Merge remote-tracking branch 'upstream/develop' into fix/patterns-init

This commit is contained in:
svlandeg 2020-10-05 17:49:44 +02:00
commit 9eb813a35d
17 changed files with 160 additions and 165 deletions

View File

@ -7,7 +7,7 @@ requires = [
"preshed>=3.0.2,<3.1.0",
"murmurhash>=0.28.0,<1.1.0",
"thinc>=8.0.0a43,<8.0.0a50",
"blis>=0.4.0,<0.5.0",
"blis>=0.4.0,<0.8.0",
"pytokenizations",
"pathy"
]

View File

@ -2,7 +2,7 @@
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.0a43,<8.0.0a50
blis>=0.4.0,<0.5.0
blis>=0.4.0,<0.8.0
ml_datasets==0.2.0a0
murmurhash>=0.28.0,<1.1.0
wasabi>=0.8.0,<1.1.0

View File

@ -41,7 +41,7 @@ install_requires =
cymem>=2.0.2,<2.1.0
preshed>=3.0.2,<3.1.0
thinc>=8.0.0a43,<8.0.0a50
blis>=0.4.0,<0.5.0
blis>=0.4.0,<0.8.0
wasabi>=0.8.0,<1.1.0
srsly>=2.3.0,<3.0.0
catalogue>=2.0.1,<2.1.0

View File

@ -1,6 +1,6 @@
# fmt: off
__title__ = "spacy-nightly"
__version__ = "3.0.0a33"
__version__ = "3.0.0a34"
__release__ = True
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"

View File

@ -458,10 +458,10 @@ class Errors:
# TODO: fix numbering after merging develop into master
E900 = ("Patterns for component '{name}' not initialized. This can be fixed "
"by calling 'add_patterns' or 'initialize'.")
E092 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
E902 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
"Try checking whitespace and delimiters. See "
"https://nightly.spacy.io/api/cli#convert")
E093 = ("The token-per-line NER file is not formatted correctly. Try checking "
E903 = ("The token-per-line NER file is not formatted correctly. Try checking "
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
"dimension refers to the output width, after the linear projection "

View File

@ -289,13 +289,12 @@ class Lookups:
DOCS: https://nightly.spacy.io/api/lookups#to_disk
"""
if len(self._tables):
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
path = ensure_path(path)
if not path.exists():
path.mkdir()
filepath = path / filename
with filepath.open("wb") as file_:
file_.write(self.to_bytes())
def from_disk(
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs

View File

@ -210,7 +210,7 @@ class Morphologizer(Tagger):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
"""

View File

@ -162,7 +162,7 @@ cdef class Pipe:
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/pipe#get_loss
"""

View File

@ -104,7 +104,7 @@ class SentenceRecognizer(Tagger):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
"""

View File

@ -249,7 +249,7 @@ class Tagger(Pipe):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/tagger#get_loss
"""

View File

@ -281,7 +281,7 @@ class TextCategorizer(Pipe):
examples (Iterable[Examples]): The batch of examples.
scores: Scores representing the model's predictions.
RETUTNRS (Tuple[float, float]): The loss and the gradient.
RETURNS (Tuple[float, float]): The loss and the gradient.
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
"""

