mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Tidy up and auto-format
This commit is contained in:
parent
06e66d4ced
commit
9ba715ed16
|
@ -78,6 +78,7 @@ _ordinal_words = [
|
|||
"bazillione",
|
||||
]
|
||||
|
||||
|
||||
def like_num(text):
|
||||
if text.startswith(("+", "-", "±", "~")):
|
||||
text = text[1:]
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
# Stop words
|
||||
STOP_WORDS = set("""
|
||||
STOP_WORDS = set(
|
||||
"""
|
||||
ke gareng ga selekanyo tlhwatlhwa yo mongwe se
|
||||
sengwe fa go le jalo gongwe ba na mo tikologong
|
||||
jaaka kwa morago nna gonne ka sa pele nako teng
|
||||
|
@ -15,4 +16,5 @@ tsa mmatota tota sale thoko supa dira tshwanetse di mmalwa masisi
|
|||
bonala e tshwanang bogolo tsenya tsweetswee karolo
|
||||
sepe tlhalosa dirwa robedi robongwe lesomenngwe gaisa
|
||||
tlhano lesometlhano botlalo lekgolo
|
||||
""".split())
|
||||
""".split()
|
||||
)
|
||||
|
|
|
@ -76,7 +76,7 @@ def merge_subtokens(doc: Doc, label: str = "subtok") -> Doc:
|
|||
retokenizes=True,
|
||||
)
|
||||
def make_token_splitter(
|
||||
nlp: Language, name: str, *, min_length=0, split_length=0,
|
||||
nlp: Language, name: str, *, min_length: int = 0, split_length: int = 0
|
||||
):
|
||||
return TokenSplitter(min_length=min_length, split_length=split_length)
|
||||
|
||||
|
|
|
@ -327,8 +327,10 @@ def test_phrase_matcher_sent_start(en_vocab, attr):
|
|||
|
||||
def test_span_in_phrasematcher(en_vocab):
|
||||
"""Ensure that PhraseMatcher accepts Span and Doc as input"""
|
||||
doc = Doc(en_vocab,
|
||||
words=["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."])
|
||||
# fmt: off
|
||||
words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
span = doc[:8]
|
||||
pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
|
@ -341,10 +343,14 @@ def test_span_in_phrasematcher(en_vocab):
|
|||
|
||||
def test_span_v_doc_in_phrasematcher(en_vocab):
|
||||
"""Ensure that PhraseMatcher only returns matches in input Span and not in entire Doc"""
|
||||
doc = Doc(en_vocab,
|
||||
words=["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",",
|
||||
"Spans", "and", "Docs", "in", "my", "matchers", ","
|
||||
"and", "Spans", "and", "Docs", "everywhere" "."])
|
||||
# fmt: off
|
||||
words = [
|
||||
"I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "Spans",
|
||||
"and", "Docs", "in", "my", "matchers", "," "and", "Spans", "and", "Docs",
|
||||
"everywhere", "."
|
||||
]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
span = doc[9:15] # second clause
|
||||
pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
|
|
229
spacy/tests/regression/test_issue6501-7000.py
Normal file
229
spacy/tests/regression/test_issue6501-7000.py
Normal file
|
@ -0,0 +1,229 @@
|
|||
import pytest
|
||||
from spacy.lang.en import English
|
||||
import numpy as np
|
||||
import spacy
|
||||
from spacy.tokens import Doc
|
||||
from spacy.matcher import PhraseMatcher
|
||||
from spacy.tokens import DocBin
|
||||
from spacy.util import load_config_from_str
|
||||
from spacy.training import Example
|
||||
from spacy.training.initialize import init_nlp
|
||||
import pickle
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
def test_issue6730(en_vocab):
|
||||
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
kb = KnowledgeBase(en_vocab, entity_vector_length=3)
|
||||
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
|
||||
assert kb.contains_alias("") is False
|
||||
|
||||
kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
|
||||
kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
|
||||
|
||||
with make_tempdir() as tmp_dir:
|
||||
kb.to_disk(tmp_dir)
|
||||
kb.from_disk(tmp_dir)
|
||||
assert kb.get_size_aliases() == 2
|
||||
assert set(kb.get_alias_strings()) == {"x", "y"}
|
||||
|
||||
|
||||
def test_issue6755(en_tokenizer):
|
||||
doc = en_tokenizer("This is a magnificent sentence.")
