mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 09:14:32 +03:00
Merge branch 'develop' into feature/project-spacy-version
This commit is contained in:
commit
9ca283a899
|
@ -7,7 +7,7 @@ requires = [
|
|||
"preshed>=3.0.2,<3.1.0",
|
||||
"murmurhash>=0.28.0,<1.1.0",
|
||||
"thinc>=8.0.0a43,<8.0.0a50",
|
||||
"blis>=0.4.0,<0.5.0",
|
||||
"blis>=0.4.0,<0.8.0",
|
||||
"pytokenizations",
|
||||
"pathy"
|
||||
]
|
||||
|
|
|
@ -2,7 +2,7 @@
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.0a43,<8.0.0a50
|
||||
blis>=0.4.0,<0.5.0
|
||||
blis>=0.4.0,<0.8.0
|
||||
ml_datasets==0.2.0a0
|
||||
murmurhash>=0.28.0,<1.1.0
|
||||
wasabi>=0.8.0,<1.1.0
|
||||
|
|
|
@ -41,7 +41,7 @@ install_requires =
|
|||
cymem>=2.0.2,<2.1.0
|
||||
preshed>=3.0.2,<3.1.0
|
||||
thinc>=8.0.0a43,<8.0.0a50
|
||||
blis>=0.4.0,<0.5.0
|
||||
blis>=0.4.0,<0.8.0
|
||||
wasabi>=0.8.0,<1.1.0
|
||||
srsly>=2.3.0,<3.0.0
|
||||
catalogue>=2.0.1,<2.1.0
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# fmt: off
|
||||
__title__ = "spacy-nightly"
|
||||
__version__ = "3.0.0a33"
|
||||
__version__ = "3.0.0a34"
|
||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||
__projects__ = "https://github.com/explosion/projects"
|
||||
|
|
|
@ -456,10 +456,14 @@ class Errors:
|
|||
"issue tracker: http://github.com/explosion/spaCy/issues")
|
||||
|
||||
# TODO: fix numbering after merging develop into master
|
||||
E092 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
||||
E901 = ("Failed to remove existing output directory: {path}. If your "
|
||||
"config and the components you train change between runs, a "
|
||||
"non-empty output directory can lead to stale pipeline data. To "
|
||||
"solve this, remove the existing directories in the output directory.")
|
||||
E902 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
||||
"Try checking whitespace and delimiters. See "
|
||||
"https://nightly.spacy.io/api/cli#convert")
|
||||
E093 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
||||
E903 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
||||
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
|
||||
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
|
||||
"dimension refers to the output width, after the linear projection "
|
||||
|
|
|
@ -289,13 +289,12 @@ class Lookups:
|
|||
|
||||
DOCS: https://nightly.spacy.io/api/lookups#to_disk
|
||||
"""
|
||||
if len(self._tables):
|
||||
path = ensure_path(path)
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
filepath = path / filename
|
||||
with filepath.open("wb") as file_:
|
||||
file_.write(self.to_bytes())
|
||||
path = ensure_path(path)
|
||||
if not path.exists():
|
||||
path.mkdir()
|
||||
filepath = path / filename
|
||||
with filepath.open("wb") as file_:
|
||||
file_.write(self.to_bytes())
|
||||
|
||||
def from_disk(
|
||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||
|
|
|
@ -210,7 +210,7 @@ class Morphologizer(Tagger):
|
|||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
|
||||
"""
|
||||
|
|
|
@ -162,7 +162,7 @@ cdef class Pipe:
|
|||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/pipe#get_loss
|
||||
"""
|
||||
|
|
|
@ -104,7 +104,7 @@ class SentenceRecognizer(Tagger):
|
|||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
|
||||
"""
|
||||
|
|
|
@ -249,7 +249,7 @@ class Tagger(Pipe):
|
|||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/tagger#get_loss
|
||||
"""
|
||||
|
|
|
@ -281,7 +281,7 @@ class TextCategorizer(Pipe):
|
|||
|
||||
examples (Iterable[Examples]): The batch of examples.
|
||||
scores: Scores representing the model's predictions.
