {
newLine = highlightCode('python', line)
}
return newLine
})
.join('\n')
return htmlToReact(result)
}

View File

@ -28,7 +28,6 @@ export default class Juniper extends React.Component {
mode: this.props.lang,
theme: this.props.theme,
})
const runCode = () => this.execute(outputArea, cm.getValue())
cm.setOption('extraKeys', { 'Shift-Enter': runCode })
Widget.attach(outputArea, this.outputRef)

View File

@ -65,12 +65,12 @@
--color-subtle-dark: hsl(162, 5%, 60%)
--color-green-medium: hsl(108, 66%, 63%)
--color-green-transparent: hsla(108, 66%, 63%, 0.11)
--color-green-transparent: hsla(108, 66%, 63%, 0.12)
--color-red-light: hsl(355, 100%, 96%)
--color-red-medium: hsl(346, 84%, 61%)
--color-red-dark: hsl(332, 64%, 34%)
--color-red-opaque: hsl(346, 96%, 89%)
--color-red-transparent: hsla(346, 84%, 61%, 0.11)
--color-red-transparent: hsla(346, 84%, 61%, 0.12)
--color-yellow-light: hsl(46, 100%, 95%)
--color-yellow-medium: hsl(45, 90%, 55%)
--color-yellow-dark: hsl(44, 94%, 27%)
@ -79,11 +79,11 @@
// Syntax Highlighting
--syntax-comment: hsl(162, 5%, 60%)
--syntax-tag: hsl(266, 72%, 72%)
--syntax-number: hsl(266, 72%, 72%)
--syntax-number: var(--syntax-tag)
--syntax-selector: hsl(31, 100%, 71%)
--syntax-operator: hsl(342, 100%, 59%)
--syntax-function: hsl(195, 70%, 54%)
--syntax-keyword: hsl(342, 100%, 59%)
--syntax-keyword: hsl(343, 100%, 68%)
--syntax-operator: var(--syntax-keyword)
--syntax-regex: hsl(45, 90%, 55%)
// Other
@ -354,6 +354,7 @@ body [id]:target
&.inserted, &.deleted
padding: 2px 0
border-radius: 2px
opacity: 0.9
&.inserted
color: var(--color-green-medium)
@ -388,7 +389,6 @@ body [id]:target
.token
color: var(--color-subtle)
.gatsby-highlight-code-line
background-color: var(--color-dark-secondary)
border-left: 0.35em solid var(--color-theme)
@ -409,6 +409,7 @@ body [id]:target
color: var(--color-subtle)
.CodeMirror-line
color: var(--syntax-comment)
padding: 0
.CodeMirror-selected
@ -418,26 +419,25 @@ body [id]:target
.CodeMirror-cursor
border-left-color: currentColor
.cm-variable-2
color: inherit
font-style: italic
.cm-property, .cm-variable, .cm-variable-2, .cm-meta // decorators
color: var(--color-subtle)
.cm-comment
color: var(--syntax-comment)
.cm-keyword
.cm-keyword, .cm-builtin
color: var(--syntax-keyword)
.cm-operator
color: var(--syntax-operator)
.cm-string, .cm-builtin
.cm-string
color: var(--syntax-selector)
.cm-number
color: var(--syntax-number)
.cm-def, .cm-meta
.cm-def
color: var(--syntax-function)
// Jupyter