mirror of
https://github.com/explosion/spaCy.git
synced 2025-01-26 01:04:34 +03:00
Update conllu2json MISC column handling (#4715)
Update converter to handle various things in MISC column: * `SpaceAfter=No` and set raw text accordingly * plain NER tag * name=NER (for NorNE)
This commit is contained in:
parent
9aab0a55e1
commit
9efd3ccbef
|
@ -18,21 +18,28 @@ def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None, **_):
|
|||
"""
|
||||
# by @dvsrepo, via #11 explosion/spacy-dev-resources
|
||||
# by @katarkor
|
||||
# name=NER is to handle NorNE
|
||||
MISC_NER_PATTERN = "\|?(?:name=)?(([A-Z_]+)-([A-Z_]+)|O)\|?"
|
||||
docs = []
|
||||
raw = ""
|
||||
sentences = []
|
||||
conll_data = read_conllx(input_data, use_morphology=use_morphology)
|
||||
checked_for_ner = False
|
||||
has_ner_tags = False
|
||||
for i, example in enumerate(conll_data):
|
||||
if not checked_for_ner:
|
||||
has_ner_tags = is_ner(example.token_annotation.entities[0])
|
||||
has_ner_tags = is_ner(example.token_annotation.entities[0],
|
||||
MISC_NER_PATTERN)
|
||||
checked_for_ner = True
|
||||
sentences.append(generate_sentence(example.token_annotation, has_ner_tags))
|
||||
raw += example.text
|
||||
sentences.append(generate_sentence(example.token_annotation,
|
||||
has_ner_tags, MISC_NER_PATTERN))
|
||||
# Real-sized documents could be extracted using the comments on the
|
||||
# conllu document
|
||||
if len(sentences) % n_sents == 0:
|
||||
doc = create_doc(sentences, i)
|
||||
doc = create_doc(raw, sentences, i)
|
||||
docs.append(doc)
|
||||
raw = ""
|
||||
sentences = []
|
||||
if sentences:
|
||||
doc = create_doc(sentences, i)
|
||||
|
@ -40,12 +47,12 @@ def conllu2json(input_data, n_sents=10, use_morphology=False, lang=None, **_):
|
|||
return docs
|
||||
|
||||
|
||||
def is_ner(tag):
|
||||
def is_ner(tag, tag_pattern):
|
||||
"""
|
||||
Check the 10th column of the first token to determine if the file contains
|
||||
NER tags
|
||||
"""
|
||||
tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag)
|
||||
tag_match = re.search(tag_pattern, tag)
|
||||
if tag_match:
|
||||
return True
|
||||
elif tag == "O":
|
||||
|
@ -63,9 +70,10 @@ def read_conllx(input_data, use_morphology=False, n=0):
|
|||
while lines[0].startswith("#"):
|
||||
lines.pop(0)
|
||||
ids, words, tags, heads, deps, ents = [], [], [], [], [], []
|
||||
spaces = []
|
||||
for line in lines:
|
||||
parts = line.split("\t")
|
||||
id_, word, lemma, pos, tag, morph, head, dep, _1, iob = parts
|
||||
id_, word, lemma, pos, tag, morph, head, dep, _1, misc = parts
|
||||
if "-" in id_ or "." in id_:
|
||||
continue
|
||||
try:
|
||||
|
@ -74,18 +82,27 @@ def read_conllx(input_data, use_morphology=False, n=0):
|
|||
dep = "ROOT" if dep == "root" else dep
|
||||
tag = pos if tag == "_" else tag
|
||||
tag = tag + "__" + morph if use_morphology else tag
|
||||
iob = iob if iob else "O"
|
||||
ent = misc if misc else "O"
|
||||
|
||||
ids.append(id_)
|
||||
words.append(word)
|
||||
tags.append(tag)
|
||||
heads.append(head)
|
||||
deps.append(dep)
|
||||
ents.append(iob)
|
||||
ents.append(ent)
|
||||
if "SpaceAfter=No" in misc:
|
||||
spaces.append(False)
|
||||
else:
|
||||
spaces.append(True)
|
||||
except: # noqa: E722
|
||||
print(line)
|
||||
raise
|
||||
example = Example(doc=None)
|
||||
raw = ""
|
||||
for word, space in zip(words, spaces):
|
||||
raw += word
|
||||
if space:
|
||||
raw += " "
|
||||
example = Example(doc=raw)
|
||||
example.set_token_annotation(ids=ids, words=words, tags=tags,
|
||||
heads=heads, deps=deps, entities=ents)
|
||||
yield example
|
||||
|
@ -94,7 +111,7 @@ def read_conllx(input_data, use_morphology=False, n=0):
|
|||
break
|
||||
|
||||
|
||||
def simplify_tags(iob):
|
||||
def simplify_tags(iob, tag_pattern):
|
||||
"""
|
||||
Simplify tags obtained from the dataset in order to follow Wikipedia
|
||||
scheme (PER, LOC, ORG, MISC). 'PER', 'LOC' and 'ORG' keep their tags, while
|
||||
|
@ -103,26 +120,28 @@ def simplify_tags(iob):
