Merge branch 'develop' into feature/project-spacy-version

This commit is contained in:
Ines Montani 2020-10-05 21:06:07 +02:00
commit 9ca283a899
19 changed files with 119 additions and 51 deletions

View File

@ -7,7 +7,7 @@ requires = [
"preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.0a43,<8.0.0a50",
"blis>=0.4.0,<0.5.0",
"blis>=0.4.0,<0.8.0",
"pytokenizations",
"pathy"
]

View File

@ -2,7 +2,7 @@
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.0a43,<8.0.0a50
blis>=0.4.0,<0.5.0
blis>=0.4.0,<0.8.0
ml_datasets==0.2.0a0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.8.0,<1.1.0

View File

@ -41,7 +41,7 @@ install_requires =
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.0a43,<8.0.0a50
blis>=0.4.0,<0.5.0
blis>=0.4.0,<0.8.0
wasabi>=0.8.0,<1.1.0
srsly>=2.3.0,<3.0.0
catalogue>=2.0.1,<2.1.0

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy-nightly"
__version__ = "3.0.0a33"
__version__ = "3.0.0a34"
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
__projects__ = "https://github.com/explosion/projects"

View File

@ -456,10 +456,14 @@ class Errors:
"issue tracker: http://github.com/explosion/spaCy/issues")
# TODO: fix numbering after merging develop into master
E092 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
E901 = ("Failed to remove existing output directory: {path}. If your "
"config and the components you train change between runs, a "
"non-empty output directory can lead to stale pipeline data. To "
"solve this, remove the existing directories in the output directory.")
E902 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
"Try checking whitespace and delimiters. See "
"https://nightly.spacy.io/api/cli#convert")
E093 = ("The token-per-line NER file is not formatted correctly. Try checking "
E903 = ("The token-per-line NER file is not formatted correctly. Try checking "
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
"dimension refers to the output width, after the linear projection "

View File

@ -289,13 +289,12 @@ class Lookups:
DOCS: https://nightly.spacy.io/api/lookups#to_disk
"""
if len(self._tables):
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
def from_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs

View File

@ -210,7 +210,7 @@ class Morphologizer(Tagger):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
"""

View File

@ -162,7 +162,7 @@ cdef class Pipe:
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/pipe#get_loss
"""

View File

@ -104,7 +104,7 @@ class SentenceRecognizer(Tagger):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
"""

View File

@ -249,7 +249,7 @@ class Tagger(Pipe):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/tagger#get_loss
"""

View File

@ -281,7 +281,7 @@ class TextCategorizer(Pipe):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
"""

View File

@ -5,7 +5,7 @@ import copy
from functools import partial
from pydantic import BaseModel, StrictStr
from ..util import registry, logger
from ..util import registry
from ..tokens import Doc
from .example import Example
@ -119,9 +119,8 @@ def make_orth_variants(
orig_token_dict = copy.deepcopy(token_dict)
ndsv = orth_variants.get("single", [])
ndpv = orth_variants.get("paired", [])
logger.debug(f"Data augmentation: {len(ndsv)} single / {len(ndpv)} paired variants")
words = token_dict.get("words", [])
tags = token_dict.get("tags", [])
words = token_dict.get("ORTH", [])
tags = token_dict.get("TAG", [])
# keep unmodified if words or tags are not defined
if words and tags:
if lower:
@ -154,8 +153,8 @@ def make_orth_variants(
if words[word_idx] in pair:
pair_idx = pair.index(words[word_idx])
words[word_idx] = punct_choices[punct_idx][pair_idx]
token_dict["words"] = words
token_dict["tags"] = tags
token_dict["ORTH"] = words
token_dict["TAG"] = tags
# modify raw
if raw is not None:
variants = []

View File

@ -103,7 +103,7 @@ def conll_ner_to_docs(
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
cols = list(zip(*[line.split() for line in lines]))
if len(cols) < 2:
raise ValueError(Errors.E093)
raise ValueError(Errors.E903)
length = len(cols[0])
words.extend(cols[0])
sent_starts.extend([True] + [False] * (length - 1))

