mirror of
https://github.com/explosion/spaCy.git
synced 2024-12-26 18:06:29 +03:00
Merge remote-tracking branch 'upstream/develop' into fix/patterns-init
This commit is contained in:
commit
9eb813a35d
|
@ -7,7 +7,7 @@ requires = [
|
||||||
"preshed>=3.0.2,<3.1.0",
|
"preshed>=3.0.2,<3.1.0",
|
||||||
"murmurhash>=0.28.0,<1.1.0",
|
"murmurhash>=0.28.0,<1.1.0",
|
||||||
"thinc>=8.0.0a43,<8.0.0a50",
|
"thinc>=8.0.0a43,<8.0.0a50",
|
||||||
"blis>=0.4.0,<0.5.0",
|
"blis>=0.4.0,<0.8.0",
|
||||||
"pytokenizations",
|
"pytokenizations",
|
||||||
"pathy"
|
"pathy"
|
||||||
]
|
]
|
||||||
|
|
|
@ -2,7 +2,7 @@
|
||||||
cymem>=2.0.2,<2.1.0
|
cymem>=2.0.2,<2.1.0
|
||||||
preshed>=3.0.2,<3.1.0
|
preshed>=3.0.2,<3.1.0
|
||||||
thinc>=8.0.0a43,<8.0.0a50
|
thinc>=8.0.0a43,<8.0.0a50
|
||||||
blis>=0.4.0,<0.5.0
|
blis>=0.4.0,<0.8.0
|
||||||
ml_datasets==0.2.0a0
|
ml_datasets==0.2.0a0
|
||||||
murmurhash>=0.28.0,<1.1.0
|
murmurhash>=0.28.0,<1.1.0
|
||||||
wasabi>=0.8.0,<1.1.0
|
wasabi>=0.8.0,<1.1.0
|
||||||
|
|
|
@ -41,7 +41,7 @@ install_requires =
|
||||||
cymem>=2.0.2,<2.1.0
|
cymem>=2.0.2,<2.1.0
|
||||||
preshed>=3.0.2,<3.1.0
|
preshed>=3.0.2,<3.1.0
|
||||||
thinc>=8.0.0a43,<8.0.0a50
|
thinc>=8.0.0a43,<8.0.0a50
|
||||||
blis>=0.4.0,<0.5.0
|
blis>=0.4.0,<0.8.0
|
||||||
wasabi>=0.8.0,<1.1.0
|
wasabi>=0.8.0,<1.1.0
|
||||||
srsly>=2.3.0,<3.0.0
|
srsly>=2.3.0,<3.0.0
|
||||||
catalogue>=2.0.1,<2.1.0
|
catalogue>=2.0.1,<2.1.0
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
# fmt: off
|
# fmt: off
|
||||||
__title__ = "spacy-nightly"
|
__title__ = "spacy-nightly"
|
||||||
__version__ = "3.0.0a33"
|
__version__ = "3.0.0a34"
|
||||||
__release__ = True
|
__release__ = True
|
||||||
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
__download_url__ = "https://github.com/explosion/spacy-models/releases/download"
|
||||||
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
__compatibility__ = "https://raw.githubusercontent.com/explosion/spacy-models/master/compatibility.json"
|
||||||
|
|
|
@ -458,10 +458,10 @@ class Errors:
|
||||||
# TODO: fix numbering after merging develop into master
|
# TODO: fix numbering after merging develop into master
|
||||||
E900 = ("Patterns for component '{name}' not initialized. This can be fixed "
|
E900 = ("Patterns for component '{name}' not initialized. This can be fixed "
|
||||||
"by calling 'add_patterns' or 'initialize'.")
|
"by calling 'add_patterns' or 'initialize'.")
