mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
Limiting noun_chunks for specific languages (#5396)
* Limiting noun_chunks for specific langauges * Limiting noun_chunks for specific languages Contributor Agreement * Addressing review comments * Removed unused fixtures and imports * Add fa_tokenizer in test suite * Use fa_tokenizer in test * Undo extraneous reformatting Co-authored-by: adrianeboyd <adrianeboyd@gmail.com>
This commit is contained in:
parent
b04738903e
commit
9ce059dd06
106
.github/contributors/vishnupriyavr.md
vendored
Normal file
106
.github/contributors/vishnupriyavr.md
vendored
Normal file
|
@ -0,0 +1,106 @@
|
|||
# spaCy contributor agreement
|
||||
|
||||
This spaCy Contributor Agreement (**"SCA"**) is based on the
|
||||
[Oracle Contributor Agreement](http://www.oracle.com/technetwork/oca-405177.pdf).
|
||||
The SCA applies to any contribution that you make to any product or project
|
||||
managed by us (the **"project"**), and sets out the intellectual property rights
|
||||
you grant to us in the contributed materials. The term **"us"** shall mean
|
||||
[ExplosionAI UG (haftungsbeschränkt)](https://explosion.ai/legal). The term
|
||||
**"you"** shall mean the person or entity identified below.
|
||||
|
||||
If you agree to be bound by these terms, fill in the information requested
|
||||
below and include the filled-in version with your first pull request, under the
|
||||
folder [`.github/contributors/`](/.github/contributors/). The name of the file
|
||||
should be your GitHub username, with the extension `.md`. For example, the user
|
||||
example_user would create the file `.github/contributors/example_user.md`.
|
||||
|
||||
Read this agreement carefully before signing. These terms and conditions
|
||||
constitute a binding legal agreement.
|
||||
|
||||
## Contributor Agreement
|
||||
|
||||
1. The term "contribution" or "contributed materials" means any source code,
|
||||
object code, patch, tool, sample, graphic, specification, manual,
|
||||
documentation, or any other material posted or submitted by you to the project.
|
||||
|
||||
2. With respect to any worldwide copyrights, or copyright applications and
|
||||
registrations, in your contribution:
|
||||
|
||||
* you hereby assign to us joint ownership, and to the extent that such
|
||||
assignment is or becomes invalid, ineffective or unenforceable, you hereby
|
||||
grant to us a perpetual, irrevocable, non-exclusive, worldwide, no-charge,
|
||||
royalty-free, unrestricted license to exercise all rights under those
|
||||
copyrights. This includes, at our option, the right to sublicense these same
|
||||
rights to third parties through multiple levels of sublicensees or other
|
||||
licensing arrangements;
|
||||
|
||||
* you agree that each of us can do all things in relation to your
|
||||
contribution as if each of us were the sole owners, and if one of us makes
|
||||
a derivative work of your contribution, the one who makes the derivative
|
||||
work (or has it made will be the sole owner of that derivative work;
|
||||
|
||||
* you agree that you will not assert any moral rights in your contribution
|
||||
against us, our licensees or transferees;
|
||||
|
||||
* you agree that we may register a copyright in your contribution and
|
||||
exercise all ownership rights associated with it; and
|
||||
|
||||
* you agree that neither of us has any duty to consult with, obtain the
|
||||
consent of, pay or render an accounting to the other for any use or
|
||||
distribution of your contribution.
|
||||
|
||||
3. With respect to any patents you own, or that you can license without payment
|
||||
to any third party, you hereby grant to us a perpetual, irrevocable,
|
||||
non-exclusive, worldwide, no-charge, royalty-free license to:
|
||||
|
||||
* make, have made, use, sell, offer to sell, import, and otherwise transfer
|
||||
your contribution in whole or in part, alone or in combination with or
|
||||
included in any product, work or materials arising out of the project to
|
||||
which your contribution was submitted, and
|
||||
|
||||
* at our option, to sublicense these same rights to third parties through
|
||||
multiple levels of sublicensees or other licensing arrangements.