|
||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
||||
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||
|
||||
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
|
||||
"""
|
||||
|
|
|
@ -5,7 +5,7 @@ import copy
|
|||
from functools import partial
|
||||
from pydantic import BaseModel, StrictStr
|
||||
|
||||
from ..util import registry, logger
|
||||
from ..util import registry
|
||||
from ..tokens import Doc
|
||||
from .example import Example
|
||||
|
||||
|
@ -119,9 +119,8 @@ def make_orth_variants(
|
|||
orig_token_dict = copy.deepcopy(token_dict)
|
||||
ndsv = orth_variants.get("single", [])
|
||||
ndpv = orth_variants.get("paired", [])
|
||||
logger.debug(f"Data augmentation: {len(ndsv)} single / {len(ndpv)} paired variants")
|
||||
words = token_dict.get("words", [])
|
||||
tags = token_dict.get("tags", [])
|
||||
words = token_dict.get("ORTH", [])
|
||||
tags = token_dict.get("TAG", [])
|
||||
# keep unmodified if words or tags are not defined
|
||||
if words and tags:
|
||||
if lower:
|
||||
|
@ -154,8 +153,8 @@ def make_orth_variants(
|
|||
if words[word_idx] in pair:
|
||||
pair_idx = pair.index(words[word_idx])
|
||||
words[word_idx] = punct_choices[punct_idx][pair_idx]
|
||||
token_dict["words"] = words
|
||||
token_dict["tags"] = tags
|
||||
token_dict["ORTH"] = words
|
||||
token_dict["TAG"] = tags
|
||||
# modify raw
|
||||
if raw is not None:
|
||||
variants = []
|
||||
|
|
|
@ -103,7 +103,7 @@ def conll_ner_to_docs(
|
|||
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
|
||||
cols = list(zip(*[line.split() for line in lines]))
|
||||
if len(cols) < 2:
|
||||
raise ValueError(Errors.E093)
|
||||
raise ValueError(Errors.E903)
|
||||
length = len(cols[0])
|
||||
words.extend(cols[0])
|
||||
sent_starts.extend([True] + [False] * (length - 1))
|
||||
|
|
|
@ -46,7 +46,7 @@ def read_iob(raw_sents, vocab, n_sents):
|
|||
sent_words, sent_iob = zip(*sent_tokens)
|
||||
sent_tags = ["-"] * len(sent_words)
|
||||
else:
|
||||
raise ValueError(Errors.E092)
|
||||
raise ValueError(Errors.E902)
|
||||
words.extend(sent_words)
|
||||
tags.extend(sent_tags)
|
||||
iob.extend(sent_iob)
|
||||
|
|
|
@ -3,19 +3,24 @@ from typing import Optional, TYPE_CHECKING
|
|||
from pathlib import Path
|
||||
from timeit import default_timer as timer
|
||||
from thinc.api import Optimizer, Config, constant, fix_random_seed, set_gpu_allocator
|
||||
from wasabi import Printer
|
||||
import random
|
||||
import wasabi
|
||||
import sys
|
||||
import shutil
|
||||
|
||||
from .example import Example
|
||||
from ..schemas import ConfigSchemaTraining
|
||||
from ..errors import Errors
|
||||
from ..util import resolve_dot_names, registry
|
||||
from ..util import resolve_dot_names, registry, logger
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..language import Language # noqa: F401
|
||||
|
||||
|
||||
DIR_MODEL_BEST = "model-best"
|
||||
DIR_MODEL_LAST = "model-last"
|
||||
|
||||
|
||||
def train(
|
||||
nlp: "Language",
|
||||
output_path: Optional[Path] = None,
|
||||
|
@ -38,7 +43,7 @@ def train(
|
|||
RETURNS (Path / None): The path to the final exported model.
|
||||
"""
|
||||
# We use no_print here so we can respect the stdout/stderr options.
|
||||
msg = wasabi.Printer(no_print=True)
|
||||
msg = Printer(no_print=True)