|
||||||
E092 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
E902 = ("The sentence-per-line IOB/IOB2 file is not formatted correctly. "
|
||||||
"Try checking whitespace and delimiters. See "
|
"Try checking whitespace and delimiters. See "
|
||||||
"https://nightly.spacy.io/api/cli#convert")
|
"https://nightly.spacy.io/api/cli#convert")
|
||||||
E093 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
E903 = ("The token-per-line NER file is not formatted correctly. Try checking "
|
||||||
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
|
"whitespace and delimiters. See https://nightly.spacy.io/api/cli#convert")
|
||||||
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
|
E904 = ("Cannot initialize StaticVectors layer: nO dimension unset. This "
|
||||||
"dimension refers to the output width, after the linear projection "
|
"dimension refers to the output width, after the linear projection "
|
||||||
|
|
|
@ -289,13 +289,12 @@ class Lookups:
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/lookups#to_disk
|
DOCS: https://nightly.spacy.io/api/lookups#to_disk
|
||||||
"""
|
"""
|
||||||
if len(self._tables):
|
path = ensure_path(path)
|
||||||
path = ensure_path(path)
|
if not path.exists():
|
||||||
if not path.exists():
|
path.mkdir()
|
||||||
path.mkdir()
|
filepath = path / filename
|
||||||
filepath = path / filename
|
with filepath.open("wb") as file_:
|
||||||
with filepath.open("wb") as file_:
|
file_.write(self.to_bytes())
|
||||||
file_.write(self.to_bytes())
|
|
||||||
|
|
||||||
def from_disk(
|
def from_disk(
|
||||||
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
self, path: Union[str, Path], filename: str = "lookups.bin", **kwargs
|
||||||
|
|
|
@ -210,7 +210,7 @@ class Morphologizer(Tagger):
|
||||||
|
|
||||||
examples (Iterable[Examples]): The batch of examples.
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
scores: Scores representing the model's predictions.
|
scores: Scores representing the model's predictions.
|
||||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
|
DOCS: https://nightly.spacy.io/api/morphologizer#get_loss
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -162,7 +162,7 @@ cdef class Pipe:
|
||||||
|
|
||||||
examples (Iterable[Examples]): The batch of examples.
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
scores: Scores representing the model's predictions.
|
scores: Scores representing the model's predictions.
|
||||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/pipe#get_loss
|
DOCS: https://nightly.spacy.io/api/pipe#get_loss
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -104,7 +104,7 @@ class SentenceRecognizer(Tagger):
|
||||||
|
|
||||||
examples (Iterable[Examples]): The batch of examples.
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
scores: Scores representing the model's predictions.
|
scores: Scores representing the model's predictions.
|
||||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
|
DOCS: https://nightly.spacy.io/api/sentencerecognizer#get_loss
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -249,7 +249,7 @@ class Tagger(Pipe):
|
||||||
|
|
||||||
examples (Iterable[Examples]): The batch of examples.
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
scores: Scores representing the model's predictions.
|
scores: Scores representing the model's predictions.
|
||||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/tagger#get_loss
|
DOCS: https://nightly.spacy.io/api/tagger#get_loss
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -281,7 +281,7 @@ class TextCategorizer(Pipe):
|
||||||
|
|
||||||
examples (Iterable[Examples]): The batch of examples.
|
examples (Iterable[Examples]): The batch of examples.
|
||||||
scores: Scores representing the model's predictions.
|