|
||||
|
||||
4. Except as set out above, you keep all right, title, and interest in your
|
||||
contribution. The rights that you grant to us under these terms are effective
|
||||
on the date you first submitted a contribution to us, even if your submission
|
||||
took place before the date you sign these terms.
|
||||
|
||||
5. You covenant, represent, warrant and agree that:
|
||||
|
||||
* Each contribution that you submit is and shall be an original work of
|
||||
authorship and you can legally grant the rights set out in this SCA;
|
||||
|
||||
* to the best of your knowledge, each contribution will not violate any
|
||||
third party's copyrights, trademarks, patents, or other intellectual
|
||||
property rights; and
|
||||
|
||||
* each contribution shall be in compliance with U.S. export control laws and
|
||||
other applicable export and import laws. You agree to notify us if you
|
||||
become aware of any circumstance which would make any of the foregoing
|
||||
representations inaccurate in any respect. We may publicly disclose your
|
||||
participation in the project, including the fact that you have signed the SCA.
|
||||
|
||||
6. This SCA is governed by the laws of the State of California and applicable
|
||||
U.S. Federal law. Any choice of law rules will not apply.
|
||||
|
||||
7. Please place an “x” on one of the applicable statement below. Please do NOT
|
||||
mark both statements:
|
||||
|
||||
* [x] I am signing on behalf of myself as an individual and no other person
|
||||
or entity, including my employer, has or will have rights with respect to my
|
||||
contributions.
|
||||
|
||||
* [ ] I am signing on behalf of my employer or a legal entity and I have the
|
||||
actual authority to contractually bind that entity.
|
||||
|
||||
## Contributor Details
|
||||
|
||||
| Field | Entry |
|
||||
|------------------------------- | ------------------------ |
|
||||
| Name | Vishnu Priya VR |
|
||||
| Company name (if applicable) | Uniphore |
|
||||
| Title or role (if applicable) | NLP/AI Engineer |
|
||||
| Date | 2020-05-03 |
|
||||
| GitHub username | vishnupriyavr |
|
||||
| Website (optional) | |
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -28,6 +29,10 @@ def noun_chunks(obj):
|
|||
"app",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
np_deps = set(doc.vocab.strings.add(label) for label in labels)
|
||||
close_app = doc.vocab.strings.add("nk")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -14,6 +15,10 @@ def noun_chunks(obj):
|
|||
# Further improvement of the models will eliminate the need for this tag.
|
||||
labels = ["nsubj", "obj", "iobj", "appos", "ROOT", "obl"]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
nmod = doc.vocab.strings.add("nmod")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -20,6 +21,10 @@ def noun_chunks(obj):
|
|||
"ROOT",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,10 +2,15 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON, VERB, AUX
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
doc = obj.doc
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
if not len(doc):
|
||||
return
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -20,6 +21,10 @@ def noun_chunks(obj):
|
|||
"ROOT",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings.add(label) for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -19,6 +20,10 @@ def noun_chunks(obj):
|
|||
"nmod:poss",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -19,6 +20,10 @@ def noun_chunks(obj):
|
|||
"nmod:poss",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -19,6 +20,10 @@ def noun_chunks(obj):
|
|||
"nmod:poss",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -2,6 +2,7 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
from ...symbols import NOUN, PROPN, PRON
|
||||
from ...errors import Errors
|
||||
|
||||
|
||||
def noun_chunks(obj):
|
||||
|
@ -20,6 +21,10 @@ def noun_chunks(obj):
|
|||
"nmod:poss",
|
||||
]
|
||||
doc = obj.doc # Ensure works on both Doc and Span.
