mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Upd initialize args
This commit is contained in:
commit
9c8b2524fe
|
@ -5,11 +5,35 @@ from wasabi import msg
|
|||
import typer
|
||||
|
||||
from .. import util
|
||||
from ..training.initialize import init_nlp
|
||||
from ..training.initialize import init_nlp, convert_vectors
|
||||
from ._util import init_cli, Arg, Opt, parse_config_overrides, show_validation_error
|
||||
from ._util import import_code, setup_gpu
|
||||
|
||||
|
||||
@init_cli.command("vectors")
|
||||
def init_vectors_cli(
|
||||
# fmt: off
|
||||
lang: str = Arg(..., help="The language of the nlp object to create"),
|
||||
vectors_loc: Path = Arg(..., help="Vectors file in Word2Vec format", exists=True),
|
||||
output_dir: Path = Arg(..., help="Pipeline output directory"),
|
||||
prune: int = Opt(-1, "--prune", "-p", help="Optional number of vectors to prune to"),
|
||||
truncate: int = Opt(0, "--truncate", "-t", help="Optional number of vectors to truncate to when reading in vectors file"),
|
||||
name: Optional[str] = Opt(None, "--name", "-n", help="Optional name for the word vectors, e.g. en_core_web_lg.vectors"),
|
||||
# fmt: on
|
||||
):
|
||||
msg.info(f"Creating blank nlp object for language '{lang}'")
|
||||
nlp = util.get_lang_class(lang)()
|
||||
convert_vectors(
|
||||
nlp, vectors_loc, truncate=truncate, prune=prune, name=name, silent=False
|
||||
)
|
||||
nlp.to_disk(output_dir)
|
||||
msg.good(
|
||||
"Saved nlp object with vectors to output directory. You can now use the "
|
||||
"path to it in your config as the 'vectors' setting in [initialize.vocab].",
|
||||
output_dir,
|
||||
)
|
||||
|
||||
|
||||
@init_cli.command(
|
||||
"nlp",
|
||||
context_settings={"allow_extra_args": True, "ignore_unknown_options": True},
|
||||
|
|
|
@ -27,7 +27,7 @@ from .lang.punctuation import TOKENIZER_INFIXES
|
|||
from .tokens import Doc
|
||||
from .tokenizer import Tokenizer
|
||||
from .errors import Errors, Warnings
|
||||
from .schemas import ConfigSchema, ConfigSchemaNlp
|
||||
from .schemas import ConfigSchema, ConfigSchemaNlp, validate_init_settings
|
||||
from .git_info import GIT_VERSION
|
||||
from . import util
|
||||
from . import about
|
||||
|
@ -1161,8 +1161,10 @@ class Language:
|
|||
def initialize(
|
||||
self,
|
||||
get_examples: Optional[Callable[[], Iterable[Example]]] = None,
|
||||
sgd: Optional[Optimizer]=None
|
||||
) -> None:
|
||||
*,
|
||||
settings: Dict[str, Dict[str, Any]] = SimpleFrozenDict(),
|
||||
sgd: Optional[Optimizer] = None,
|
||||
) -> Optimizer:
|
||||
"""Initialize the pipe for training, using data examples if available.