scores: Scores representing the model's predictions.
|
||||||
RETUTNRS (Tuple[float, float]): The loss and the gradient.
|
RETURNS (Tuple[float, float]): The loss and the gradient.
|
||||||
|
|
||||||
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
|
DOCS: https://nightly.spacy.io/api/textcategorizer#get_loss
|
||||||
"""
|
"""
|
||||||
|
|
|
@ -7,6 +7,15 @@ from spacy import util
|
||||||
from spacy import prefer_gpu, require_gpu
|
from spacy import prefer_gpu, require_gpu
|
||||||
from spacy.ml._precomputable_affine import PrecomputableAffine
|
from spacy.ml._precomputable_affine import PrecomputableAffine
|
||||||
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
from spacy.ml._precomputable_affine import _backprop_precomputable_affine_padding
|
||||||
|
from spacy.util import dot_to_object, SimpleFrozenList
|
||||||
|
from thinc.api import Config, Optimizer, ConfigValidationError
|
||||||
|
from spacy.training.batchers import minibatch_by_words
|
||||||
|
from spacy.lang.en import English
|
||||||
|
from spacy.lang.nl import Dutch
|
||||||
|
from spacy.language import DEFAULT_CONFIG_PATH
|
||||||
|
from spacy.schemas import ConfigSchemaTraining
|
||||||
|
|
||||||
|
from .util import get_random_doc
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
|
@ -157,3 +166,128 @@ def test_dot_to_dict(dot_notation, expected):
|
||||||
result = util.dot_to_dict(dot_notation)
|
result = util.dot_to_dict(dot_notation)
|
||||||
assert result == expected
|
assert result == expected
|
||||||
assert util.dict_to_dot(result) == dot_notation
|
assert util.dict_to_dot(result) == dot_notation
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"doc_sizes, expected_batches",
|
||||||
|
[
|
||||||
|
([400, 400, 199], [3]),
|
||||||
|
([400, 400, 199, 3], [4]),
|
||||||
|
([400, 400, 199, 3, 200], [3, 2]),
|
||||||
|
([400, 400, 199, 3, 1], [5]),
|
||||||
|
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
||||||
|
([400, 400, 199, 3, 1, 200], [3, 3]),
|
||||||
|
([400, 400, 199, 3, 1, 999], [3, 3]),
|
||||||
|
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
||||||
|
([1, 2, 999], [3]),
|
||||||
|
([1, 2, 999, 1], [4]),
|
||||||
|
([1, 200, 999, 1], [2, 2]),
|
||||||
|
([1, 999, 200, 1], [2, 2]),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_util_minibatch(doc_sizes, expected_batches):
|
||||||
|
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||||
|
tol = 0.2
|
||||||
|
batch_size = 1000
|
||||||
|
batches = list(
|
||||||
|
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
||||||
|
)
|
||||||
|
assert [len(batch) for batch in batches] == expected_batches
|
||||||
|
|
||||||
|
max_size = batch_size + batch_size * tol
|
||||||
|
for batch in batches:
|
||||||
|
assert sum([len(doc) for doc in batch]) < max_size
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.parametrize(
|
||||||
|
"doc_sizes, expected_batches",
|
||||||
|
[
|
||||||
|
([400, 4000, 199], [1, 2]),
|
||||||
|
([400, 400, 199, 3000, 200], [1, 4]),
|
||||||
|
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
||||||
|
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
||||||
|
([1, 2, 9999], [1, 2]),
|
||||||
|
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
||||||
|
""" Test that oversized documents are returned in their own batch"""
|
||||||
|
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
||||||
|
tol = 0.2
|
||||||
|
batch_size = 1000
|
||||||
|
batches = list(
|
||||||
|
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
||||||
|
)
|
||||||
|
assert [len(batch) for batch in batches] == expected_batches
|
||||||
|
|
||||||
|
|
||||||
|
def test_util_dot_section():
|
||||||
|
cfg_string = """
|
||||||
|
[nlp]
|
||||||
|
lang = "en"
|
||||||
|
pipeline = ["textcat"]
|
||||||
|
|
||||||
|
[components]
|
||||||
|
|
||||||
|
[components.textcat]