View File

@ -46,7 +46,7 @@ def read_iob(raw_sents, vocab, n_sents):
sent_words, sent_iob = zip(*sent_tokens)
sent_tags = ["-"] * len(sent_words)
else:
raise ValueError(Errors.E092)
raise ValueError(Errors.E902)
words.extend(sent_words)
tags.extend(sent_tags)
iob.extend(sent_iob)

View File

@ -3,19 +3,24 @@ from typing import Optional, TYPE_CHECKING
from pathlib import Path
from timeit import default_timer as timer
from thinc.api import Optimizer, Config, constant, fix_random_seed, set_gpu_allocator
from wasabi import Printer
import random
import wasabi
import sys
import shutil
from .example import Example
from ..schemas import ConfigSchemaTraining
from ..errors import Errors
from ..util import resolve_dot_names, registry
from ..util import resolve_dot_names, registry, logger
if TYPE_CHECKING:
from ..language import Language # noqa: F401
DIR_MODEL_BEST = "model-best"
DIR_MODEL_LAST = "model-last"
def train(
nlp: "Language",
output_path: Optional[Path] = None,
@ -38,7 +43,7 @@ def train(
RETURNS (Path / None): The path to the final exported model.
"""
# We use no_print here so we can respect the stdout/stderr options.
msg = wasabi.Printer(no_print=True)
msg = Printer(no_print=True)
# Create iterator, which yields out info after each optimization step.
config = nlp.config.interpolate()
if config["training"]["seed"] is not None:
@ -69,6 +74,7 @@ def train(
eval_frequency=T["eval_frequency"],
exclude=frozen_components,
)
clean_output_dir(output_path)
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
if frozen_components:
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
@ -83,7 +89,7 @@ def train(
update_meta(T, nlp, info)
with nlp.use_params(optimizer.averages):
nlp = before_to_disk(nlp)
nlp.to_disk(output_path / "model-best")
nlp.to_disk(output_path / DIR_MODEL_BEST)
except Exception as e:
if output_path is not None:
# We don't want to swallow the traceback if we don't have a
@ -100,7 +106,7 @@ def train(
finally:
finalize_logger()
if output_path is not None:
final_model_path = output_path / "model-last"
final_model_path = output_path / DIR_MODEL_LAST
if optimizer.averages:
with nlp.use_params(optimizer.averages):
nlp.to_disk(final_model_path)
@ -305,3 +311,19 @@ def create_before_to_disk_callback(
return modified_nlp
return before_to_disk
def clean_output_dir(path: Union[str, Path]) -> None:
"""Remove an existing output directory. Typically used to ensure that that
a directory like model-best and its contents aren't just being overwritten
by nlp.to_disk, which could preserve existing subdirectories (e.g.
components that don't exist anymore).
"""
if path is not None and path.exists():
for subdir in [path / DIR_MODEL_BEST, path / DIR_MODEL_LAST]:
if subdir.exists():
try:
shutil.rmtree(str(subdir))
logger.debug(f"Removed existing output directory: {subdir}")
except Exception as e:
raise IOError(Errors.E901.format(path=path)) from e

View File

@ -445,9 +445,9 @@ cdef class Vocab:
setters = ["strings", "vectors"]
if "strings" not in exclude:
self.strings.to_disk(path / "strings.json")
if "vectors" not in "exclude" and self.vectors is not None:
if "vectors" not in "exclude":
self.vectors.to_disk(path)
if "lookups" not in "exclude" and self.lookups is not None:
if "lookups" not in "exclude":
self.lookups.to_disk(path)
def from_disk(self, path, *, exclude=tuple()):

View File

@ -38,7 +38,7 @@
cursor: pointer
display: inline-block
padding: 0.35rem 0.5rem 0.25rem 0
margin: 0 1rem 0.75rem 0
margin: 0 1rem 0.5rem 0
font-size: var(--font-size-xs)
font-weight: bold
@ -73,16 +73,19 @@
background: var(--color-theme)
.checkbox + &:before
$size: 18px
content: ""
display: inline-block
width: 20px
height: 20px
width: $size
height: $size
border: 1px solid var(--color-subtle)
vertical-align: middle
margin-right: 0.5rem
cursor: pointer
border-radius: var(--border-radius)
border-radius: $size / 4
background: var(--color-back)
position: relative
top: -1px
.checkbox:checked + &:before
// Embed "check" icon here for simplicity

