mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-28 02:04:07 +03:00
Update docs [ci skip]
This commit is contained in:
parent
2285e59765
commit
9c25656ccc
|
@ -179,6 +179,7 @@ of objects by referring to creation functions, including functions you register
|
|||
yourself. For details on how to get started with training your own model, check
|
||||
out the [training quickstart](/usage/training#quickstart).
|
||||
|
||||
<!-- TODO:
|
||||
<Project id="en_core_bert">
|
||||
|
||||
The easiest way to get started is to clone a transformers-based project
|
||||
|
@ -186,6 +187,7 @@ template. Swap in your data, edit the settings and hyperparameters and train,
|
|||
evaluate, package and visualize your model.
|
||||
|
||||
</Project>
|
||||
-->
|
||||
|
||||
The `[components]` section in the [`config.cfg`](/api/data-formats#config)
|
||||
describes the pipeline components and the settings used to construct them,
|
||||
|
|
|
@ -33,6 +33,7 @@ and prototypes and ship your models into production.
|
|||
|
||||
<!-- TODO: decide how to introduce concept -->
|
||||
|
||||
<!-- TODO:
|
||||
<Project id="some_example_project">
|
||||
|
||||
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Phasellus interdum
|
||||
|
@ -40,6 +41,7 @@ sodales lectus, ut sodales orci ullamcorper id. Sed condimentum neque ut erat
|
|||
mattis pretium.
|
||||
|
||||
</Project>
|
||||
-->
|
||||
|
||||
spaCy projects make it easy to integrate with many other **awesome tools** in
|
||||
the data science and machine learning ecosystem to track and manage your data
|
||||
|
|
|
@ -92,6 +92,7 @@ spaCy's binary `.spacy` format. You can either include the data paths in the
|
|||
$ python -m spacy train config.cfg --output ./output --paths.train ./train.spacy --paths.dev ./dev.spacy
|
||||
```
|
||||
|
||||
<!-- TODO:
|
||||
<Project id="some_example_project">
|
||||
|
||||
The easiest way to get started with an end-to-end training process is to clone a
|
||||
|
@ -99,6 +100,7 @@ The easiest way to get started with an end-to-end training process is to clone a
|
|||
workflows, from data preprocessing to training and packaging your model.
|
||||
|
||||
</Project>
|
||||
-->
|
||||
|
||||
## Training config {#config}
|
||||
|
||||
|
@ -656,32 +658,74 @@ factor = 1.005
|
|||
|
||||
#### Example: Custom data reading and batching {#custom-code-readers-batchers}
|
||||
|
||||
Some use-cases require streaming in data or manipulating datasets on the fly,
|
||||
rather than generating all data beforehand and storing it to file. Instead of
|
||||
using the built-in reader `"spacy.Corpus.v1"`, which uses static file paths, you
|
||||
can create and register a custom function that generates
|
||||
Some use-cases require **streaming in data** or manipulating datasets on the
|
||||
fly, rather than generating all data beforehand and storing it to file. Instead
|
||||
of using the built-in [`Corpus`](/api/corpus) reader, which uses static file
|
||||
paths, you can create and register a custom function that generates
|
||||
[`Example`](/api/example) objects. The resulting generator can be infinite. When
|
||||
using this dataset for training, stopping criteria such as maximum number of
|
||||
steps, or stopping when the loss does not decrease further, can be used.
|
||||
|
||||
In this example we assume a custom function `read_custom_data()` which loads or
|
||||
generates texts with relevant textcat annotations. Then, small lexical
|
||||
variations of the input text are created before generating the final `Example`
|
||||
objects.
|
||||
|
||||
We can also customize the batching strategy by registering a new "batcher" which
|
||||
turns a stream of items into a stream of batches. spaCy has several useful
|
||||
built-in batching strategies with customizable sizes<!-- TODO: link -->, but
|
||||
it's also easy to implement your own. For instance, the following function takes
|
||||
the stream of generated `Example` objects, and removes those which have the
|
||||
exact same underlying raw text, to avoid duplicates within each batch. Note that
|
||||
in a more realistic implementation, you'd also want to check whether the
|
||||
annotations are exactly the same.