|
||||
span = doc[:0]
|
||||
assert span.text_with_ws == ""
|
||||
assert span.text == ""
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,label",
|
||||
[("Welcome to Mumbai, my friend", 11, 17, "GPE")],
|
||||
)
|
||||
def test_issue6815_1(sentence, start_idx, end_idx, label):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, label=label)
|
||||
assert span.label_ == label
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
|
||||
)
|
||||
def test_issue6815_2(sentence, start_idx, end_idx, kb_id):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
|
||||
assert span.kb_id == kb_id
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,vector",
|
||||
[("Welcome to Mumbai, my friend", 11, 17, np.array([0.1, 0.2, 0.3]))],
|
||||
)
|
||||
def test_issue6815_3(sentence, start_idx, end_idx, vector):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, vector=vector)
|
||||
assert (span.vector == vector).all()
|
||||
|
||||
|
||||
def test_issue6839(en_vocab):
|
||||
"""Ensure that PhraseMatcher accepts Span as input"""
|
||||
# fmt: off
|
||||
words = ["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."]
|
||||
# fmt: on
|
||||
doc = Doc(en_vocab, words=words)
|
||||
span = doc[:8]
|
||||
pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
matcher.add("SPACY", [pattern])
|
||||
matches = matcher(span)
|
||||
assert matches
|
||||
|
||||
|
||||
CONFIG_ISSUE_6908 = """
|
||||
[paths]
|
||||
train = "TRAIN_PLACEHOLDER"
|
||||
raw = null
|
||||
init_tok2vec = null
|
||||
vectors = null
|
||||
|
||||
[system]
|
||||
seed = 0
|
||||
gpu_allocator = null
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "TEXTCAT_PLACEHOLDER"
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths:train}
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths:train}
|
||||
|
||||
|
||||
[training]
|
||||
train_corpus = "corpora.train"
|
||||
dev_corpus = "corpora.dev"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
frozen_components = []
|
||||
before_to_disk = null
|
||||
|
||||
[pretraining]
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.components.textcat]
|
||||
labels = ['label1', 'label2']
|
||||
|
||||
[initialize.tokenizer]
|
||||
"""
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"component_name", ["textcat", "textcat_multilabel"],
|
||||
)
|
||||
def test_issue6908(component_name):
|
||||
"""Test intializing textcat with labels in a list"""
|
||||
|
||||
def create_data(out_file):
|
||||
nlp = spacy.blank("en")
|
||||
doc = nlp.make_doc("Some text")
|
||||
doc.cats = {"label1": 0, "label2": 1}
|
||||
out_data = DocBin(docs=[doc]).to_bytes()
|
||||
with out_file.open("wb") as file_:
|
||||
file_.write(out_data)
|
||||
|
||||
with make_tempdir() as tmp_path:
|
||||
train_path = tmp_path / "train.spacy"
|
||||
create_data(train_path)
|
||||
config_str = CONFIG_ISSUE_6908.replace("TEXTCAT_PLACEHOLDER", component_name)
|
||||
config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
|
||||
config = load_config_from_str(config_str)
|
||||
init_nlp(config)
|
||||
|
||||
|
||||
CONFIG_ISSUE_6950 = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
def test_issue6950():
|
||||
"""Test that the nlp object with initialized tok2vec with listeners pickles
|
||||
correctly (and doesn't have lambdas).
|
||||
"""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG_ISSUE_6950))
|
||||
nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})])
|
||||
pickle.dumps(nlp)
|
||||
nlp("hello")
|
||||
pickle.dumps(nlp)
|
|
@ -1,23 +0,0 @@
|
|||
import pytest
|
||||
from ..util import make_tempdir
|
||||
|
||||
|
||||
def test_issue6730(en_vocab):
|
||||
"""Ensure that the KB does not accept empty strings, but otherwise IO works fine."""
|
||||
from spacy.kb import KnowledgeBase
|
||||
|
||||
kb = KnowledgeBase(en_vocab, entity_vector_length=3)
|
||||
kb.add_entity(entity="1", freq=148, entity_vector=[1, 2, 3])
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
kb.add_alias(alias="", entities=["1"], probabilities=[0.4])
|
||||
assert kb.contains_alias("") is False
|
||||
|
||||
kb.add_alias(alias="x", entities=["1"], probabilities=[0.2])
|
||||
kb.add_alias(alias="y", entities=["1"], probabilities=[0.1])
|
||||
|
||||
with make_tempdir() as tmp_dir:
|
||||
kb.to_disk(tmp_dir)
|
||||
kb.from_disk(tmp_dir)
|
||||
assert kb.get_size_aliases() == 2
|
||||
assert set(kb.get_alias_strings()) == {"x", "y"}
|
|
@ -1,5 +0,0 @@
|
|||
def test_issue6755(en_tokenizer):
|
||||
doc = en_tokenizer("This is a magnificent sentence.")