|
||||
|
||||
get_examples (Callable[[], Iterable[Example]]): Optional function that
|
||||
|
@ -1200,10 +1202,28 @@ class Language:
|
|||
if self.vocab.vectors.data.shape[1] >= 1:
|
||||
ops = get_current_ops()
|
||||
self.vocab.vectors.data = ops.asarray(self.vocab.vectors.data)
|
||||
self._optimizer = sgd
|
||||
if hasattr(self.tokenizer, "initialize"):
|
||||
tok_settings = settings.get("tokenizer", {})
|
||||
tok_settings = validate_init_settings(
|
||||
self.tokenizer.initialize,
|
||||
tok_settings,
|
||||
section="tokenizer",
|
||||
name="tokenizer",
|
||||
)
|
||||
self.tokenizer.initialize(get_examples, nlp=self, **tok_settings)
|
||||
proc_settings = settings.get("components", {})
|
||||
for name, proc in self.pipeline:
|
||||
if hasattr(proc, "initialize"):
|
||||
p_settings = proc_settings.get(name, {})
|
||||
p_settings = validate_init_settings(
|
||||
proc.initialize, p_settings, section="components", name=name
|
||||
)
|
||||
proc.initialize(
|
||||
get_examples, pipeline=self.pipeline
|
||||
get_examples,
|
||||
pipeline=self.pipeline,
|
||||
**p_settings,
|
||||
)
|
||||
self._link_components()
|
||||
if sgd is not None:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# cython: infer_types=True, cdivision=True, boundscheck=False
|
||||
# cython: infer_types=True, cdivision=True, boundscheck=False, binding=True
|
||||
from __future__ import print_function
|
||||
from cymem.cymem cimport Pool
|
||||
cimport numpy as np
|
||||
|
|
|
@ -1,11 +1,13 @@
|
|||
from typing import Dict, List, Union, Optional, Any, Callable, Type, Tuple
|
||||
from typing import Iterable, TypeVar, TYPE_CHECKING
|
||||
from enum import Enum
|
||||
from pydantic import BaseModel, Field, ValidationError, validator
|
||||
from pydantic import BaseModel, Field, ValidationError, validator, create_model
|
||||
from pydantic import StrictStr, StrictInt, StrictFloat, StrictBool
|
||||
from pydantic.main import ModelMetaclass
|
||||
from thinc.api import Optimizer, ConfigValidationError
|
||||
from thinc.config import Promise
|
||||
from collections import defaultdict
|
||||
from thinc.api import Optimizer
|
||||
import inspect
|
||||
|
||||
from .attrs import NAMES
|
||||
from .lookups import Lookups
|
||||
|
@ -43,6 +45,93 @@ def validate(schema: Type[BaseModel], obj: Dict[str, Any]) -> List[str]:
|
|||
return [f"[{loc}] {', '.join(msg)}" for loc, msg in data.items()]
|
||||
|
||||
|
||||
# Initialization
|
||||
|
||||
|
||||
class ArgSchemaConfig:
|
||||
extra = "forbid"
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
class ArgSchemaConfigExtra:
|
||||
extra = "forbid"
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
|
||||
def get_arg_model(
|
||||
func: Callable,
|
||||
*,
|
||||
exclude: Iterable[str] = tuple(),
|
||||
name: str = "ArgModel",
|
||||
strict: bool = True,
|
||||
) -> ModelMetaclass:
|
||||
"""Generate a pydantic model for function arguments.
|
||||
|
||||
func (Callable): The function to generate the schema for.
|
||||
exclude (Iterable[str]): Parameter names to ignore.
|
||||
name (str): Name of created model class.
|
||||
strict (bool): Don't allow extra arguments if no variable keyword arguments
|
||||
are allowed on the function.
|
||||
RETURNS (ModelMetaclass): A pydantic model.
|
||||
"""
|
||||
sig_args = {}
|
||||
try:
|
||||
sig = inspect.signature(func)
|
||||
except ValueError:
|
||||
# Typically happens if the method is part of a Cython module without
|
||||
# binding=True. Here we just use an empty model that allows everything.
|
||||
return create_model(name, __config__=ArgSchemaConfigExtra)
|
||||
has_variable = False
|
||||
for param in sig.parameters.values():
|
||||
if param.name in exclude:
|
||||
continue
|
||||
if param.kind == param.VAR_KEYWORD:
|
||||
# The function allows variable keyword arguments so we shouldn't
|
||||
# include **kwargs etc. in the schema and switch to non-strict
|
||||
# mode and pass through all other values
|
||||
has_variable = True
|
||||
continue
|
||||
# If no annotation is specified assume it's anything
|
||||
annotation = param.annotation if param.annotation != param.empty else Any
|
||||
# If no default value is specified assume that it's required
|
||||
default = param.default if param.default != param.empty else ...
|
||||
sig_args[param.name] = (annotation, default)
|
||||
is_strict = strict and not has_variable
|
||||
sig_args["__config__"] = ArgSchemaConfig if is_strict else ArgSchemaConfigExtra
|
||||
return create_model(name, **sig_args)
|
||||
|
||||
|
||||
def validate_init_settings(
|
||||
func: Callable,
|
||||
settings: Dict[str, Any],
|
||||
*,
|
||||
section: Optional[str] = None,
|
||||
name: str = "",
|
||||
exclude: Iterable[str] = ("get_examples", "nlp", "pipeline", "sgd"),
|
||||
) -> Dict[str, Any]:
|
||||
"""Validate initialization settings against the expected arguments in
|
||||
the method signature. Will parse values if possible (e.g. int to string)
|
||||
and return the updated settings dict. Will raise a ConfigValidationError
|
||||
if types don't match or required values are missing.
