Limiting noun_chunks for specific languages (#5396)

* Limiting noun_chunks for specific langauges

* Limiting noun_chunks for specific languages

Contributor Agreement

* Addressing review comments

* Removed unused fixtures and imports

* Add fa_tokenizer in test suite

* Use fa_tokenizer in test

* Undo extraneous reformatting

Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
This commit is contained in:
Vishnu Priya VR 2020-05-14 16:28:06 +05:30 committed by GitHub
parent b04738903e
commit 9ce059dd06
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
21 changed files with 298 additions and 2 deletions

106
.github/contributors/vishnupriyavr.md vendored Normal file
View File

@ -0,0 +1,106 @@
# spaCy contributor agreement
This spaCy Contributor Agreement (**"SCA"**) is based on the
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
The SCA applies to any contribution that you make to any product or project
managed by us (the **"project"**), and sets out the intellectual property rights
you grant to us in the contributed materials. The term **"us"** shall mean
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
**"you"** shall mean the person or entity identified below.
If you agree to be bound by these terms, fill in the information requested
below and include the filled-in version with your first pull request, under the
folder [`.github/contributors/`](/.github/contributors/). The name of the file
should be your GitHub username, with the extension `.md`. For example, the user
example_user would create the file `.github/contributors/example_user.md`.
Read this agreement carefully before signing. These terms and conditions
constitute a binding legal agreement.
## Contributor Agreement
1. The term "contribution" or "contributed materials" means any source code,
object code, patch, tool, sample, graphic, specification, manual,
documentation, or any other material posted or submitted by you to the project.
2. With respect to any worldwide copyrights, or copyright applications and
registrations, in your contribution:
* you hereby assign to us joint ownership, and to the extent that such
assignment is or becomes invalid, ineffective or unenforceable, you hereby
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
royalty-free, unrestricted license to exercise all rights under those
copyrights. This includes, at our option, the right to sublicense these same
rights to third parties through multiple levels of sublicensees or other
licensing arrangements;
* you agree that each of us can do all things in relation to your
contribution as if each of us were the sole owners, and if one of us makes
a derivative work of your contribution, the one who makes the derivative
work (or has it made will be the sole owner of that derivative work;
* you agree that you will not assert any moral rights in your contribution
against us, our licensees or transferees;
* you agree that we may register a copyright in your contribution and
exercise all ownership rights associated with it; and
* you agree that neither of us has any duty to consult with, obtain the
consent of, pay or render an accounting to the other for any use or
distribution of your contribution.
3. With respect to any patents you own, or that you can license without payment
to any third party, you hereby grant to us a perpetual, irrevocable,
non-exclusive, worldwide, no-charge, royalty-free license to:
* make, have made, use, sell, offer to sell, import, and otherwise transfer
your contribution in whole or in part, alone or in combination with or
included in any product, work or materials arising out of the project to
which your contribution was submitted, and
* at our option, to sublicense these same rights to third parties through
multiple levels of sublicensees or other licensing arrangements.
4. Except as set out above, you keep all right, title, and interest in your
contribution. The rights that you grant to us under these terms are effective
on the date you first submitted a contribution to us, even if your submission
took place before the date you sign these terms.
5. You covenant, represent, warrant and agree that:
* Each contribution that you submit is and shall be an original work of
authorship and you can legally grant the rights set out in this SCA;
* to the best of your knowledge, each contribution will not violate any
third party's copyrights, trademarks, patents, or other intellectual
property rights; and
* each contribution shall be in compliance with U.S. export control laws and
other applicable export and import laws. You agree to notify us if you
become aware of any circumstance which would make any of the foregoing
representations inaccurate in any respect. We may publicly disclose your
participation in the project, including the fact that you have signed the SCA.
6. This SCA is governed by the laws of the State of California and applicable
U.S. Federal law. Any choice of law rules will not apply.
7. Please place an “x” on one of the applicable statement below. Please do NOT
mark both statements:
* [x] I am signing on behalf of myself as an individual and no other person
or entity, including my employer, has or will have rights with respect to my
contributions.
* [ ] I am signing on behalf of my employer or a legal entity and I have the
actual authority to contractually bind that entity.
## Contributor Details
| Field | Entry |
|------------------------------- | ------------------------ |
| Name | Vishnu Priya VR |
| Company name (if applicable) | Uniphore |
| Title or role (if applicable) | NLP/AI Engineer |
| Date | 2020-05-03 |
| GitHub username | vishnupriyavr |
| Website (optional) | |