|
||||
span = doc[:0]
|
||||
assert span.text_with_ws == ""
|
||||
assert span.text == ""
|
|
@ -1,35 +0,0 @@
|
|||
import pytest
|
||||
from spacy.lang.en import English
|
||||
import numpy as np
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,label",
|
||||
[("Welcome to Mumbai, my friend", 11, 17, "GPE")],
|
||||
)
|
||||
def test_char_span_label(sentence, start_idx, end_idx, label):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, label=label)
|
||||
assert span.label_ == label
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,kb_id", [("Welcome to Mumbai, my friend", 11, 17, 5)]
|
||||
)
|
||||
def test_char_span_kb_id(sentence, start_idx, end_idx, kb_id):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, kb_id=kb_id)
|
||||
assert span.kb_id == kb_id
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"sentence, start_idx,end_idx,vector",
|
||||
[("Welcome to Mumbai, my friend", 11, 17, np.array([0.1, 0.2, 0.3]))],
|
||||
)
|
||||
def test_char_span_vector(sentence, start_idx, end_idx, vector):
|
||||
nlp = English()
|
||||
doc = nlp(sentence)
|
||||
span = doc[:].char_span(start_idx, end_idx, vector=vector)
|
||||
assert (span.vector == vector).all()
|
|
@ -1,15 +0,0 @@
|
|||
from spacy.tokens import Doc
|
||||
from spacy.matcher import PhraseMatcher
|
||||
|
||||
|
||||
def test_span_in_phrasematcher(en_vocab):
|
||||
"""Ensure that PhraseMatcher accepts Span as input"""
|
||||
doc = Doc(en_vocab,
|
||||
words=["I", "like", "Spans", "and", "Docs", "in", "my", "input", ",", "and", "nothing", "else", "."])
|
||||
span = doc[:8]
|
||||
pattern = Doc(en_vocab, words=["Spans", "and", "Docs"])
|
||||
matcher = PhraseMatcher(en_vocab)
|
||||
matcher.add("SPACY", [pattern])
|
||||
matches = matcher(span)
|
||||
assert matches
|
||||
|
|
@ -1,102 +0,0 @@
|
|||
import pytest
|
||||
import spacy
|
||||
from spacy.language import Language
|
||||
from spacy.tokens import DocBin
|
||||
from spacy import util
|
||||
from spacy.schemas import ConfigSchemaInit
|
||||
|
||||
from spacy.training.initialize import init_nlp
|
||||
|
||||
from ..util import make_tempdir
|
||||
|
||||
TEXTCAT_WITH_LABELS_ARRAY_CONFIG = """
|
||||
[paths]
|
||||
train = "TRAIN_PLACEHOLDER"
|
||||
raw = null
|
||||
init_tok2vec = null
|
||||
vectors = null
|
||||
|
||||
[system]
|
||||
seed = 0
|
||||
gpu_allocator = null
|
||||
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["textcat"]
|
||||
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"}
|
||||
disabled = []
|
||||
before_creation = null
|
||||
after_creation = null
|
||||
after_pipeline_creation = null
|
||||
batch_size = 1000
|
||||
|
||||
[components]
|
||||
|
||||
[components.textcat]
|
||||
factory = "TEXTCAT_PLACEHOLDER"
|
||||
|
||||
[corpora]
|
||||
|
||||
[corpora.train]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths:train}
|
||||
|
||||
[corpora.dev]
|
||||
@readers = "spacy.Corpus.v1"
|
||||
path = ${paths:train}
|
||||
|
||||
|
||||
[training]
|
||||
train_corpus = "corpora.train"
|
||||
dev_corpus = "corpora.dev"
|
||||
seed = ${system.seed}
|
||||
gpu_allocator = ${system.gpu_allocator}
|
||||
frozen_components = []
|
||||
before_to_disk = null
|
||||
|
||||
[pretraining]
|
||||
|
||||
[initialize]
|
||||
vectors = ${paths.vectors}
|
||||
init_tok2vec = ${paths.init_tok2vec}
|
||||
vocab_data = null
|
||||
lookups = null
|
||||
before_init = null
|
||||
after_init = null
|
||||
|
||||
[initialize.components]
|
||||
|
||||
[initialize.components.textcat]
|
||||
