mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Fix issue 2396 (#3089)
* Test on #2396: bug in Doc.get_lca_matrix() * reimplementation of Doc.get_lca_matrix(), (closes #2396) * reimplement Span.get_lca_matrix(), and call it from Doc.get_lca_matrix() * tests Span.get_lca_matrix() as well as Doc.get_lca_matrix() * implement _get_lca_matrix as a helper function in doc.pyx; call it from Doc.get_lca_matrix and Span.get_lca_matrix * use memory view instead of np.ndarray in _get_lca_matrix (faster) * fix bug when calling Span.get_lca_matrix; return lca matrix as np.array instead of memoryview * cleaner conditional, add comment
This commit is contained in:
parent
76e3e695af
commit
9bc4cc1352
106
.github/contributors/alvaroabascar.md
vendored
Normal file
106
.github/contributors/alvaroabascar.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | -------------------- |
|
||||
| Name | Álvaro Abella |
|
||||
| Company name (if applicable) | IOMED |
|
||||
| Title or role (if applicable) | CSO |
|
||||
| Date | 21/12/2018 |
|
||||
| GitHub username | alvaroabascar |
|
||||
| Website (optional) | |
|
27
spacy/tests/regression/test_issue2396.py
Normal file
27
spacy/tests/regression/test_issue2396.py
Normal file
|
@ -0,0 +1,27 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
from ..util import get_doc
|
||||
|
||||
import pytest
|
||||
import numpy
|
||||
|
||||
@pytest.mark.parametrize('sentence,matrix', [
|
||||
(
|
||||
'She created a test for spacy',
|
||||
numpy.array([
|
||||
[0, 1, 1, 1, 1, 1],
|
||||
[1, 1, 1, 1, 1, 1],
|
||||
[1, 1, 2, 3, 3, 3],
|
||||
[1, 1, 3, 3, 3, 3],
|
||||
[1, 1, 3, 3, 4, 4],
|
||||
[1, 1, 3, 3, 4, 5]], dtype=numpy.int32)
|
||||
)
|
||||
])
|
||||
def test_issue2396(EN, sentence, matrix):
|
||||
doc = EN(sentence)
|
||||
span = doc[:]
|
||||
assert (doc.get_lca_matrix() == matrix).all()
|
||||
assert (span.get_lca_matrix() == matrix).all()
|
||||
|
||||
|
|
@ -30,6 +30,9 @@ cdef int token_by_end(const TokenC* tokens, int length, int end_char) except -2
|
|||
|
||||
cdef int set_children_from_heads(TokenC* tokens, int length) except -1
|
||||
|
||||
|
||||
cdef int [:,:] _get_lca_matrix(Doc, int start, int end)
|
||||
|
||||
cdef class Doc:
|
||||
cdef readonly Pool mem
|
||||
cdef readonly Vocab vocab
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
|
||||
# coding: utf8
|
||||
# cython: infer_types=True
|
||||
# cython: bounds_check=False
|
||||
|
@ -715,48 +716,14 @@ cdef class Doc:
|
|||
return self
|
||||
|
||||
def get_lca_matrix(self):
|
||||
"""Calculates the lowest common ancestor matrix for a given `Doc`.
|
||||
Returns LCA matrix containing the integer index of the ancestor, or -1
|
||||
if no common ancestor is found (ex if span excludes a necessary
|
||||
ancestor). Apologies about the recursion, but the impact on
|
||||
performance is negligible given the natural limitations on the depth
|
||||
of a typical human sentence.
|
||||
"""Calculates a matrix of Lowest Common Ancestors (LCA) for a given
|
||||
`Doc`, where LCA[i, j] is the index of the lowest common ancestor among
|
||||
token i and j.
|
||||
|
||||
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
|
||||
(n, n), where n = len(self).
|
||||
"""