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -28,6 +29,10 @@ def noun_chunks(obj):
"app", "app",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")
np_deps = set(doc.vocab.strings.add(label) for label in labels) np_deps = set(doc.vocab.strings.add(label) for label in labels)
close_app = doc.vocab.strings.add("nk") close_app = doc.vocab.strings.add("nk")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -14,6 +15,10 @@ def noun_chunks(obj):
# Further improvement of the models will eliminate the need for this tag. # Further improvement of the models will eliminate the need for this tag.
labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"] labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings.add(label) for label in labels] np_deps = [doc.vocab.strings.add(label) for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
nmod = doc.vocab.strings.add("nmod") nmod = doc.vocab.strings.add("nmod")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -20,6 +21,10 @@ def noun_chunks(obj):
"ROOT", "ROOT",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings.add(label) for label in labels] np_deps = [doc.vocab.strings.add(label) for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,10 +2,15 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON, VERB, AUX from ...symbols import NOUN, PROPN, PRON, VERB, AUX
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
doc = obj.doc doc = obj.doc
if not doc.is_parsed:
raise ValueError(Errors.E029)
if not len(doc): if not len(doc):
return return
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -20,6 +21,10 @@ def noun_chunks(obj):
"ROOT", "ROOT",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings.add(label) for label in labels] np_deps = [doc.vocab.strings.add(label) for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -19,6 +20,10 @@ def noun_chunks(obj):
"nmod:poss", "nmod:poss",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels] np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -19,6 +20,10 @@ def noun_chunks(obj):
"nmod:poss", "nmod:poss",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels] np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -19,6 +20,10 @@ def noun_chunks(obj):
"nmod:poss", "nmod:poss",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels] np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -2,6 +2,7 @@
from __future__ import unicode_literals from __future__ import unicode_literals
from ...symbols import NOUN, PROPN, PRON from ...symbols import NOUN, PROPN, PRON
from ...errors import Errors
def noun_chunks(obj): def noun_chunks(obj):
@ -20,6 +21,10 @@ def noun_chunks(obj):
"nmod:poss", "nmod:poss",
] ]
doc = obj.doc # Ensure works on both Doc and Span. doc = obj.doc # Ensure works on both Doc and Span.
if not doc.is_parsed:
raise ValueError(Errors.E029)
np_deps = [doc.vocab.strings[label] for label in labels] np_deps = [doc.vocab.strings[label] for label in labels]
conj = doc.vocab.strings.add("conj") conj = doc.vocab.strings.add("conj")
np_label = doc.vocab.strings.add("NP") np_label = doc.vocab.strings.add("NP")

View File

@ -88,6 +88,11 @@ def eu_tokenizer():
return get_lang_class("eu").Defaults.create_tokenizer() return get_lang_class("eu").Defaults.create_tokenizer()
@pytest.fixture(scope="session")
def fa_tokenizer():
return get_lang_class("fa").Defaults.create_tokenizer()
@pytest.fixture(scope="session") @pytest.fixture(scope="session")
def fi_tokenizer(): def fi_tokenizer():
return get_lang_class("fi").Defaults.create_tokenizer() return get_lang_class("fi").Defaults.create_tokenizer()

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_de(de_tokenizer):
"""Test that noun_chunks raises Value Error for 'de' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = de_tokenizer("Er lag auf seinem")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_el(el_tokenizer):
"""Test that noun_chunks raises Value Error for 'el' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = el_tokenizer("είναι χώρα της νοτιοανατολικής")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -6,9 +6,24 @@ from spacy.attrs import HEAD, DEP
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
from spacy.lang.en.syntax_iterators import SYNTAX_ITERATORS from spacy.lang.en.syntax_iterators import SYNTAX_ITERATORS
import pytest
from ...util import get_doc from ...util import get_doc
def test_noun_chunks_is_parsed(en_tokenizer):
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = en_tokenizer("This is a sentence")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)
def test_en_noun_chunks_not_nested(en_vocab): def test_en_noun_chunks_not_nested(en_vocab):
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"] words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
heads = [1, 0, 4, 3, -1, -2, -5] heads = [1, 0, 4, 3, -1, -2, -5]

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_es(es_tokenizer):
"""Test that noun_chunks raises Value Error for 'es' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = es_tokenizer("en Oxford este verano")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,17 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_fa(fa_tokenizer):
"""Test that noun_chunks raises Value Error for 'fa' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = fa_tokenizer("این یک جمله نمونه می باشد.")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_fr(fr_tokenizer):
"""Test that noun_chunks raises Value Error for 'fr' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = fr_tokenizer("trouver des travaux antérieurs")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_id(id_tokenizer):
"""Test that noun_chunks raises Value Error for 'id' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = id_tokenizer("sebelas")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -0,0 +1,16 @@
# coding: utf-8
from __future__ import unicode_literals
import pytest
def test_noun_chunks_is_parsed_nb(nb_tokenizer):
"""Test that noun_chunks raises Value Error for 'nb' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = nb_tokenizer("Smørsausen brukes bl.a. til")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)

View File

@ -2,9 +2,22 @@
from __future__ import unicode_literals from __future__ import unicode_literals
import pytest import pytest
from ...util import get_doc from ...util import get_doc
def test_noun_chunks_is_parsed_sv(sv_tokenizer):
"""Test that noun_chunks raises Value Error for 'sv' language if Doc is not parsed.
To check this test, we're constructing a Doc
with a new Vocab here and forcing is_parsed to 'False'
to make sure the noun chunks don't run.
"""
doc = sv_tokenizer("Studenten läste den bästa boken")
doc.is_parsed = False
with pytest.raises(ValueError):
list(doc.noun_chunks)
SV_NP_TEST_EXAMPLES = [ SV_NP_TEST_EXAMPLES = [
( (
"En student läste en bok", # A student read a book "En student läste en bok", # A student read a book

View File

@ -597,8 +597,7 @@ cdef class Doc:
DOCS: https://spacy.io/api/doc#noun_chunks DOCS: https://spacy.io/api/doc#noun_chunks
""" """
if not self.is_parsed:
raise ValueError(Errors.E029)
# Accumulate the result before beginning to iterate over it. This # Accumulate the result before beginning to iterate over it. This
# prevents the tokenisation from being changed out from under us # prevents the tokenisation from being changed out from under us
# during the iteration. The tricky thing here is that Span accepts # during the iteration. The tricky thing here is that Span accepts