|
||||
In this example we assume a custom function `read_custom_data` which loads or
|
||||
generates texts with relevant text classification annotations. Then, small
|
||||
lexical variations of the input text are created before generating the final
|
||||
[`Example`](/api/example) objects. The `@spacy.registry.readers` decorator lets
|
||||
you register the function creating the custom reader in the `readers`
|
||||
[registry](/api/top-level#registry) and assign it a string name, so it can be
|
||||
used in your config. All arguments on the registered function become available
|
||||
as **config settings** – in this case, `source`.
|
||||
|
||||
> #### config.cfg
|
||||
>
|
||||
> ```ini
|
||||
> [training.train_corpus]
|
||||
> @readers = "corpus_variants.v1"
|
||||
> source = "s3://your_bucket/path/data.csv"
|
||||
> ```
|
||||
|
||||
```python
|
||||
### functions.py {highlight="7-8"}
|
||||
from typing import Callable, Iterator, List
|
||||
import spacy
|
||||
from spacy.gold import Example
|
||||
from spacy.language import Language
|
||||
import random
|
||||
|
||||
@spacy.registry.readers("corpus_variants.v1")
|
||||
def stream_data(source: str) -> Callable[[Language], Iterator[Example]]:
|
||||
def generate_stream(nlp):
|
||||
for text, cats in read_custom_data(source):
|
||||
# Create a random variant of the example text
|
||||
i = random.randint(0, len(text) - 1)
|
||||
variant = text[:i] + text[i].upper() + text[i + 1:]
|
||||
doc = nlp.make_doc(variant)
|
||||
example = Example.from_dict(doc, {"cats": cats})
|
||||
yield example
|
||||
|
||||
return generate_stream
|
||||
```
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
||||
Remember that a registered function should always be a function that spaCy
|
||||
**calls to create something**. In this case, it **creates the reader function**
|
||||
– it's not the reader itself.
|
||||
|
||||
</Infobox>
|
||||
|
||||
We can also customize the **batching strategy** by registering a new batcher
|
||||
function in the `batchers` [registry](/api/top-level#registry). A batcher turns
|
||||
a stream of items into a stream of batches. spaCy has several useful built-in
|
||||
[batching strategies](/api/top-level#batchers) with customizable sizes, but it's
|
||||
also easy to implement your own. For instance, the following function takes the
|
||||
stream of generated [`Example`](/api/example) objects, and removes those which
|
||||
have the exact same underlying raw text, to avoid duplicates within each batch.
|
||||
Note that in a more realistic implementation, you'd also want to check whether
|
||||
the annotations are exactly the same.
|
||||
|
||||
> #### config.cfg
|
||||
>
|
||||
> ```ini
|
||||
> [training.batcher]
|
||||
> @batchers = "filtering_batch.v1"
|
||||
> size = 150
|
||||
|
@ -689,39 +733,26 @@ annotations are exactly the same.
|
|||
|
||||
```python
|
||||
### functions.py
|
||||
from typing import Callable, Iterable, List
|
||||
from typing import Callable, Iterable, Iterator
|
||||
import spacy
|
||||
from spacy.gold import Example
|
||||
import random
|
||||
|
||||
@spacy.registry.readers("corpus_variants.v1")
|
||||
def stream_data() -> Callable[["Language"], Iterable[Example]]:
|
||||
def generate_stream(nlp):
|
||||
for text, cats in read_custom_data():
|
||||
random_index = random.randint(0, len(text) - 1)
|
||||
variant = text[:random_index] + text[random_index].upper() + text[random_index + 1:]
|
||||
doc = nlp.make_doc(variant)
|
||||
example = Example.from_dict(doc, {"cats": cats})
|
||||
yield example
|
||||
return generate_stream
|
||||
|
||||
|
||||
@spacy.registry.batchers("filtering_batch.v1")
|
||||
def filter_batch(size: int) -> Callable[[Iterable[Example]], Iterable[List[Example]]]:
|
||||
def create_filtered_batches(examples: Iterable[Example]) -> Iterable[List[Example]]:
|
||||
def filter_batch(size: int) -> Callable[[Iterable[Example]], Iterator[List[Example]]]:
|
||||
def create_filtered_batches(examples):
|
||||
batch = []
|
||||
for eg in examples:
|
||||
# Remove duplicate examples with the same text from batch
|
||||
if eg.text not in [x.text for x in batch]:
|
||||
batch.append(eg)
|
||||
if len(batch) == size:
|
||||
yield batch
|
||||
batch = []
|
||||
|
||||
return create_filtered_batches
|
||||
```
|
||||
|
||||
### Wrapping PyTorch and TensorFlow {#custom-frameworks}
|
||||
|
||||
<!-- TODO: -->
|
||||
<!-- TODO:
|
||||
|
||||
<Project id="example_pytorch_model">
|
||||
|
||||
|
@ -731,12 +762,17 @@ mattis pretium.
