mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-11 17:56:30 +03:00
💫 Raise better error when using uninitialized pipeline component (#3074)
After creating a component, the `.model` attribute is left with the value `True`, to indicate it should be created later during `from_disk()`, `from_bytes()` or `begin_training()`. This had led to confusing errors if you try to use the component without initializing the model. To fix this, we add a method `require_model()` to the `Pipe` base class. The `require_model()` method needs to be called at the start of the `.predict()` and `.update()` methods of the components. It raises a `ValueError` if the model is not initialized. An error message has been added to `spacy.errors`.
This commit is contained in:
parent
c315e08e6e
commit
9ec9f89b99
|
@ -287,6 +287,8 @@ class Errors(object):
|
|||
E108 = ("As of spaCy v2.1, the pipe name `sbd` has been deprecated "
|
||||
"in favor of the pipe name `sentencizer`, which does the same "
|
||||
"thing. For example, use `nlp.create_pipeline('sentencizer')`")
|
||||
E109 = ("Model for component '{name}' not initialized. Did you forget to load "
|
||||
"a model, or forget to call begin_training()?")
|
||||
|
||||
|
||||
@add_codes
|
||||
|
|
|
@ -293,10 +293,16 @@ class Pipe(object):
|
|||
Both __call__ and pipe should delegate to the `predict()`
|
||||
and `set_annotations()` methods.
|
||||
"""
|
||||
self.require_model()
|
||||
scores, tensors = self.predict([doc])
|
||||
self.set_annotations([doc], scores, tensors=tensors)
|
||||
return doc
|
||||
|
||||
def require_model(self):
|
||||
"""Raise an error if the component's model is not initialized."""
|
||||
if getattr(self, 'model', None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def pipe(self, stream, batch_size=128, n_threads=-1):
|
||||
"""Apply the pipe to a stream of documents.
|
||||
|
||||
|
@ -313,6 +319,7 @@ class Pipe(object):
|
|||
"""Apply the pipeline's model to a batch of docs, without
|
||||
modifying them.
|
||||
"""
|
||||
self.require_model()
|
||||
raise NotImplementedError
|
||||
|
||||
def set_annotations(self, docs, scores, tensors=None):
|
||||
|
@ -325,6 +332,7 @@ class Pipe(object):
|
|||
|
||||
Delegates to predict() and get_loss().
|
||||
"""
|
||||
self.require_model()
|
||||
raise NotImplementedError
|
||||
|
||||
def rehearse(self, docs, sgd=None, losses=None, **config):
|
||||
|
@ -495,6 +503,7 @@ class Tensorizer(Pipe):
|
|||
docs (iterable): A sequence of `Doc` objects.
|
||||
RETURNS (object): Vector representations for each token in the docs.
|
||||
"""
|
||||
self.require_model()
|
||||
inputs = self.model.ops.flatten([doc.tensor for doc in docs])
|
||||
outputs = self.model(inputs)
|
||||
return self.model.ops.unflatten(outputs, [len(d) for d in docs])
|
||||
|
@ -519,6 +528,7 @@ class Tensorizer(Pipe):
|
|||
sgd (callable): An optimizer.
|
||||
RETURNS (dict): Results from the update.
|
||||
"""
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
inputs = []
|
||||
|
@ -600,6 +610,7 @@ class Tagger(Pipe):
|
|||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
if not any(len(doc) for doc in docs):
|
||||
# Handle case where there are no tokens in any docs.
|
||||
n_labels = len(self.labels)
|
||||
|
@ -644,6 +655,7 @@ class Tagger(Pipe):
|
|||
doc.is_tagged = True
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
|
||||
|
@ -904,6 +916,7 @@ class MultitaskObjective(Tagger):
|
|||
return model
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
scores = self.model.softmax(tokvecs)
|
||||
return tokvecs, scores
|
||||
|
@ -1042,6 +1055,7 @@ class ClozeMultitask(Pipe):
|
|||
return sgd
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
tokvecs = self.model.tok2vec(docs)
|
||||
vectors = self.model.output_layer(tokvecs)
|
||||
return tokvecs, vectors
|
||||
|
@ -1061,6 +1075,7 @@ class ClozeMultitask(Pipe):
|
|||
pass
|
||||
|
||||
def rehearse(self, docs, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if losses is not None and self.name not in losses:
|
||||
losses[self.name] = 0.
|
||||
predictions, bp_predictions = self.model.begin_update(docs, drop=drop)
|
||||
|
@ -1105,9 +1120,11 @@ class SimilarityHook(Pipe):
|
|||
yield self(doc)
|
||||
|
||||
def predict(self, doc1, doc2):
|
||||
self.require_model()
|
||||
return self.model.predict([(doc1, doc2)])
|
||||
|
||||
def update(self, doc1_doc2, golds, sgd=None, drop=0.):
|
||||
self.require_model()
|
||||
sims, bp_sims = self.model.begin_update(doc1_doc2, drop=drop)
|
||||
|
||||
def begin_training(self, _=tuple(), pipeline=None, sgd=None, **kwargs):
|
||||
|
@ -1171,6 +1188,7 @@ class TextCategorizer(Pipe):
|
|||
yield from docs
|
||||
|
||||
def predict(self, docs):
|
||||
self.require_model()
|
||||
scores = self.model(docs)
|
||||
scores = self.model.ops.asarray(scores)
|
||||
tensors = [doc.tensor for doc in docs]
|
||||
|
|
|
@ -227,7 +227,13 @@ cdef class Parser:
|
|||
for doc in batch_in_order:
|
||||
yield doc
|
||||
|
||||
def require_model(self):
|
||||
"""Raise an error if the component's model is not initialized."""
|
||||
if getattr(self, 'model', None) in (None, True, False):
|
||||
raise ValueError(Errors.E109.format(name=self.name))
|
||||
|
||||
def predict(self, docs, beam_width=1, beam_density=0.0, drop=0.):
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc):
|
||||
docs = [docs]
|
||||
if not any(len(doc) for doc in docs):
|
||||
|
@ -375,6 +381,7 @@ cdef class Parser:
|
|||
return [b for b in beams if not b.is_done]
|
||||
|
||||
def update(self, docs, golds, drop=0., sgd=None, losses=None):
|
||||
self.require_model()
|
||||
if isinstance(docs, Doc) and isinstance(golds, GoldParse):
|
||||
docs = [docs]
|
||||
golds = [golds]
|
||||
|
|
Loading…
Reference in New Issue
Block a user