Fix tok2vec structure after model registry refactor (#4549)

The model registry refactor of the Tok2Vec function broke loading models
trained with the previous function, because the model tree was slightly
different. Specifically, the new function wrote:

    concatenate(norm, prefix, suffix, shape)

To build the embedding layer. In the previous implementation, I had used
the operator overloading shortcut:

    ( norm | prefix | suffix | shape )

This actually gets mapped to a binary association, giving something
like:

    concatenate(norm, concatenate(prefix, concatenate(suffix, shape)))

This is a different tree, so the layers iterate differently and we
loaded the weights wrongly.
This commit is contained in:
Matthew Honnibal 2019-10-28 23:59:03 +01:00 committed by GitHub
parent bade60fe64
commit 9e210fa7fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -2,7 +2,7 @@ from __future__ import unicode_literals
from thinc.api import chain, layerize, clone, concatenate, with_flatten, uniqued
from thinc.api import noop, with_square_sequences
from thinc.v2v import Maxout
from thinc.v2v import Maxout, Model
from thinc.i2v import HashEmbed, StaticVectors
from thinc.t2t import ExtractWindow
from thinc.misc import Residual, LayerNorm, FeatureExtracter
@ -33,27 +33,49 @@ def Doc2Feats(config):
@register_architecture("spacy.MultiHashEmbed.v1")
def MultiHashEmbed(config):
# For backwards compatibility with models before the architecture registry,
# we have to be careful to get exactly the same model structure. One subtle
# trick is that when we define concatenation with the operator, the operator
# is actually binary associative. So when we write (a | b | c), we're actually
# getting concatenate(concatenate(a, b), c). That's why the implementation
# is a bit ugly here.
cols = config["columns"]
width = config["width"]
rows = config["rows"]
tables = [HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm")]
norm = HashEmbed(width, rows, column=cols.index("NORM"), name="embed_norm")
if config["use_subwords"]:
for feature in ["PREFIX", "SUFFIX", "SHAPE"]:
tables.append(
HashEmbed(
width,
rows // 2,
column=cols.index(feature),
name="embed_%s" % feature.lower(),
)
)
prefix = HashEmbed(width, rows // 2,
column=cols.index("PREFIX"), name="embed_prefix")
suffix = HashEmbed(width, rows // 2,
column=cols.index("SUFFIX"), name="embed_suffix")
shape = HashEmbed(width, rows // 2,
column=cols.index("SHAPE"), name="embed_shape")
if config.get("@pretrained_vectors"):
tables.append(make_layer(config["@pretrained_vectors"]))
glove = make_layer(config["@pretrained_vectors"])
mix = make_layer(config["@mix"])
# This is a pretty ugly hack. Not sure what the best solution should be.
mix._layers[0].nI = sum(table.nO for table in tables)
layer = uniqued(chain(concatenate(*tables), mix), column=cols.index("ORTH"))
with Model.define_operators({">>": chain, "|": concatenate}):
if config["use_subwords"] and config["@pretrained_vectors"]:
mix._layers[0].nI = width * 5
layer = uniqued(
(glove | norm | prefix | suffix | shape) >> mix,
column=cols.index("ORTH")
)
elif config["use_subwords"]:
mix._layers[0].nI = width * 4
layer = uniqued(
(norm | prefix | suffix | shape) >> mix,
column=cols.index("ORTH")
)
elif config["@pretrained_vectors"]:
mix._layers[0].nI = width * 2
embed = uniqued(
(glove | norm) >> mix,
column=cols.index("ORTH"),
)
else:
embed = norm
layer.cfg = config
return layer