|
||||
# Efficiency notes:
|
||||
# We can easily improve the performance here by iterating in Cython.
|
||||
# To loop over the tokens in Cython, the easiest way is:
|
||||
# for token in doc.c[:doc.c.length]:
|
||||
# head = token + token.head
|
||||
# Both token and head will be TokenC* here. The token.head attribute
|
||||
# is an integer offset.
|
||||
def __pairwise_lca(token_j, token_k, lca_matrix):
|
||||
if lca_matrix[token_j.i][token_k.i] != -2:
|
||||
return lca_matrix[token_j.i][token_k.i]
|
||||
elif token_j == token_k:
|
||||
lca_index = token_j.i
|
||||
elif token_k.head == token_j:
|
||||
lca_index = token_j.i
|
||||
elif token_j.head == token_k:
|
||||
lca_index = token_k.i
|
||||
elif (token_j.head == token_j) and (token_k.head == token_k):
|
||||
lca_index = -1
|
||||
else:
|
||||
lca_index = __pairwise_lca(token_j.head, token_k.head,
|
||||
lca_matrix)
|
||||
lca_matrix[token_j.i][token_k.i] = lca_index
|
||||
lca_matrix[token_k.i][token_j.i] = lca_index
|
||||
|
||||
return lca_index
|
||||
|
||||
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
|
||||
lca_matrix.fill(-2)
|
||||
for j in range(len(self)):
|
||||
token_j = self[j]
|
||||
for k in range(j, len(self)):
|
||||
token_k = self[k]
|
||||
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix)
|
||||
lca_matrix[k][j] = lca_matrix[j][k]
|
||||
return lca_matrix
|
||||
return numpy.asarray(_get_lca_matrix(self, 0, len(self)))
|
||||
|
||||
def to_disk(self, path, **exclude):
|
||||
"""Save the current state to a directory.
|
||||
|
@ -1060,6 +1027,73 @@ cdef int set_children_from_heads(TokenC* tokens, int length) except -1:
|
|||
tokens[tokens[i].l_edge].sent_start = True
|
||||
|
||||
|
||||
cdef int _get_tokens_lca(Token token_j, Token token_k):
|
||||
"""Given two tokens, returns the index of the lowest common ancestor
|
||||
(LCA) among the two. If they have no common ancestor, -1 is returned.
|
||||
|
||||
token_j (Token): a token.
|
||||
token_k (Token): another token.
|
||||
RETURNS (int): index of lowest common ancestor, or -1 if the tokens
|
||||
have no common ancestor.
|
||||
"""
|
||||
if token_j == token_k:
|
||||
return token_j.i
|
||||
elif token_j.head == token_k:
|
||||
return token_k.i
|
||||
elif token_k.head == token_j:
|
||||
return token_j.i
|
||||
|
||||
token_j_ancestors = set(token_j.ancestors)
|
||||
|
||||
if token_k in token_j_ancestors:
|
||||
return token_k.i
|
||||
|
||||
for token_k_ancestor in token_k.ancestors:
|
||||
|
||||
if token_k_ancestor == token_j:
|
||||
return token_j.i
|
||||
|
||||
if token_k_ancestor in token_j_ancestors:
|
||||
return token_k_ancestor.i
|
||||
|
||||
return -1
|
||||
|
||||
|
||||
cdef int [:,:] _get_lca_matrix(Doc doc, int start, int end):
|
||||
"""Given a doc and a start and end position defining a set of contiguous
|
||||
tokens within it, returns a matrix of Lowest Common Ancestors (LCA), where
|
||||
LCA[i, j] is the index of the lowest common ancestor among token i and j.
|
||||
If the tokens have no common ancestor within the specified span,
|
||||
LCA[i, j] will be -1.
|
||||
|
||||
doc (Doc): The index of the token, or the slice of the document
|
||||
start (int): First token to be included in the LCA matrix.
|
||||
end (int): Position of next to last token included in the LCA matrix.
|
||||
RETURNS (int [:, :]): memoryview of numpy.array[ndim=2, dtype=numpy.int32],
|
||||
with shape (n, n), where n = len(doc).