|
||||||
|
factory = "textcat"
|
||||||
|
|
||||||
|
[components.textcat.model]
|
||||||
|
@architectures = "spacy.TextCatBOW.v1"
|
||||||
|
exclusive_classes = true
|
||||||
|
ngram_size = 1
|
||||||
|
no_output_layer = false
|
||||||
|
"""
|
||||||
|
nlp_config = Config().from_str(cfg_string)
|
||||||
|
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
||||||
|
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
||||||
|
default_config["nlp"]["lang"] = "nl"
|
||||||
|
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
||||||
|
# Test that creation went OK
|
||||||
|
assert isinstance(en_nlp, English)
|
||||||
|
assert isinstance(nl_nlp, Dutch)
|
||||||
|
assert nl_nlp.pipe_names == []
|
||||||
|
assert en_nlp.pipe_names == ["textcat"]
|
||||||
|
# not exclusive_classes
|
||||||
|
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
||||||
|
# Test that default values got overwritten
|
||||||
|
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
||||||
|
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
||||||
|
# Test proper functioning of 'dot_to_object'
|
||||||
|
with pytest.raises(KeyError):
|
||||||
|
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
||||||
|
with pytest.raises(KeyError):
|
||||||
|
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
||||||
|
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
||||||
|
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
||||||
|
|
||||||
|
|
||||||
|
def test_simple_frozen_list():
|
||||||
|
t = SimpleFrozenList(["foo", "bar"])
|
||||||
|
assert t == ["foo", "bar"]
|
||||||
|
assert t.index("bar") == 1 # okay method
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
t.append("baz")
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
t.sort()
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
t.extend(["baz"])
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
t.pop()
|
||||||
|
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
t.append("baz")
|
||||||
|
|
||||||
|
|
||||||
|
def test_resolve_dot_names():
|
||||||
|
config = {
|
||||||
|
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
||||||
|
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
||||||
|
}
|
||||||
|
result = util.resolve_dot_names(config, ["training.optimizer"])
|
||||||
|
assert isinstance(result[0], Optimizer)
|
||||||
|
with pytest.raises(ConfigValidationError) as e:
|
||||||
|
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
||||||
|
errors = e.value.errors
|
||||||
|
assert len(errors) == 1
|
||||||
|
assert errors[0]["loc"] == ["training", "xyz"]
|
||||||
|
|
|
@ -1,137 +0,0 @@
|
||||||
import pytest
|
|
||||||
|
|
||||||
from spacy import util
|
|
||||||
from spacy.util import dot_to_object, SimpleFrozenList
|
|
||||||
from thinc.api import Config, Optimizer, ConfigValidationError
|
|
||||||
from spacy.training.batchers import minibatch_by_words
|
|
||||||
from spacy.lang.en import English
|
|
||||||
from spacy.lang.nl import Dutch
|
|
||||||
from spacy.language import DEFAULT_CONFIG_PATH
|
|
||||||
from spacy.schemas import ConfigSchemaTraining
|
|
||||||
|
|
||||||
from .util import get_random_doc
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"doc_sizes, expected_batches",
|
|
||||||
[
|
|
||||||
([400, 400, 199], [3]),
|
|
||||||
([400, 400, 199, 3], [4]),
|
|
||||||
([400, 400, 199, 3, 200], [3, 2]),
|
|
||||||
([400, 400, 199, 3, 1], [5]),
|
|
||||||
([400, 400, 199, 3, 1, 1500], [5]), # 1500 will be discarded
|
|
||||||
([400, 400, 199, 3, 1, 200], [3, 3]),
|
|
||||||
([400, 400, 199, 3, 1, 999], [3, 3]),
|
|
||||||
([400, 400, 199, 3, 1, 999, 999], [3, 2, 1, 1]),
|
|
||||||
([1, 2, 999], [3]),
|
|
||||||
([1, 2, 999, 1], [4]),
|
|
||||||
([1, 200, 999, 1], [2, 2]),
|
|
||||||