|
|||
|
||||
</Project>
|
||||
|
||||
-->
|
||||
|
||||
### Defining custom architectures {#custom-architectures}
|
||||
|
||||
<!-- TODO: this could maybe be a more general example of using Thinc to compose some layers? We don't want to go too deep here and probably want to focus on a simple architecture example to show how it works -->
|
||||
<!-- TODO: Wrapping PyTorch and TensorFlow -->
|
||||
|
||||
## Transfer learning {#transfer-learning}
|
||||
|
||||
<!-- TODO: link to embeddings and transformers page -->
|
||||
|
||||
### Using transformer models like BERT {#transformers}
|
||||
|
||||
spaCy v3.0 lets you use almost any statistical model to power your pipeline. You
|
||||
|
@ -748,6 +784,8 @@ do the required plumbing. It also provides a pipeline component,
|
|||
[`Transformer`](/api/transformer), that lets you do multi-task learning and lets
|
||||
you save the transformer outputs for later use.
|
||||
|
||||
<!-- TODO:
|
||||
|
||||
<Project id="en_core_bert">
|
||||
|
||||
Try out a BERT-based model pipeline using this project template: swap in your
|
||||
|
@ -755,6 +793,7 @@ data, edit the settings and hyperparameters and train, evaluate, package and
|
|||
visualize your model.
|
||||
|
||||
</Project>
|
||||
-->
|
||||
|
||||
For more details on how to integrate transformer models into your training
|
||||
config and customize the implementations, see the usage guide on
|
||||
|
@ -766,7 +805,8 @@ config and customize the implementations, see the usage guide on
|
|||
|
||||
## Parallel Training with Ray {#parallel-training}
|
||||
|
||||
<!-- TODO: document Ray integration -->
|
||||
<!-- TODO:
|
||||
|
||||
|
||||
<Project id="some_example_project">
|
||||
|
||||
|
@ -776,6 +816,8 @@ mattis pretium.
|
|||
|
||||
</Project>
|
||||
|
||||
-->
|
||||
|
||||
## Internal training API {#api}
|
||||
|
||||
<Infobox variant="warning">
|
||||
|
|
|
@ -444,6 +444,8 @@ values. You can then use the auto-generated `config.cfg` for training:
|
|||
+ python -m spacy train ./config.cfg --output ./output
|
||||
```
|
||||
|
||||
<!-- TODO:
|
||||
|
||||
<Project id="some_example_project">
|
||||
|
||||
The easiest way to get started with an end-to-end training process is to clone a
|
||||
|
@ -452,6 +454,8 @@ workflows, from data preprocessing to training and packaging your model.
|
|||
|
||||
</Project>
|
||||
|
||||
-->
|
||||
|
||||
#### Training via the Python API {#migrating-training-python}
|
||||
|
||||
For most use cases, you **shouldn't** have to write your own training scripts
|
||||
|
|
|
@ -396,7 +396,7 @@ body [id]:target
|
|||
margin-right: -1.5em
|
||||
margin-left: -1.5em
|
||||
padding-right: 1.5em
|
||||
padding-left: 1.25em
|
||||
padding-left: 1.2em
|
||||
|
||||
&:empty:before
|
||||
// Fix issue where empty lines would disappear
|
||||
|
|
Loading…
Reference in New Issue
Block a user