|
||||
"""
|
||||
cdef int [:,:] lca_matrix
|
||||
|
||||
n_tokens= end - start
|
||||
lca_matrix = numpy.empty((n_tokens, n_tokens), dtype=numpy.int32)
|
||||
|
||||
for j in range(start, end):
|
||||
token_j = doc[j]
|
||||
# the common ancestor of token and itself is itself:
|
||||
lca_matrix[j, j] = j
|
||||
for k in range(j + 1, end):
|
||||
lca = _get_tokens_lca(token_j, doc[k])
|
||||
# if lca is outside of span, we set it to -1
|
||||
if not start <= lca < end:
|
||||
lca_matrix[j, k] = -1
|
||||
lca_matrix[k, j] = -1
|
||||
else:
|
||||
lca_matrix[j, k] = lca
|
||||
lca_matrix[k, j] = lca
|
||||
|
||||
return lca_matrix
|
||||
|
||||
|
||||
def pickle_doc(doc):
|
||||
bytes_data = doc.to_bytes(vocab=False, user_data=False)
|
||||
hooks_and_data = (doc.user_data, doc.user_hooks, doc.user_span_hooks,
|
||||
|
|
|
@ -7,7 +7,8 @@ import numpy
|
|||
import numpy.linalg
|
||||
from libc.math cimport sqrt
|
||||
|
||||
from .doc cimport token_by_start, token_by_end, get_token_attr
|
||||
from .doc cimport token_by_start, token_by_end, get_token_attr, _get_lca_matrix
|
||||
from .token cimport TokenC
|
||||
from ..structs cimport TokenC, LexemeC
|
||||
from ..typedefs cimport flags_t, attr_t, hash_t
|
||||
from ..attrs cimport attr_id_t
|
||||
|
@ -183,6 +184,17 @@ cdef class Span:
|
|||
return self.doc.merge(self.start_char, self.end_char, *args,
|
||||
**attributes)
|
||||
|
||||
def get_lca_matrix(self):
|
||||
"""Calculates a matrix of Lowest Common Ancestors (LCA) for a given
|
||||
`Span`, where LCA[i, j] is the index of the lowest common ancestor among
|
||||
the tokens span[i] and span[j]. If they have no common ancestor within
|
||||
the span, LCA[i, j] will be -1.
|
||||
|
||||
RETURNS (np.array[ndim=2, dtype=numpy.int32]): LCA matrix with shape
|
||||
(n, n), where n = len(self).
|
||||
"""
|
||||
return numpy.asarray(_get_lca_matrix(self.doc, self.start, self.end))
|
||||
|
||||
def similarity(self, other):
|
||||
"""Make a semantic similarity estimate. The default estimate is cosine
|
||||
similarity using an average of word vectors.
|
||||
|
@ -209,47 +221,6 @@ cdef class Span:
|
|||
return 0.0
|
||||
return numpy.dot(self.vector, other.vector) / (self.vector_norm * other.vector_norm)
|
||||
|
||||
def get_lca_matrix(self):
|
||||
"""Calculates the lowest common ancestor matrix for a given `Span`.
|
||||
Returns LCA matrix containing the integer index of the ancestor, or -1
|
||||
if no common ancestor is found (ex if span excludes a necessary
|
||||
ancestor). Apologies about the recursion, but the impact on
|
||||
performance is negligible given the natural limitations on the depth
|
||||
of a typical human sentence.
|
||||
"""
|
||||
def __pairwise_lca(token_j, token_k, lca_matrix, margins):
|
||||
offset = margins[0]
|
||||
token_k_head = token_k.head if token_k.head.i in range(*margins) else token_k
|
||||
token_j_head = token_j.head if token_j.head.i in range(*margins) else token_j
|
||||
token_j_i = token_j.i - offset
|
||||
token_k_i = token_k.i - offset
|
||||
if lca_matrix[token_j_i][token_k_i] != -2:
|
||||
return lca_matrix[token_j_i][token_k_i]
|
||||
elif token_j == token_k:
|
||||
lca_index = token_j_i
|
||||
elif token_k_head == token_j:
|
||||
lca_index = token_j_i
|
||||
elif token_j_head == token_k:
|
||||
lca_index = token_k_i
|
||||
elif (token_j_head == token_j) and (token_k_head == token_k):
|
||||
lca_index = -1
|
||||
else:
|
||||
lca_index = __pairwise_lca(token_j_head, token_k_head, lca_matrix, margins)
|
||||
lca_matrix[token_j_i][token_k_i] = lca_index
|
||||
lca_matrix[token_k_i][token_j_i] = lca_index
|
||||
return lca_index
|
||||
|
||||
lca_matrix = numpy.empty((len(self), len(self)), dtype=numpy.int32)
|
||||
lca_matrix.fill(-2)
|
||||
margins = [self.start, self.end]
|
||||
for j in range(len(self)):
|
||||
token_j = self[j]
|
||||
for k in range(len(self)):
|
||||
token_k = self[k]
|
||||
lca_matrix[j][k] = __pairwise_lca(token_j, token_k, lca_matrix, margins)
|
||||
lca_matrix[k][j] = lca_matrix[j][k]
|
||||
return lca_matrix
|
||||
|
||||
cpdef np.ndarray to_array(self, object py_attr_ids):
|
||||
"""Given a list of M attribute IDs, export the tokens to a numpy
|
||||
`ndarray` of shape `(N, M)`, where `N` is the length of the document.
|
||||
|
|
Loading…
Reference in New Issue
Block a user