([1, 999, 200, 1], [2, 2]),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def test_util_minibatch(doc_sizes, expected_batches):
|
|
||||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
|
||||||
tol = 0.2
|
|
||||||
batch_size = 1000
|
|
||||||
batches = list(
|
|
||||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=True)
|
|
||||||
)
|
|
||||||
assert [len(batch) for batch in batches] == expected_batches
|
|
||||||
|
|
||||||
max_size = batch_size + batch_size * tol
|
|
||||||
for batch in batches:
|
|
||||||
assert sum([len(doc) for doc in batch]) < max_size
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize(
|
|
||||||
"doc_sizes, expected_batches",
|
|
||||||
[
|
|
||||||
([400, 4000, 199], [1, 2]),
|
|
||||||
([400, 400, 199, 3000, 200], [1, 4]),
|
|
||||||
([400, 400, 199, 3, 1, 1500], [1, 5]),
|
|
||||||
([400, 400, 199, 3000, 2000, 200, 200], [1, 1, 3, 2]),
|
|
||||||
([1, 2, 9999], [1, 2]),
|
|
||||||
([2000, 1, 2000, 1, 1, 1, 2000], [1, 1, 1, 4]),
|
|
||||||
],
|
|
||||||
)
|
|
||||||
def test_util_minibatch_oversize(doc_sizes, expected_batches):
|
|
||||||
""" Test that oversized documents are returned in their own batch"""
|
|
||||||
docs = [get_random_doc(doc_size) for doc_size in doc_sizes]
|
|
||||||
tol = 0.2
|
|
||||||
batch_size = 1000
|
|
||||||
batches = list(
|
|
||||||
minibatch_by_words(docs, size=batch_size, tolerance=tol, discard_oversize=False)
|
|
||||||
)
|
|
||||||
assert [len(batch) for batch in batches] == expected_batches
|
|
||||||
|
|
||||||
|
|
||||||
def test_util_dot_section():
|
|
||||||
cfg_string = """
|
|
||||||
[nlp]
|
|
||||||
lang = "en"
|
|
||||||
pipeline = ["textcat"]
|
|
||||||
|
|
||||||
[components]
|
|
||||||
|
|
||||||
[components.textcat]
|
|
||||||
factory = "textcat"
|
|
||||||
|
|
||||||
[components.textcat.model]
|
|
||||||
@architectures = "spacy.TextCatBOW.v1"
|
|
||||||
exclusive_classes = true
|
|
||||||
ngram_size = 1
|
|
||||||
no_output_layer = false
|
|
||||||
"""
|
|
||||||
nlp_config = Config().from_str(cfg_string)
|
|
||||||
en_nlp = util.load_model_from_config(nlp_config, auto_fill=True)
|
|
||||||
default_config = Config().from_disk(DEFAULT_CONFIG_PATH)
|
|
||||||
default_config["nlp"]["lang"] = "nl"
|
|
||||||
nl_nlp = util.load_model_from_config(default_config, auto_fill=True)
|
|
||||||
# Test that creation went OK
|
|
||||||
assert isinstance(en_nlp, English)
|
|
||||||
assert isinstance(nl_nlp, Dutch)
|
|
||||||
assert nl_nlp.pipe_names == []
|
|
||||||
assert en_nlp.pipe_names == ["textcat"]
|
|
||||||
# not exclusive_classes
|
|
||||||
assert en_nlp.get_pipe("textcat").model.attrs["multi_label"] is False
|
|
||||||
# Test that default values got overwritten
|
|
||||||
assert en_nlp.config["nlp"]["pipeline"] == ["textcat"]
|
|
||||||
assert nl_nlp.config["nlp"]["pipeline"] == [] # default value []
|
|
||||||
# Test proper functioning of 'dot_to_object'
|
|
||||||
with pytest.raises(KeyError):
|
|
||||||
dot_to_object(en_nlp.config, "nlp.pipeline.tagger")
|
|
||||||
with pytest.raises(KeyError):
|
|
||||||
dot_to_object(en_nlp.config, "nlp.unknownattribute")
|
|
||||||
T = util.registry.resolve(nl_nlp.config["training"], schema=ConfigSchemaTraining)
|
|
||||||
assert isinstance(dot_to_object({"training": T}, "training.optimizer"), Optimizer)
|
|
||||||
|
|
||||||
|
|
||||||
def test_simple_frozen_list():
|
|
||||||
t = SimpleFrozenList(["foo", "bar"])
|
|
||||||
assert t == ["foo", "bar"]
|
|
||||||
assert t.index("bar") == 1 # okay method
|
|
||||||
with pytest.raises(NotImplementedError):
|
|
||||||
t.append("baz")
|
|
||||||
with pytest.raises(NotImplementedError):
|
|
||||||
t.sort()
|
|
||||||
with pytest.raises(NotImplementedError):
|
|
||||||
t.extend(["baz"])
|
|
||||||
with pytest.raises(NotImplementedError):
|
|
||||||
t.pop()
|
|
||||||
t = SimpleFrozenList(["foo", "bar"], error="Error!")