|
||||
|
||||
if not doc.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
np_deps = [doc.vocab.strings[label] for label in labels]
|
||||
conj = doc.vocab.strings.add("conj")
|
||||
np_label = doc.vocab.strings.add("NP")
|
||||
|
|
|
@ -88,6 +88,11 @@ def eu_tokenizer():
|
|||
return get_lang_class("eu").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def fa_tokenizer():
|
||||
return get_lang_class("fa").Defaults.create_tokenizer()
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def fi_tokenizer():
|
||||
return get_lang_class("fi").Defaults.create_tokenizer()
|
||||
|
|
16
spacy/tests/lang/de/test_noun_chunks.py
Normal file
16
spacy/tests/lang/de/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_de(de_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'de' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = de_tokenizer("Er lag auf seinem")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
16
spacy/tests/lang/el/test_noun_chunks.py
Normal file
16
spacy/tests/lang/el/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_el(el_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'el' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = el_tokenizer("είναι χώρα της νοτιοανατολικής")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
|
@ -6,9 +6,24 @@ from spacy.attrs import HEAD, DEP
|
|||
from spacy.symbols import nsubj, dobj, amod, nmod, conj, cc, root
|
||||
from spacy.lang.en.syntax_iterators import SYNTAX_ITERATORS
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
from ...util import get_doc
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed(en_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'en' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = en_tokenizer("This is a sentence")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
||||
|
||||
|
||||
def test_en_noun_chunks_not_nested(en_vocab):
|
||||
words = ["Peter", "has", "chronic", "command", "and", "control", "issues"]
|
||||
heads = [1, 0, 4, 3, -1, -2, -5]
|
||||
|
|
16
spacy/tests/lang/es/test_noun_chunks.py
Normal file
16
spacy/tests/lang/es/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_es(es_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'es' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = es_tokenizer("en Oxford este verano")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
17
spacy/tests/lang/fa/test_noun_chunks.py
Normal file
17
spacy/tests/lang/fa/test_noun_chunks.py
Normal file
|
@ -0,0 +1,17 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_fa(fa_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'fa' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
|
||||
doc = fa_tokenizer("این یک جمله نمونه می باشد.")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
16
spacy/tests/lang/fr/test_noun_chunks.py
Normal file
16
spacy/tests/lang/fr/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_fr(fr_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'fr' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = fr_tokenizer("trouver des travaux antérieurs")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
16
spacy/tests/lang/id/test_noun_chunks.py
Normal file
16
spacy/tests/lang/id/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_id(id_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'id' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = id_tokenizer("sebelas")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
16
spacy/tests/lang/nb/test_noun_chunks.py
Normal file
16
spacy/tests/lang/nb/test_noun_chunks.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
# coding: utf-8
|
||||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_nb(nb_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'nb' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = nb_tokenizer("Smørsausen brukes bl.a. til")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
|
@ -2,9 +2,22 @@
|
|||
from __future__ import unicode_literals
|
||||
|
||||
import pytest
|
||||
|
||||
from ...util import get_doc
|
||||
|
||||
|
||||
def test_noun_chunks_is_parsed_sv(sv_tokenizer):
|
||||
"""Test that noun_chunks raises Value Error for 'sv' language if Doc is not parsed.
|
||||
To check this test, we're constructing a Doc
|
||||
with a new Vocab here and forcing is_parsed to 'False'
|
||||
to make sure the noun chunks don't run.
|
||||
"""
|
||||
doc = sv_tokenizer("Studenten läste den bästa boken")
|
||||
doc.is_parsed = False
|
||||
with pytest.raises(ValueError):
|
||||
list(doc.noun_chunks)
|
||||
|
||||
|
||||
SV_NP_TEST_EXAMPLES = [
|
||||
(
|
||||
"En student läste en bok", # A student read a book
|
||||
|
|
|
@ -597,8 +597,7 @@ cdef class Doc:
|
|||
|
||||
DOCS: https://spacy.io/api/doc#noun_chunks
|
||||
"""
|
||||
if not self.is_parsed:
|
||||
raise ValueError(Errors.E029)
|
||||
|
||||
# Accumulate the result before beginning to iterate over it. This
|
||||
# prevents the tokenisation from being changed out from under us
|
||||
# during the iteration. The tricky thing here is that Span accepts
|
||||
|
|
Loading…
Reference in New Issue
Block a user