|
|||
"""
|
||||
new_iob = []
|
||||
for tag in iob:
|
||||
tag_match = re.match("([A-Z_]+)-([A-Z_]+)", tag)
|
||||
tag_match = re.search(tag_pattern, tag)
|
||||
new_tag = "O"
|
||||
if tag_match:
|
||||
prefix = tag_match.group(1)
|
||||
suffix = tag_match.group(2)
|
||||
if suffix == "GPE_LOC":
|
||||
suffix = "LOC"
|
||||
elif suffix == "GPE_ORG":
|
||||
suffix = "ORG"
|
||||
elif suffix != "PER" and suffix != "LOC" and suffix != "ORG":
|
||||
suffix = "MISC"
|
||||
tag = prefix + "-" + suffix
|
||||
new_iob.append(tag)
|
||||
prefix = tag_match.group(2)
|
||||
suffix = tag_match.group(3)
|
||||
if prefix and suffix:
|
||||
if suffix == "GPE_LOC":
|
||||
suffix = "LOC"
|
||||
elif suffix == "GPE_ORG":
|
||||
suffix = "ORG"
|
||||
elif suffix != "PER" and suffix != "LOC" and suffix != "ORG":
|
||||
suffix = "MISC"
|
||||
new_tag = prefix + "-" + suffix
|
||||
new_iob.append(new_tag)
|
||||
return new_iob
|
||||
|
||||
|
||||
def generate_sentence(token_annotation, has_ner_tags):
|
||||
def generate_sentence(token_annotation, has_ner_tags, tag_pattern):
|
||||
sentence = {}
|
||||
tokens = []
|
||||
if has_ner_tags:
|
||||
iob = simplify_tags(token_annotation.entities)
|
||||
iob = simplify_tags(token_annotation.entities, tag_pattern)
|
||||
biluo = iob_to_biluo(iob)
|
||||
for i, id in enumerate(token_annotation.ids):
|
||||
token = {}
|
||||
|
@ -138,11 +157,12 @@ def generate_sentence(token_annotation, has_ner_tags):
|
|||
return sentence
|
||||
|
||||
|
||||
def create_doc(sentences, id):
|
||||
def create_doc(raw, sentences, id):
|
||||
doc = {}
|
||||
paragraph = {}
|
||||
doc["id"] = id
|
||||
doc["paragraphs"] = []
|
||||
paragraph["raw"] = raw.strip()
|
||||
paragraph["sentences"] = sentences
|
||||
doc["paragraphs"].append(paragraph)
|
||||
return doc
|
||||
|
|
|
@ -32,6 +32,32 @@ def test_cli_converters_conllu2json():
|
|||
assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O"]
|
||||
|
||||
|
||||
def test_cli_converters_conllu2json():
|
||||
# https://raw.githubusercontent.com/ohenrik/nb_news_ud_sm/master/original_data/no-ud-dev-ner.conllu
|
||||
lines = [
|
||||
"1\tDommer\tdommer\tNOUN\t_\tDefinite=Ind|Gender=Masc|Number=Sing\t2\tappos\t_\tname=O",
|
||||
"2\tFinn\tFinn\tPROPN\t_\tGender=Masc\t4\tnsubj\t_\tSpaceAfter=No|name=B-PER",
|
||||
"3\tEilertsen\tEilertsen\tPROPN\t_\t_\t2\tname\t_\tname=I-PER",
|
||||
"4\tavstår\tavstå\tVERB\t_\tMood=Ind|Tense=Pres|VerbForm=Fin\t0\troot\t_\tSpaceAfter=No|name=O",
|
||||
"5\t.\t$.\tPUNCT\t_\t_\t4\tpunct\t_\tname=O",
|
||||
]
|
||||
input_data = "\n".join(lines)
|
||||
converted = conllu2json(input_data, n_sents=1)
|
||||
assert len(converted) == 1
|
||||
assert converted[0]["id"] == 0
|
||||
assert len(converted[0]["paragraphs"]) == 1
|
||||
assert converted[0]["paragraphs"][0]["raw"] == "Dommer FinnEilertsen avstår."
|
||||
assert len(converted[0]["paragraphs"][0]["sentences"]) == 1
|
||||
sent = converted[0]["paragraphs"][0]["sentences"][0]
|
||||
assert len(sent["tokens"]) == 5
|
||||
tokens = sent["tokens"]
|
||||
assert [t["orth"] for t in tokens] == ["Dommer", "Finn", "Eilertsen", "avstår", "."]
|
||||
assert [t["tag"] for t in tokens] == ["NOUN", "PROPN", "PROPN", "VERB", "PUNCT"]
|
||||
assert [t["head"] for t in tokens] == [1, 2, -1, 0, -1]
|
||||
assert [t["dep"] for t in tokens] == ["appos", "nsubj", "name", "ROOT", "punct"]
|
||||
assert [t["ner"] for t in tokens] == ["O", "B-PER", "L-PER", "O", "O"]
|
||||
|
||||
|
||||
def test_cli_converters_iob2json():
|
||||
lines = [
|
||||
"I|O like|O London|I-GPE and|O New|B-GPE York|I-GPE City|I-GPE .|O",
|
||||
|
@ -106,7 +132,6 @@ def test_cli_converters_conll_ner2json():
|
|||
]
|
||||
input_data = "\n".join(lines)
|
||||
converted = conll_ner2json(input_data, n_sents=10)
|
||||
print(converted)
|
||||
assert len(converted) == 1
|
||||
assert converted[0]["id"] == 0
|
||||
assert len(converted[0]["paragraphs"]) == 1
|
||||
|
|
Loading…
Reference in New Issue
Block a user