|
|
||||||
with pytest.raises(NotImplementedError):
|
|
||||||
t.append("baz")
|
|
||||||
|
|
||||||
|
|
||||||
def test_resolve_dot_names():
|
|
||||||
config = {
|
|
||||||
"training": {"optimizer": {"@optimizers": "Adam.v1"}},
|
|
||||||
"foo": {"bar": "training.optimizer", "baz": "training.xyz"},
|
|
||||||
}
|
|
||||||
result = util.resolve_dot_names(config, ["training.optimizer"])
|
|
||||||
assert isinstance(result[0], Optimizer)
|
|
||||||
with pytest.raises(ConfigValidationError) as e:
|
|
||||||
util.resolve_dot_names(config, ["training.xyz", "training.optimizer"])
|
|
||||||
errors = e.value.errors
|
|
||||||
assert len(errors) == 1
|
|
||||||
assert errors[0]["loc"] == ["training", "xyz"]
|
|
|
@ -5,7 +5,7 @@ import copy
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from pydantic import BaseModel, StrictStr
|
from pydantic import BaseModel, StrictStr
|
||||||
|
|
||||||
from ..util import registry, logger
|
from ..util import registry
|
||||||
from ..tokens import Doc
|
from ..tokens import Doc
|
||||||
from .example import Example
|
from .example import Example
|
||||||
|
|
||||||
|
@ -119,9 +119,8 @@ def make_orth_variants(
|
||||||
orig_token_dict = copy.deepcopy(token_dict)
|
orig_token_dict = copy.deepcopy(token_dict)
|
||||||
ndsv = orth_variants.get("single", [])
|
ndsv = orth_variants.get("single", [])
|
||||||
ndpv = orth_variants.get("paired", [])
|
ndpv = orth_variants.get("paired", [])
|
||||||
logger.debug(f"Data augmentation: {len(ndsv)} single / {len(ndpv)} paired variants")
|
words = token_dict.get("ORTH", [])
|
||||||
words = token_dict.get("words", [])
|
tags = token_dict.get("TAG", [])
|
||||||
tags = token_dict.get("tags", [])
|
|
||||||
# keep unmodified if words or tags are not defined
|
# keep unmodified if words or tags are not defined
|
||||||
if words and tags:
|
if words and tags:
|
||||||
if lower:
|
if lower:
|
||||||
|
@ -154,8 +153,8 @@ def make_orth_variants(
|
||||||
if words[word_idx] in pair:
|
if words[word_idx] in pair:
|
||||||
pair_idx = pair.index(words[word_idx])
|
pair_idx = pair.index(words[word_idx])
|
||||||
words[word_idx] = punct_choices[punct_idx][pair_idx]
|
words[word_idx] = punct_choices[punct_idx][pair_idx]
|
||||||
token_dict["words"] = words
|
token_dict["ORTH"] = words
|
||||||
token_dict["tags"] = tags
|
token_dict["TAG"] = tags
|
||||||
# modify raw
|
# modify raw
|
||||||
if raw is not None:
|
if raw is not None:
|
||||||
variants = []
|
variants = []
|
||||||
|
|
|
@ -103,7 +103,7 @@ def conll_ner_to_docs(
|
||||||
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
|
lines = [line.strip() for line in conll_sent.split("\n") if line.strip()]
|
||||||
cols = list(zip(*[line.split() for line in lines]))
|
cols = list(zip(*[line.split() for line in lines]))
|
||||||
if len(cols) < 2:
|
if len(cols) < 2:
|
||||||
raise ValueError(Errors.E093)
|
raise ValueError(Errors.E903)
|
||||||
length = len(cols[0])
|
length = len(cols[0])
|
||||||
words.extend(cols[0])
|
words.extend(cols[0])
|
||||||
sent_starts.extend([True] + [False] * (length - 1))
|
sent_starts.extend([True] + [False] * (length - 1))
|
||||||
|
|
|
@ -46,7 +46,7 @@ def read_iob(raw_sents, vocab, n_sents):
|
||||||
sent_words, sent_iob = zip(*sent_tokens)
|
sent_words, sent_iob = zip(*sent_tokens)
|
||||||
sent_tags = ["-"] * len(sent_words)
|
sent_tags = ["-"] * len(sent_words)
|
||||||
else:
|
else:
|
||||||
raise ValueError(Errors.E092)
|
raise ValueError(Errors.E902)
|
||||||
words.extend(sent_words)
|
words.extend(sent_words)
|
||||||
tags.extend(sent_tags)
|
tags.extend(sent_tags)
|
||||||
iob.extend(sent_iob)
|
iob.extend(sent_iob)
|
||||||
|
|
|
@ -445,9 +445,9 @@ cdef class Vocab:
|
||||||
setters = ["strings", "vectors"]
|
setters = ["strings", "vectors"]
|
||||||
if "strings" not in exclude:
|
if "strings" not in exclude:
|
||||||
self.strings.to_disk(path / "strings.json")
|
self.strings.to_disk(path / "strings.json")
|
||||||
if "vectors" not in "exclude" and self.vectors is not None:
|
if "vectors" not in "exclude":
|
||||||
self.vectors.to_disk(path)
|
self.vectors.to_disk(path)
|
||||||
if "lookups" not in "exclude" and self.lookups is not None:
|
if "lookups" not in "exclude":
|
||||||
self.lookups.to_disk(path)
|
self.lookups.to_disk(path)
|
||||||
|
|
||||||
def from_disk(self, path, *, exclude=tuple()):
|
def from_disk(self, path, *, exclude=tuple()):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user