mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-27 10:26:35 +03:00
Update train_ner example for spaCy v2.0
This commit is contained in:
parent
e904075f35
commit
9d58673aaf
|
@ -1,13 +1,104 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf8
|
||||||
|
"""
|
||||||
|
Example of training spaCy's named entity recognizer, starting off with an
|
||||||
|
existing model or a blank model.
|
||||||
|
|
||||||
|
For more details, see the documentation:
|
||||||
|
* Training: https://alpha.spacy.io/usage/training
|
||||||
|
* NER: https://alpha.spacy.io/usage/linguistic-features#named-entities
|
||||||
|
|
||||||
|
Developed for: spaCy 2.0.0a18
|
||||||
|
Last updated for: spaCy 2.0.0a18
|
||||||
|
"""
|
||||||
from __future__ import unicode_literals, print_function
|
from __future__ import unicode_literals, print_function
|
||||||
|
|
||||||
import random
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
from spacy.lang.en import English
|
import spacy
|
||||||
from spacy.gold import GoldParse, biluo_tags_from_offsets
|
from spacy.gold import GoldParse, biluo_tags_from_offsets
|
||||||
|
|
||||||
|
|
||||||
|
# training data
|
||||||
|
TRAIN_DATA = [
|
||||||
|
('Who is Shaka Khan?', [(7, 17, 'PERSON')]),
|
||||||
|
('I like London and Berlin.', [(7, 13, 'LOC'), (18, 24, 'LOC')])
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
def main(model=None, output_dir=None, n_iter=100):
|
||||||
|
"""Load the model, set up the pipeline and train the entity recognizer.
|
||||||
|
|
||||||
|
model (unicode): Model name to start off with. If None, a blank English
|
||||||
|
Language class is created.
|
||||||
|
output_dir (unicode / Path): Optional output directory. If None, no model
|
||||||
|
will be saved.
|
||||||
|
n_iter (int): Number of iterations during training.
|
||||||
|
"""
|
||||||
|
if model is not None:
|
||||||
|
nlp = spacy.load(model) # load existing spaCy model
|
||||||
|
print("Loaded model '%s'" % model)
|
||||||
|
else:
|
||||||
|
nlp = spacy.blank('en') # create blank Language class
|
||||||
|
print("Created blank 'en' model")
|
||||||
|
|
||||||
|
# create the built-in pipeline components and add them to the pipeline
|
||||||
|
# ner.create_pipe works for built-ins that are registered with spaCy!
|
||||||
|
if 'ner' not in nlp.pipe_names:
|
||||||
|
ner = nlp.create_pipe('ner')
|
||||||
|
nlp.add_pipe(ner, last=True)
|
||||||
|
|
||||||
|
# function that allows begin_training to get the training data
|
||||||
|
get_data = lambda: reformat_train_data(nlp.tokenizer, TRAIN_DATA)
|
||||||
|
|
||||||
|
# get names of other pipes to disable them during training
|
||||||
|
other_pipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
|
||||||
|
with nlp.disable_pipes(*other_pipes) as disabled: # only train NER
|
||||||
|
optimizer = nlp.begin_training(get_data)
|
||||||
|
for itn in range(n_iter):
|
||||||
|
random.shuffle(TRAIN_DATA)
|
||||||
|
losses = {}
|
||||||
|
for raw_text, entity_offsets in TRAIN_DATA:
|
||||||
|
doc = nlp.make_doc(raw_text)
|
||||||
|
gold = GoldParse(doc, entities=entity_offsets)
|
||||||
|
nlp.update(
|
||||||
|
[doc], # Batch of Doc objects
|
||||||
|
[gold], # Batch of GoldParse objects
|
||||||
|
drop=0.5, # Dropout -- make it harder to memorise data
|
||||||
|
sgd=optimizer, # Callable to update weights
|
||||||
|
losses=losses)
|
||||||
|
print(losses)
|
||||||
|
|
||||||
|
# test the trained model
|
||||||
|
for text, _ in TRAIN_DATA:
|
||||||
|
doc = nlp(text)
|
||||||
|
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
|
||||||
|
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
||||||
|
|
||||||
|
# save model to output directory
|
||||||
|
if output_dir is not None:
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
if not output_dir.exists():
|
||||||
|
output_dir.mkdir()
|
||||||
|
nlp.to_disk(output_dir)
|
||||||
|
print("Saved model to", output_dir)
|
||||||
|
|
||||||
|
# test the saved model
|
||||||
|
print("Loading from", output_dir)
|
||||||
|
for text, _ in TRAIN_DATA:
|
||||||
|
doc = nlp(text)
|
||||||
|
print('Entities', [(ent.text, ent.label_) for ent in doc.ents])
|
||||||
|
print('Tokens', [(t.text, t.ent_type_, t.ent_iob) for t in doc])
|
||||||
|
|
||||||
|
|
||||||
def reformat_train_data(tokenizer, examples):
|
def reformat_train_data(tokenizer, examples):
|
||||||
"""Reformat data to match JSON format"""
|
"""Reformat data to match JSON format.