|
||||
# Create iterator, which yields out info after each optimization step.
|
||||
config = nlp.config.interpolate()
|
||||
if config["training"]["seed"] is not None:
|
||||
|
@ -69,6 +74,7 @@ def train(
|
|||
eval_frequency=T["eval_frequency"],
|
||||
exclude=frozen_components,
|
||||
)
|
||||
clean_output_dir(output_path)
|
||||
stdout.write(msg.info(f"Pipeline: {nlp.pipe_names}") + "\n")
|
||||
if frozen_components:
|
||||
stdout.write(msg.info(f"Frozen components: {frozen_components}") + "\n")
|
||||
|
@ -83,7 +89,7 @@ def train(
|
|||
update_meta(T, nlp, info)
|
||||
with nlp.use_params(optimizer.averages):
|
||||
nlp = before_to_disk(nlp)
|
||||
nlp.to_disk(output_path / "model-best")
|
||||
nlp.to_disk(output_path / DIR_MODEL_BEST)
|
||||
except Exception as e:
|
||||
if output_path is not None:
|
||||
# We don't want to swallow the traceback if we don't have a
|
||||
|
@ -100,7 +106,7 @@ def train(
|
|||
finally:
|
||||
finalize_logger()
|
||||
if output_path is not None:
|
||||
final_model_path = output_path / "model-last"
|
||||
final_model_path = output_path / DIR_MODEL_LAST
|
||||
if optimizer.averages:
|
||||
with nlp.use_params(optimizer.averages):
|
||||
nlp.to_disk(final_model_path)
|
||||
|
@ -305,3 +311,19 @@ def create_before_to_disk_callback(
|
|||
return modified_nlp
|
||||
|
||||
return before_to_disk
|
||||
|
||||
|
||||
def clean_output_dir(path: Union[str, Path]) -> None:
|
||||
"""Remove an existing output directory. Typically used to ensure that that
|
||||
a directory like model-best and its contents aren't just being overwritten
|
||||
by nlp.to_disk, which could preserve existing subdirectories (e.g.
|
||||
components that don't exist anymore).
|
||||
"""
|
||||
if path is not None and path.exists():
|
||||
for subdir in [path / DIR_MODEL_BEST, path / DIR_MODEL_LAST]:
|
||||
if subdir.exists():
|
||||
try:
|
||||
shutil.rmtree(str(subdir))
|
||||
logger.debug(f"Removed existing output directory: {subdir}")
|
||||
except Exception as e:
|
||||
raise IOError(Errors.E901.format(path=path)) from e
|
||||
|
|
|
@ -445,9 +445,9 @@ cdef class Vocab:
|
|||
setters = ["strings", "vectors"]
|
||||
if "strings" not in exclude:
|
||||
self.strings.to_disk(path / "strings.json")
|
||||
if "vectors" not in "exclude" and self.vectors is not None:
|
||||
if "vectors" not in "exclude":
|
||||
self.vectors.to_disk(path)
|
||||
if "lookups" not in "exclude" and self.lookups is not None:
|
||||
if "lookups" not in "exclude":
|
||||
self.lookups.to_disk(path)
|
||||
|
||||
def from_disk(self, path, *, exclude=tuple()):
|
||||
|
|
|
@ -38,7 +38,7 @@
|
|||
cursor: pointer
|
||||
display: inline-block
|
||||
padding: 0.35rem 0.5rem 0.25rem 0
|
||||
margin: 0 1rem 0.75rem 0
|
||||
margin: 0 1rem 0.5rem 0
|
||||
font-size: var(--font-size-xs)
|
||||
font-weight: bold
|
||||
|
||||
|
@ -73,16 +73,19 @@
|
|||
background: var(--color-theme)
|
||||
|
||||
.checkbox + &:before
|
||||
$size: 18px
|
||||
content: ""
|
||||
display: inline-block
|
||||
width: 20px
|
||||
height: 20px
|
||||
width: $size
|
||||
height: $size
|
||||
border: 1px solid var(--color-subtle)
|
||||
vertical-align: middle
|
||||
margin-right: 0.5rem
|
||||
cursor: pointer
|
||||
border-radius: var(--border-radius)
|
||||
border-radius: $size / 4
|
||||
background: var(--color-back)
|
||||
position: relative
|
||||
top: -1px
|
||||
|
||||
.checkbox:checked + &:before
|
||||
// Embed "check" icon here for simplicity
|
||||
|
|
|
@ -4,6 +4,8 @@ import { StaticQuery, graphql } from 'gatsby'
|
|||
import { Quickstart, QS } from '../components/quickstart'
|
||||
import { repo } from '../components/util'
|
||||
|
||||
const DEFAULT_MODELS = ['en']
|
||||
const DEFAULT_OPT = 'efficiency'
|
||||
const DEFAULT_HARDWARE = 'cpu'
|
||||
const DEFAULT_CUDA = 'cuda100'
|
||||
const CUDA = {
|
||||
|
@ -68,9 +70,13 @@ const QuickstartInstall = ({ id, title }) => {