|
||||
|
||||
func (Callable): The initialize method of a given component etc.
|
||||
settings (Dict[str, Any]): The settings from the repsective [initialize] block.
|
||||
section (str): Initialize section, for error message.
|
||||
name (str): Name of the block in the section.
|
||||
exclude (Iterable[str]): Parameter names to exclude from schema.
|
||||
RETURNS (Dict[str, Any]): The validated settings.
|
||||
"""
|
||||
schema = get_arg_model(func, exclude=exclude, name="InitArgModel")
|
||||
try:
|
||||
return schema(**settings).dict()
|
||||
except ValidationError as e:
|
||||
block = "initialize" if not section else f"initialize.{section}"
|
||||
title = f"Error validating initialization settings in [{block}]"
|
||||
raise ConfigValidationError(
|
||||
title=title, errors=e.errors(), config=settings, parent=name,
|
||||
) from None
|
||||
|
||||
|
||||
# Matcher token patterns
|
||||
|
||||
|
||||
|
|
|
@ -1,13 +1,19 @@
|
|||
from typing import Union, Dict, Optional, Any, List
|
||||
from typing import Union, Dict, Optional, Any, List, IO
|
||||
from thinc.api import Config, fix_random_seed, set_gpu_allocator
|
||||
from thinc.api import ConfigValidationError
|
||||
from pathlib import Path
|
||||
from wasabi import Printer
|
||||
import srsly
|
||||
import numpy
|
||||
import tarfile
|
||||
import gzip
|
||||
import zipfile
|
||||
import tqdm
|
||||
|
||||
from .loop import create_before_to_disk_callback
|
||||
from ..language import Language
|
||||
from ..lookups import Lookups
|
||||
from ..vectors import Vectors
|
||||
from ..errors import Errors
|
||||
from ..schemas import ConfigSchemaTraining, ConfigSchemaInit, ConfigSchemaPretrain
|
||||
from ..util import registry, load_model_from_config, resolve_dot_names
|
||||
|
@ -49,8 +55,8 @@ def init_nlp(config: Config, *, use_gpu: int = -1, silent: bool = True) -> Langu
|
|||
msg.info(f"Resuming training for: {resume_components}")
|
||||
nlp.resume_training(sgd=optimizer)
|
||||
with nlp.select_pipes(disable=[*frozen_components, *resume_components]):
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer)
|
||||
msg.good(f"Initialized pipeline components")
|
||||
nlp.initialize(lambda: train_corpus(nlp), sgd=optimizer, settings=I)
|
||||
msg.good("Initialized pipeline components")
|
||||
# Verify the config after calling 'initialize' to ensure labels
|
||||
# are properly initialized
|
||||
verify_config(nlp)
|
||||
|
@ -103,7 +109,7 @@ def init_vocab(
|
|||
|
||||
|
||||
def load_vectors_into_model(
|
||||
nlp: "Language", name: Union[str, Path], *, add_strings: bool = True
|
||||
nlp: Language, name: Union[str, Path], *, add_strings: bool = True
|
||||
) -> None:
|
||||
"""Load word vectors from an installed model or path into a model instance."""
|
||||
try:
|
||||
|
@ -202,3 +208,104 @@ def get_sourced_components(config: Union[Dict[str, Any], Config]) -> List[str]:
|
|||
for name, cfg in config.get("components", {}).items()
|
||||
if "factory" not in cfg and "source" in cfg
|
||||
]
|
||||
|
||||
|
||||
def convert_vectors(
|
||||
nlp: Language,
|
||||
vectors_loc: Optional[Path],
|
||||
*,
|
||||
truncate: int,
|
||||
prune: int,
|
||||
name: Optional[str] = None,
|
||||
silent: bool = True,
|
||||
) -> None:
|
||||
msg = Printer(no_print=silent)
|
||||
vectors_loc = ensure_path(vectors_loc)
|
||||
if vectors_loc and vectors_loc.parts[-1].endswith(".npz"):
|
||||
nlp.vocab.vectors = Vectors(data=numpy.load(vectors_loc.open("rb")))
|
||||
for lex in nlp.vocab:
|
||||
if lex.rank and lex.rank != OOV_RANK:
|
||||
nlp.vocab.vectors.add(lex.orth, row=lex.rank)
|
||||
else:
|
||||
if vectors_loc:
|
||||
with msg.loading(f"Reading vectors from {vectors_loc}"):
|
||||
vectors_data, vector_keys = read_vectors(vectors_loc, truncate)
|
||||
msg.good(f"Loaded vectors from {vectors_loc}")
|
||||
else:
|
||||
vectors_data, vector_keys = (None, None)
|
||||
if vector_keys is not None:
|
||||
for word in vector_keys:
|
||||
if word not in nlp.vocab:
|
||||
nlp.vocab[word]
|
||||
if vectors_data is not None:
|
||||
nlp.vocab.vectors = Vectors(data=vectors_data, keys=vector_keys)
|
||||
if name is None:
|
||||
# TODO: Is this correct? Does this matter?
|
||||
nlp.vocab.vectors.name = f"{nlp.meta['lang']}_{nlp.meta['name']}.vectors"
|
||||
else:
|
||||
nlp.vocab.vectors.name = name
|
||||
nlp.meta["vectors"]["name"] = nlp.vocab.vectors.name
|
||||
if prune >= 1:
|
||||
nlp.vocab.prune_vectors(prune)
|
||||
msg.good(f"Successfully converted {len(nlp.vocab.vectors)} vectors")
|
||||
|
||||
|
||||
def read_vectors(vectors_loc: Path, truncate_vectors: int):
|
||||
f = open_file(vectors_loc)
|
||||
f = ensure_shape(f)
|
||||
shape = tuple(int(size) for size in next(f).split())
|
||||
if truncate_vectors >= 1:
|
||||
shape = (truncate_vectors, shape[1])
|
||||
vectors_data = numpy.zeros(shape=shape, dtype="f")
|
||||
vectors_keys = []
|
||||
for i, line in enumerate(tqdm.tqdm(f)):
|
||||
line = line.rstrip()
|
||||
pieces = line.rsplit(" ", vectors_data.shape[1])
|
||||
word = pieces.pop(0)
|
||||
if len(pieces) != vectors_data.shape[1]:
|
||||
raise ValueError(Errors.E094.format(line_num=i, loc=vectors_loc))
|
||||
vectors_data[i] = numpy.asarray(pieces, dtype="f")
|
||||
vectors_keys.append(word)
|
||||
if i == truncate_vectors - 1:
|
||||
break
|
||||
return vectors_data, vectors_keys
|
||||
|
||||
|
||||
def open_file(loc: Union[str, Path]) -> IO:
|
||||
"""Handle .gz, .tar.gz or unzipped files"""
|
||||
loc = ensure_path(loc)
|
||||
if tarfile.is_tarfile(str(loc)):
|
||||
return tarfile.open(str(loc), "r:gz")
|
||||
elif loc.parts[-1].endswith("gz"):
|
||||
return (line.decode("utf8") for line in gzip.open(str(loc), "r"))
|
||||
elif loc.parts[-1].endswith("zip"):
|
||||
zip_file = zipfile.ZipFile(str(loc))
|
||||
names = zip_file.namelist()
|
||||
file_ = zip_file.open(names[0])
|
||||
return (line.decode("utf8") for line in file_)
|
||||
else:
|
||||
return loc.open("r", encoding="utf8")
|
||||
|
||||
|
||||
def ensure_shape(lines):
|
||||
"""Ensure that the first line of the data is the vectors shape.
|
||||
If it's not, we read in the data and output the shape as the first result,
|
||||
so that the reader doesn't have to deal with the problem.
|
||||
"""
|
||||
first_line = next(lines)
|
||||
try:
|
||||
shape = tuple(int(size) for size in first_line.split())
|
||||
except ValueError:
|
||||
shape = None
|
||||
if shape is not None:
|
||||
# All good, give the data
|
||||
yield first_line
|
||||
yield from lines
|
||||
else:
|
||||
# Figure out the shape, make it the first value, and then give the
|
||||
# rest of the data.
|
||||
width = len(first_line.split()) - 1
|
||||
captured = [first_line] + list(lines)
|
||||
length = len(captured)
|
||||
yield f"{length} {width}"
|
||||
yield from captured
|
||||
|
|
Loading…
Reference in New Issue
Block a user