|
||||||
|
https://alpha.spacy.io/api/annotation#json-input
|
||||||
|
|
||||||
|
tokenizer (Tokenizer): Tokenizer to process the raw text.
|
||||||
|
examples (list): The trainig data.
|
||||||
|
RETURNS (list): The reformatted training data."""
|
||||||
output = []
|
output = []
|
||||||
for i, (text, entity_offsets) in enumerate(examples):
|
for i, (text, entity_offsets) in enumerate(examples):
|
||||||
doc = tokenizer(text)
|
doc = tokenizer(text)
|
||||||
|
@ -21,49 +112,6 @@ def reformat_train_data(tokenizer, examples):
|
||||||
return output
|
return output
|
||||||
|
|
||||||
|
|
||||||
def main(model_dir=None):
|
|
||||||
train_data = [
|
|
||||||
(
|
|
||||||
'Who is Shaka Khan?',
|
|
||||||
[(len('Who is '), len('Who is Shaka Khan'), 'PERSON')]
|
|
||||||
),
|
|
||||||
(
|
|
||||||
'I like London and Berlin.',
|
|
||||||
[(len('I like '), len('I like London'), 'LOC'),
|
|
||||||
(len('I like London and '), len('I like London and Berlin'), 'LOC')]
|
|
||||||
)
|
|
||||||
]
|
|
||||||
nlp = English(pipeline=['tensorizer', 'ner'])
|
|
||||||
get_data = lambda: reformat_train_data(nlp.tokenizer, train_data)
|
|
||||||
optimizer = nlp.begin_training(get_data)
|
|
||||||
for itn in range(100):
|
|
||||||
random.shuffle(train_data)
|
|
||||||
losses = {}
|
|
||||||
for raw_text, entity_offsets in train_data:
|
|
||||||
doc = nlp.make_doc(raw_text)
|
|
||||||
gold = GoldParse(doc, entities=entity_offsets)
|
|
||||||
nlp.update(
|
|
||||||
[doc], # Batch of Doc objects
|
|
||||||
[gold], # Batch of GoldParse objects
|
|
||||||
drop=0.5, # Dropout -- make it harder to memorise data
|
|
||||||
sgd=optimizer, # Callable to update weights
|
|
||||||
losses=losses)
|
|
||||||
print(losses)
|
|
||||||
print("Save to", model_dir)
|
|
||||||
nlp.to_disk(model_dir)
|
|
||||||
print("Load from", model_dir)
|
|
||||||
nlp = spacy.lang.en.English(pipeline=['tensorizer', 'ner'])
|
|
||||||
nlp.from_disk(model_dir)
|
|
||||||
for raw_text, _ in train_data:
|
|
||||||
doc = nlp(raw_text)
|
|
||||||
for word in doc:
|
|
||||||
print(word.text, word.ent_type_, word.ent_iob_)
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
import plac
|
import plac
|
||||||
plac.call(main)
|
plac.call(main)
|
||||||
# Who "" 2
|
|
||||||
# is "" 2
|
|
||||||
# Shaka "" PERSON 3
|
|
||||||
# Khan "" PERSON 1
|
|
||||||
# ? "" 2
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user