View File

@ -7,6 +7,15 @@ from spacy import util
from spacy import prefer_gpu, require_gpu
from spacy.ml._precomputable_affine import PrecomputableAffine
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
from spacy.util import dot_to_object, SimpleFrozenList
from thinc.api import Config, Optimizer, ConfigValidationError
from spacy.training.batchers import minibatch_by_words
from spacy.lang.en import English
from spacy.lang.nl import Dutch
from spacy.language import DEFAULT_CONFIG_PATH
from spacy.schemas import ConfigSchemaTraining
from .util import get_random_doc
@pytest.fixture
@ -157,3 +166,128 @@ def test_dot_to_dict(dot_notation, expected):
result = util.dot_to_dict(dot_notation)
assert result == expected
assert util.dict_to_dot(result) == dot_notation
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 400, 199], [3]),
([400, 400, 199, 3], [4]),
([400, 400, 199, 3, 200], [3, 2]),
([400, 400, 199, 3, 1], [5]),
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
([400, 400, 199, 3, 1, 200], [3, 3]),
([400, 400, 199, 3, 1, 999], [3, 3]),
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
([1, 2, 999], [3]),
([1, 2, 999, 1], [4]),
([1, 200, 999, 1], [2, 2]),
([1, 999, 200, 1], [2, 2]),
],
)
def test_util_minibatch(doc_sizes, expected_batches):
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
)
assert [len(batch) for batch in batches] == expected_batches
max_size = batch_size + batch_size * tol
for batch in batches:
assert sum([len(doc) for doc in batch]) < max_size
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 4000, 199], [1, 2]),
([400, 400, 199, 3000, 200], [1, 4]),
([400, 400, 199, 3, 1, 1500], [1, 5]),
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
([1, 2, 9999], [1, 2]),
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
],
)
def test_util_minibatch_oversize(doc_sizes, expected_batches):
""" Test that oversized documents are returned in their own batch"""
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
)
assert [len(batch) for batch in batches] == expected_batches
def test_util_dot_section():
cfg_string = """
[nlp]
lang = "en"
pipeline = ["textcat"]
[components]
[components.textcat]
factory = "textcat"
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
"""
nlp_config = Config().from_str(cfg_string)
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
default_config["nlp"]["lang"] = "nl"
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
# Test that creation went OK
assert isinstance(en_nlp, English)
assert isinstance(nl_nlp, Dutch)
assert nl_nlp.pipe_names == []
assert en_nlp.pipe_names == ["textcat"]
# not exclusive_classes
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
# Test that default values got overwritten
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
# Test proper functioning of 'dot_to_object'
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.unknownattribute")
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
def test_simple_frozen_list():
t = SimpleFrozenList(["foo", "bar"])
assert t == ["foo", "bar"]
assert t.index("bar") == 1 # okay method
with pytest.raises(NotImplementedError):
t.append("baz")
with pytest.raises(NotImplementedError):
t.sort()
with pytest.raises(NotImplementedError):
t.extend(["baz"])
with pytest.raises(NotImplementedError):
t.pop()
t = SimpleFrozenList(["foo", "bar"], error="Error!")
with pytest.raises(NotImplementedError):
t.append("baz")
def test_resolve_dot_names():
config = {
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
}
result = util.resolve_dot_names(config, ["training.optimizer"])
assert isinstance(result[0], Optimizer)
with pytest.raises(ConfigValidationError) as e:
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
errors = e.value.errors
assert len(errors) == 1
assert errors[0]["loc"] == ["training", "xyz"]

