diff --git a/spacy/ml/tb_framework.py b/spacy/ml/tb_framework.py index ee0c3990f..63be90209 100644 --- a/spacy/ml/tb_framework.py +++ b/spacy/ml/tb_framework.py @@ -214,10 +214,6 @@ def forward(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: boo def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is_train: bool): """Slow reference implementation, without the precomputation""" - def debug_predict(*msg): - if not is_train: - pass - #print(*msg) nF = model.get_dim("nF") tok2vec = model.get_ref("tok2vec") lower_pad = model.get_param("lower_pad") @@ -234,9 +230,6 @@ def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is docs, moves = docs_moves states = moves.init_batch(docs) tokvecs, backprop_tok2vec = tok2vec(docs, is_train) - debug_predict("Tokvecs shape", tokvecs.shape) - debug_predict("Tokvecs mean", tokvecs.mean(axis=1)) - debug_predict("Tokvecs var", tokvecs.var(axis=1)) all_ids = [] all_which = [] all_statevecs = [] @@ -249,7 +242,6 @@ def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is ids = ids[: len(next_states)] for i, state in enumerate(next_states): state.set_context_tokens(ids, i, nF) - debug_predict(ids) # Sum the state features, add the bias and apply the activation (maxout) # to create the state vectors. tokfeats3f = model.ops.alloc3f(ids.shape[0], nF, nI) @@ -257,10 +249,8 @@ def _forward_reference(model, docs_moves: Tuple[List[Doc], TransitionSystem], is for j in range(nF): if ids[i, j] == -1: tokfeats3f[i, j] = lower_pad - debug_predict("Setting tokfeat", i, j, "to pad") else: tokfeats3f[i, j] = tokvecs[ids[i, j]] - debug_predict("Setting tokfeat", i, j, "to", ids[i, j]) tokfeats = model.ops.reshape2f(tokfeats3f, tokfeats3f.shape[0], -1) preacts2f = model.ops.gemm(tokfeats, lower_W, trans2=True) preacts2f += lower_b