labels = ['label1', 'label2']
|
||||
|
||||
[initialize.tokenizer]
|
||||
"""
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"component_name",
|
||||
["textcat", "textcat_multilabel"],
|
||||
)
|
||||
def test_textcat_initialize_labels_validation(component_name):
|
||||
"""Test intializing textcat with labels in a list"""
|
||||
|
||||
def create_data(out_file):
|
||||
nlp = spacy.blank("en")
|
||||
doc = nlp.make_doc("Some text")
|
||||
doc.cats = {"label1": 0, "label2": 1}
|
||||
|
||||
out_data = DocBin(docs=[doc]).to_bytes()
|
||||
with out_file.open("wb") as file_:
|
||||
file_.write(out_data)
|
||||
|
||||
with make_tempdir() as tmp_path:
|
||||
train_path = tmp_path / "train.spacy"
|
||||
create_data(train_path)
|
||||
|
||||
config_str = TEXTCAT_WITH_LABELS_ARRAY_CONFIG.replace(
|
||||
"TEXTCAT_PLACEHOLDER", component_name
|
||||
)
|
||||
config_str = config_str.replace("TRAIN_PLACEHOLDER", train_path.as_posix())
|
||||
|
||||
config = util.load_config_from_str(config_str)
|
||||
init_nlp(config)
|
|
@ -1,59 +0,0 @@
|
|||
from spacy.lang.en import English
|
||||
from spacy.training import Example
|
||||
from spacy.util import load_config_from_str
|
||||
import pickle
|
||||
|
||||
|
||||
CONFIG = """
|
||||
[nlp]
|
||||
lang = "en"
|
||||
pipeline = ["tok2vec", "tagger"]
|
||||
|
||||
[components]
|
||||
|
||||
[components.tok2vec]
|
||||
factory = "tok2vec"
|
||||
|
||||
[components.tok2vec.model]
|
||||
@architectures = "spacy.Tok2Vec.v1"
|
||||
|
||||
[components.tok2vec.model.embed]
|
||||
@architectures = "spacy.MultiHashEmbed.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
attrs = ["NORM","PREFIX","SUFFIX","SHAPE"]
|
||||
rows = [5000,2500,2500,2500]
|
||||
include_static_vectors = false
|
||||
|
||||
[components.tok2vec.model.encode]
|
||||
@architectures = "spacy.MaxoutWindowEncoder.v1"
|
||||
width = 96
|
||||
depth = 4
|
||||
window_size = 1
|
||||
maxout_pieces = 3
|
||||
|
||||
[components.ner]
|
||||
factory = "ner"
|
||||
|
||||
[components.tagger]
|
||||
factory = "tagger"
|
||||
|
||||
[components.tagger.model]
|
||||
@architectures = "spacy.Tagger.v1"
|
||||
nO = null
|
||||
|
||||
[components.tagger.model.tok2vec]
|
||||
@architectures = "spacy.Tok2VecListener.v1"
|
||||
width = ${components.tok2vec.model.encode:width}
|
||||
upstream = "*"
|
||||
"""
|
||||
|
||||
|
||||
def test_issue6950():
|
||||
"""Test that the nlp object with initialized tok2vec with listeners pickles
|
||||
correctly (and doesn't have lambdas).
|
||||
"""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG))
|
||||
nlp.initialize(lambda: [Example.from_dict(nlp.make_doc("hello"), {"tags": ["V"]})])
|
||||
pickle.dumps(nlp)
|
||||
nlp("hello")
|
||||
pickle.dumps(nlp)
|
|
@ -51,8 +51,7 @@ TRAIN_DATA = [
|
|||
|
||||
|
||||
def test_issue7029():
|
||||
"""Test that an empty document doesn't mess up an entire batch.
|
||||
"""
|
||||
"""Test that an empty document doesn't mess up an entire batch."""
|
||||
nlp = English.from_config(load_config_from_str(CONFIG))
|
||||
train_examples = []
|
||||
for t in TRAIN_DATA:
|
||||
|
|
|
@ -57,6 +57,7 @@ def test_vocab_lexeme_add_flag_provided_id(en_vocab):
|
|||
assert en_vocab["dogs"].check_flag(is_len4) is True
|
||||
en_vocab.add_flag(lambda string: string.isdigit(), flag_id=IS_DIGIT)
|
||||
|
||||
|
||||
def test_vocab_lexeme_oov_rank(en_vocab):
|
||||
"""Test that default rank is OOV_RANK."""
|
||||
lex = en_vocab["word"]
|
||||
|
|
Loading…
Reference in New Issue
Block a user