View File

@ -1,137 +0,0 @@
import pytest
from spacy import util
from spacy.util import dot_to_object, SimpleFrozenList
from thinc.api import Config, Optimizer, ConfigValidationError
from spacy.training.batchers import minibatch_by_words
from spacy.lang.en import English
from spacy.lang.nl import Dutch
from spacy.language import DEFAULT_CONFIG_PATH
from spacy.schemas import ConfigSchemaTraining
from .util import get_random_doc
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 400, 199], [3]),
([400, 400, 199, 3], [4]),
([400, 400, 199, 3, 200], [3, 2]),
([400, 400, 199, 3, 1], [5]),
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
([400, 400, 199, 3, 1, 200], [3, 3]),
([400, 400, 199, 3, 1, 999], [3, 3]),
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
([1, 2, 999], [3]),
([1, 2, 999, 1], [4]),
([1, 200, 999, 1], [2, 2]),
([1, 999, 200, 1], [2, 2]),
],
)
def test_util_minibatch(doc_sizes, expected_batches):
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
)
assert [len(batch) for batch in batches] == expected_batches
max_size = batch_size + batch_size * tol
for batch in batches:
assert sum([len(doc) for doc in batch]) < max_size
@pytest.mark.parametrize(
"doc_sizes, expected_batches",
[
([400, 4000, 199], [1, 2]),
([400, 400, 199, 3000, 200], [1, 4]),
([400, 400, 199, 3, 1, 1500], [1, 5]),
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
([1, 2, 9999], [1, 2]),
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
],
)
def test_util_minibatch_oversize(doc_sizes, expected_batches):
""" Test that oversized documents are returned in their own batch"""
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
tol = 0.2
batch_size = 1000
batches = list(
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
)
assert [len(batch) for batch in batches] == expected_batches
def test_util_dot_section():
cfg_string = """
[nlp]
lang = "en"
pipeline = ["textcat"]
[components]
[components.textcat]
factory = "textcat"
[components.textcat.model]
@architectures = "spacy.TextCatBOW.v1"
exclusive_classes = true
ngram_size = 1
no_output_layer = false
"""
nlp_config = Config().from_str(cfg_string)
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
default_config["nlp"]["lang"] = "nl"
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
# Test that creation went OK
assert isinstance(en_nlp, English)
assert isinstance(nl_nlp, Dutch)
assert nl_nlp.pipe_names == []
assert en_nlp.pipe_names == ["textcat"]
# not exclusive_classes
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
# Test that default values got overwritten
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
# Test proper functioning of 'dot_to_object'
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
with pytest.raises(KeyError):
dot_to_object(en_nlp.config, "nlp.unknownattribute")
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
def test_simple_frozen_list():
t = SimpleFrozenList(["foo", "bar"])
assert t == ["foo", "bar"]
assert t.index("bar") == 1 # okay method
with pytest.raises(NotImplementedError):
t.append("baz")
with pytest.raises(NotImplementedError):
t.sort()
with pytest.raises(NotImplementedError):
t.extend(["baz"])
with pytest.raises(NotImplementedError):
t.pop()
t = SimpleFrozenList(["foo", "bar"], error="Error!")
with pytest.raises(NotImplementedError):
t.append("baz")
def test_resolve_dot_names():
config = {
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
}
result = util.resolve_dot_names(config, ["training.optimizer"])
assert isinstance(result[0], Optimizer)
with pytest.raises(ConfigValidationError) as e:
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
errors = e.value.errors
assert len(errors) == 1
assert errors[0]["loc"] == ["training", "xyz"]

View File

@ -5,7 +5,7 @@ import copy
from functools import partial
from pydantic import BaseModel, StrictStr
from ..util import registry, logger
from ..util import registry
from ..tokens import Doc
from .example import Example
@ -119,9 +119,8 @@ def make_orth_variants(
orig_token_dict = copy.deepcopy(token_dict)
ndsv = orth_variants.get("single", [])
ndpv = orth_variants.get("paired", [])
logger.debug(f"Data augmentation: {len(ndsv)} single / {len(ndpv)} paired variants")
words = token_dict.get("words", [])
tags = token_dict.get("tags", [])
words = token_dict.get("ORTH", [])
tags = token_dict.get("TAG", [])
# keep unmodified if words or tags are not defined
if words and tags:
if lower:
@ -154,8 +153,8 @@ def make_orth_variants(
if words[word_idx] in pair:
pair_idx = pair.index(words[word_idx])
words[word_idx] = punct_choices[punct_idx][pair_idx]
token_dict["words"] = words
token_dict["tags"] = tags
token_dict["ORTH"] = words
token_dict["TAG"] = tags
# modify raw
if raw is not None:
variants = []

View File

@ -103,7 +103,7 @@ def conll_ner_to_docs(
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
cols = list(zip(*[line.split() for line in lines]))
if len(cols) < 2:
raise ValueError(Errors.E093)
raise ValueError(Errors.E903)
length = len(cols[0])
words.extend(cols[0])
sent_starts.extend([True] + [False] * (length - 1))

View File

@ -46,7 +46,7 @@ def read_iob(raw_sents, vocab, n_sents):
sent_words, sent_iob = zip(*sent_tokens)
sent_tags = ["-"] * len(sent_words)
else:
raise ValueError(Errors.E092)
raise ValueError(Errors.E902)
words.extend(sent_words)
tags.extend(sent_tags)
iob.extend(sent_iob)

View File

@ -445,9 +445,9 @@ cdef class Vocab:
setters = ["strings", "vectors"]
if "strings" not in exclude:
self.strings.to_disk(path / "strings.json")
if "vectors" not in "exclude" and self.vectors is not None:
if "vectors" not in "exclude":
self.vectors.to_disk(path)
if "lookups" not in "exclude" and self.lookups is not None:
if "lookups" not in "exclude":
self.lookups.to_disk(path)
def from_disk(self, path, *, exclude=tuple()):