|
|||
const [train, setTrain] = useState(false)
|
||||
const [hardware, setHardware] = useState(DEFAULT_HARDWARE)
|
||||
const [cuda, setCuda] = useState(DEFAULT_CUDA)
|
||||
const [selectedModels, setModels] = useState(DEFAULT_MODELS)
|
||||
const [efficiency, setEfficiency] = useState(DEFAULT_OPT === 'efficiency')
|
||||
const setters = {
|
||||
hardware: v => (Array.isArray(v) ? setHardware(v[0]) : setCuda(v)),
|
||||
config: v => setTrain(v.includes('train')),
|
||||
models: setModels,
|
||||
optimize: v => setEfficiency(v.includes('efficiency')),
|
||||
}
|
||||
const showDropdown = {
|
||||
hardware: () => hardware === 'gpu',
|
||||
|
@ -89,13 +95,37 @@ const QuickstartInstall = ({ id, title }) => {
|
|||
...DATA,
|
||||
{
|
||||
id: 'models',
|
||||
title: 'Trained Pipelines',
|
||||
title: 'Trained pipelines',
|
||||
multiple: true,
|
||||
options: models
|
||||
.sort((a, b) => a.name.localeCompare(b.name))
|
||||
.map(({ code, name }) => ({ id: code, title: name })),
|
||||
.map(({ code, name }) => ({
|
||||
id: code,
|
||||
title: name,
|
||||
checked: DEFAULT_MODELS.includes(code),
|
||||
})),
|
||||
},
|
||||
]
|
||||
if (selectedModels.length) {
|
||||
data.push({
|
||||
id: 'optimize',
|
||||
title: 'Select pipeline for',
|
||||
options: [
|
||||
{
|
||||
id: 'efficiency',
|
||||
title: 'efficiency',
|
||||
checked: DEFAULT_OPT === 'efficiency',
|
||||
help: 'Faster and smaller pipeline, but less accurate',
|
||||
},
|
||||
{
|
||||
id: 'accuracy',
|
||||
title: 'accuracy',
|
||||
checked: DEFAULT_OPT === 'accuracy',
|
||||
help: 'Larger and slower pipeline, but more accurate',
|
||||
},
|
||||
],
|
||||
})
|
||||
}
|
||||
return (
|
||||
<Quickstart
|
||||
data={data}
|
||||
|
@ -149,11 +179,14 @@ const QuickstartInstall = ({ id, title }) => {
|
|||
conda install -c conda-forge spacy-lookups-data
|
||||
</QS>
|
||||
|
||||
{models.map(({ code, models: modelOptions }) => (
|
||||
<QS models={code} key={code}>
|
||||
python -m spacy download {modelOptions[0]}
|
||||
</QS>
|
||||
))}
|
||||
{models.map(({ code, models: modelOptions }) => {
|
||||
const pkg = modelOptions[efficiency ? 0 : modelOptions.length - 1]
|
||||
return (
|
||||
<QS models={code} key={code}>
|
||||
python -m spacy download {pkg}
|
||||
</QS>
|
||||
)
|
||||
})}
|
||||
</Quickstart>
|
||||
)
|
||||
}}
|
||||
|
|
|
@ -31,25 +31,33 @@ const data = [
|
|||
},
|
||||
{
|
||||
id: 'optimize',
|
||||
title: 'Optimize for',
|
||||
help:
|
||||
'Optimize for efficiency (faster & smaller model) or higher accuracy (larger & slower model)',
|
||||
title: 'Select for',
|
||||
options: [
|
||||
{ id: 'efficiency', title: 'efficiency', checked: DEFAULT_OPT === 'efficiency' },
|
||||
{ id: 'accuracy', title: 'accuracy', checked: DEFAULT_OPT === 'accuracy' },
|
||||
{
|
||||
id: 'efficiency',
|
||||
title: 'efficiency',
|
||||
checked: DEFAULT_OPT === 'efficiency',
|
||||
help: 'Faster and smaller pipeline, but less accurate',
|
||||
},
|
||||
{
|
||||
id: 'accuracy',
|
||||
title: 'accuracy',
|
||||
checked: DEFAULT_OPT === 'accuracy',
|
||||
help: 'Larger and slower pipeline, but more accurate',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
id: 'config',
|
||||
title: 'Options',
|
||||
multiple: true,
|
||||
options: [{ id: 'example', title: 'Show usage example' }],
|
||||
options: [{ id: 'example', title: 'Show text example' }],
|
||||
},
|
||||
]
|
||||
|
||||
const QuickstartInstall = ({ id, title, description, children }) => {
|
||||
const [lang, setLang] = useState(DEFAULT_LANG)
|
||||
const [efficiency, setEfficiency] = useState(DEFAULT_OPT)
|
||||
const [efficiency, setEfficiency] = useState(DEFAULT_OPT === 'efficiency')
|
||||
const setters = {
|
||||
lang: setLang,
|
||||
optimize: v => setEfficiency(v.includes('efficiency')),
|
||||
|
|
Loading…
Reference in New Issue
Block a user