View File

@ -4,6 +4,8 @@ import { StaticQuery, graphql } from 'gatsby'
import { Quickstart, QS } from '../components/quickstart'
import { repo } from '../components/util'
const DEFAULT_MODELS = ['en']
const DEFAULT_OPT = 'efficiency'
const DEFAULT_HARDWARE = 'cpu'
const DEFAULT_CUDA = 'cuda100'
const CUDA = {
@ -68,9 +70,13 @@ const QuickstartInstall = ({ id, title }) => {
const [train, setTrain] = useState(false)
const [hardware, setHardware] = useState(DEFAULT_HARDWARE)
const [cuda, setCuda] = useState(DEFAULT_CUDA)
const [selectedModels, setModels] = useState(DEFAULT_MODELS)
const [efficiency, setEfficiency] = useState(DEFAULT_OPT === 'efficiency')
const setters = {
hardware: v => (Array.isArray(v) ? setHardware(v[0]) : setCuda(v)),
config: v => setTrain(v.includes('train')),
models: setModels,
optimize: v => setEfficiency(v.includes('efficiency')),
}
const showDropdown = {
hardware: () => hardware === 'gpu',
@ -89,13 +95,37 @@ const QuickstartInstall = ({ id, title }) => {
...DATA,
{
id: 'models',
title: 'Trained Pipelines',
title: 'Trained pipelines',
multiple: true,
options: models
.sort((a, b) => a.name.localeCompare(b.name))
.map(({ code, name }) => ({ id: code, title: name })),
.map(({ code, name }) => ({
id: code,
title: name,
checked: DEFAULT_MODELS.includes(code),
})),
},
]
if (selectedModels.length) {
data.push({
id: 'optimize',
title: 'Select pipeline for',
options: [
{
id: 'efficiency',
title: 'efficiency',
checked: DEFAULT_OPT === 'efficiency',
help: 'Faster and smaller pipeline, but less accurate',
},
{
id: 'accuracy',
title: 'accuracy',
checked: DEFAULT_OPT === 'accuracy',
help: 'Larger and slower pipeline, but more accurate',
},
],
})
}
return (
<Quickstart
data={data}
@ -149,11 +179,14 @@ const QuickstartInstall = ({ id, title }) => {
conda install -c conda-forge spacy-lookups-data
</QS>
{models.map(({ code, models: modelOptions }) => (
<QS models={code} key={code}>
python -m spacy download {modelOptions[0]}
</QS>
))}
{models.map(({ code, models: modelOptions }) => {
const pkg = modelOptions[efficiency ? 0 : modelOptions.length - 1]
return (
<QS models={code} key={code}>
python -m spacy download {pkg}
</QS>
)
})}
</Quickstart>
)
}}

View File

@ -31,25 +31,33 @@ const data = [
},
{
id: 'optimize',
title: 'Optimize for',
help:
'Optimize for efficiency (faster & smaller model) or higher accuracy (larger & slower model)',
title: 'Select for',
options: [
{ id: 'efficiency', title: 'efficiency', checked: DEFAULT_OPT === 'efficiency' },
{ id: 'accuracy', title: 'accuracy', checked: DEFAULT_OPT === 'accuracy' },
{
id: 'efficiency',
title: 'efficiency',
checked: DEFAULT_OPT === 'efficiency',
help: 'Faster and smaller pipeline, but less accurate',
},
{
id: 'accuracy',
title: 'accuracy',
checked: DEFAULT_OPT === 'accuracy',
help: 'Larger and slower pipeline, but more accurate',
},
],
},
{
id: 'config',
title: 'Options',
multiple: true,
options: [{ id: 'example', title: 'Show usage example' }],
options: [{ id: 'example', title: 'Show text example' }],
},
]
const QuickstartInstall = ({ id, title, description, children }) => {
const [lang, setLang] = useState(DEFAULT_LANG)
const [efficiency, setEfficiency] = useState(DEFAULT_OPT)
const [efficiency, setEfficiency] = useState(DEFAULT_OPT === 'efficiency')
const setters = {
lang: setLang,
optimize: v => setEfficiency(v.includes('efficiency')),